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Abstract  
 

Hardware/software co-simulation improves the 

performance of embedded applications by executing 

the applications on a virtual platform before the 

actual hardware is available in silicon. However, 

the virtual platform of the target architecture is 

often not available during early stages of the 

embedded design flow. Consequently, analysis for 

parallel execution without performing 

hardware/software co-simulation is required. This 

article presents an analysis methodology for parallel 

execution of video encoding applications targeting 

heterogeneous reconfigurable architectures without 

performing HW/SW co-simulation. We formulate 

the application performance on the target 

architecture with an equation. The equation shows 

the overhead factors that reduces the speedup of 

parallel execution. H264 video encoding application 

is taken as a case study.   
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1. Introduction 
 

Embedded systems are becoming more and more 

complex. It includes complexity of application as 

well as the architecture heterogeneity [1], [2], [3].  

However, time-to-market is constantly decreasing. 

The importance of being able to keep pace with both 

trends is posing serious challenges.  To reduce this 

gap, hardware/software co-simulation has been 

around for more than two decades and has shown a 

lot of potential for embedded systems design. The 

objective of hardware/software co-simulation is to 

find an optimized solution such that all the design 

constraints are satisfied [4].   It generally requires 

heterogeneous platforms combining general purpose 

processor with reconfigurable hardware such as 

FPGA (Field Programmable Gate Arrays).   
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The performance is improved by partitioning 

(mapping) an embedded application among software 

running on a microprocessor and reconfigurable 

hardware for parallel execution.  Performance 

improvement by parallel execution on heterogeneous 

reconfigurable platforms depends upon three factors: 

 The optimal mapping of application on the 

target architecture. The performance gains in 

these heterogeneous multicore architectures 

depend on effective application 

parallelization across multiple cores [5]. 

 Exploitation of potential parallelism [6]. To 

get most benefit of such a heterogeneous 

platform, it is essential to exploit the 

parallelism of the application [7]. 

 Data exchange registers between different 

processing cores of the target architecture 

[8]. 

 

Hardware/software co-simulation requires either the 

actual hardware platform or virtual prototype of the 

target platform which in turns require considerable 

time and efforts. The availability of such tools, such 

as virtual prototype of the target architecture, in early 

stages of the design flow is a real bottleneck. 

Consequently, there is no generally accepted 

methodology to separate applications onto hardware 

and software execution [9]. The separation of 

application into hardware and software parts is called 

partitioning [5] – [9].  

 

The partitioning problem in heterogeneous systems is 

more critical due to the exponential growth of VLSI 

(Very Large Scale Integration) technology.  At the 

same time, the continuous growing effort of 

developing multimedia standards with higher 

compression efficiency and more functionality have 

resulted in application complexity [3].   

 

This article presents a performance analysis 

methodology for video encoding applications to 

estimate the expected performance of parallel 

execution on heterogeneous reconfigurable 

architectures without performing HW/SW co-

simulation. The important steps of proposed 

methodology in this article are: separation of source 

code, parallelization at macro-block level, dependency 
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analysis of macro-blocks, and identification of slow 

down factors.   

 

Separation of source code divides the original code 

into two types: frame data processing and Macro-

block (MB) processing. Then, the MB processing part 

is parallelized between different processing elements 

of the target heterogeneous reconfigurable 

architecture. However, the maximum parallelism is 

not always achieved due to dependency among 

macro-blocks.  

 

Therefore, dependency analysis is performed to 

formulate the sum of time duration before and after 

maximum parallelism. Finally, slow down factors are 

identified. To the best of our knowledge, no such 

methodology exists that can analyze the video 

encoding applications for heterogeneous 

reconfigurable architectures without performing 

HW/SW co-simulation.  

 

H.264 video encoding application [10] serves as a 

case study and the target platform in this article is the 

Molen architecture [11] (a heterogeneous 

reconfigurable platform). H.264 is commonly used 

due to its high-quality coding characteristics of video 

contents at very low bit-rates. Molen architecture 

supports integrated hardware-software co-simulation 

starting from profiling and partitioning to synthesis 

and compilation.   

 

The remainder of this article is organized into 

multiple sections:  Section 2 provides the essential 

background information. Section 3 describes 

parallelization opportunities for video encoding 

applications. Section 4 presents the four steps of 

proposed performance analysis methodology: 

separation of source code, parallelization at macro-

block level, dependency analysis of macro-blocks, 

and identification of slow down factors, described in 

Sections 5, 6, 7 and 8 respectively. Finally, Section 9 

provides conclusion. 

 

2. Essential Background Knowledge 
 

Before discussing the proposed performance analysis 

methodology, we briefly summarize the Molen 

architecture and the H.264 video encoding 

application. Our methodology is general purpose and 

is not specific to a particular application or target 

architecture. The H.264 is being selected due to its 

wider acceptance as a video encoding application. 

Molen architecture is chosen because it represents the 

characteristics of a typical heterogeneous 

reconfigurable platform used in embedded 

applications. 

 

Block diagram of Molen Architecture: 

Molen architecture is used to speed up the 

applications execution by implementing its most 

critical functions as hardware accelerators, referred to 

as Custom Computing Units (CCUs). The Molen 

machine organization is shown in Figure 1.  

 
 

Figure 1: The Molen Machine Organization 

 

The main parts are the general purpose processor 

(GPP), the reconfigurable co-processor (RP) and the 

Arbiter. The GPPs Instruction Set Architecture (ISA) 

is extended to control the hardware accelerators. The 

Arbiter fetches and decodes the application 

instructions from the main memory.  It checks 

whether it belongs to the standard or to the extended 

ISA and arbitrates them to the corresponding 

processor. Exchange registers (XREG) are used for 

the transfer of data between GPP and the RP.  

 

Block diagram of H.264 Video Application: 

The block diagram of H.264 video encoding 

application (standard) is shown in Figure 2.  The input 

frame (shown as Fn in Figure 2) is processed in units 

of macro- block. A macro- block corresponds to 

16x16 pixels in the original image. Each macro-block 

of the target image is encoded in either intra or inter 

prediction mode. In each prediction mode, a macro-

block P is constructed.  

 

In Intra prediction mode, macro-block P is 

constructed from samples in the current frame that 

have previously been encoded, decoded and 

reconstructed. In Inter prediction mode, macro-block 
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P is constructed by motion-estimated (ME) and 

motion-compensated (MC) prediction from one or 

more reference frame(s).  Once the macro-block P is 

constructed, it  is subtracted from the current macro-

block to produce a difference macro-block Dn.  

 

 
 

Figure 2:  H.264 Video Encoder 

 

The difference macro-block Dn is then transformed 

(T) and quantized (Q) to give X (a set of quantized 

transform coefficients). These quantized transform 

coefficients are re-ordered and then entropy encoded. 

The entropy encoded coefficients, together with side 

information required to decode the macro-block from 

the compressed bit-stream is passed to a Network 

Abstraction Layer (NAL) for transmission or storage. 

 

3. Parallelization Opportunities 
 

This section explores the various possibilities in the 
domain of parallel execution of video encoding 
applications.  

 

Parallel Execution at Group of Pictures Level: 

At Group of Pictures (GoP) level, several groups of 

consecutive frames are encoded simultaneously. It 

contributes to increased throughput. Authors in [13] 

defined a GoP as 15 consecutive frames.  

Computation resources were available in the form of 

cluster nodes. Consequently, a real time response is 

achieved but with a high latency.  

 

Parallel Execution at Frame Level: 

At frame level, frames are divided in several slices 

and processed in parallel. However, the drawback is 

limited scalability. Consequently, the real time 

response is achievable only under limited 

circumstances [14]. Similarly, authors in [12] and [16] 

implemented the H.264 video encoder using the 

concept of multithreading. [12] and [16] exploited the 

concepts of thread level parallelism and OpenMP 

programming model respectively. 

 
Integration of GoP and Frame Level: 
Integration of parallel execution at GoP and frame 

level ensures the compromise between throughput and 

latency [15], [21]. If the real time response is 

achieved, additional computational resources are used 

to parallelize GoP encoding in order to reduce latency.   

 

Parallel Execution at Motion Estimation Level: 

Parallel execution at motion estimation level is well-

suited for hardware implementation. Authors in [17] 

and [18] classify the techniques at motion estimation 

level into three types: 1-D array, 2-D array and 

hierarchal architectures.  However, these techniques 

deal with the fixed block size (16x16 or 8x8) and are 

not appropriate for the variable block size 

 

Limitation of Existing Techniques: 

Parallelization at GoP level, frame level, combination 

of GoP and frame level or motion estimation level is 

not suitable for heterogeneous reconfigurable 

platforms like the Molen architecture (case study in 

this article) due to following reasons: 

 

 Space limitation of the exchange registers.  

 Dynamic allocation of data buffer in 

reconfigurable processor of the Molen 

architecture is needed if the frame size is 

changed, which is not a good programming 

model for our target platform. 

 In case of parallelization at motion 

estimation level, we have to pay huge 

overhead of data transfer between 

reconfigurable processor and main memory. 

 These techniques are based on simulations 

performed in a PC environment (not in an 

embedded environment).  Our objective in 

this article is to analyze the parallel 

performance without performing HW/SW 

co-simulation.   
 

Macro-Block Level 

Parallel execution at macro-block level is used for 

communication architectures. The constraints in these 

architectures are size of exchange registers and the 

overhead of data transfer between different processors 

and the main memory. Consequently, Molen 

architecture is communication architecture and we 

parallelize the H.264 video encoding algorithm at   

macro-block level. Examples of macro-block level 

parallelism can be found in [25] and [26].  
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Our interest in this article is to develop an analytical 

model for video encoding applications.  One such 

example of parallel execution at macro-block level is 

presented in [7] that analyses the H.264 video 

encoding application for Cell processor. However, the 

following points make our work novel and useful: 

 

 We have proposed a methodology for 

parallelization of video encoding 

applications, consisting of four steps. Then 

the proposed methodology is tested for 

H.264 video encoding application. It makes 

our work modular and thus the proposed 

methodology can be used for parallelization 

of other video encoding standards such as 

H.263, MPEG-4 etc. On the other hand, such 

a generic methodology is not found in [7] 

making the work dedicated to H.264 video 

encoders only.  

 The proposed methodology is not specific to 

a particular platform. Molen architecture just 

serves as a case study. Consequently, the 

methodology can easily be applied to other 

heterogeneous platforms. On the other hand, 

the work in [7] exploits special features of 

Cell processor. For example, in order to 

execute a program using any of the 8 

Synergistic Processor Elements (SPEs), it is 

essential to load the code and data on the 

256KB local store (LS).  If the sum of code 

and data memory requirements is larger than 

256KB, code overlay technique should be 

used, which makes the parallelization 

difficult to achieve. 
 
Parallel programming on heterogeneous 

reconfigurable architecture (such as Molen) is flexible 

as compared to Cell processor. It allows the design of 

parallel video encoders adapted to almost any 

requirement by selecting different number of custom 

computing units (described in Section 2 of this 

article).  

 

4. Performance  Methodology 
 

This section proposes a performance analysis 

methodology for parallel execution of video encoding 

applications. The application performance is 

formulated with an equation. The main steps are 

shown in Figure 3. 

 

Division of Source Code into Frame Data and 

Macro-block Data: 

The source code in the form of C files is divided into 

two types: frame data processing and macro-block 

(MB) data processing. The example of frame data 

processing is the parsing of video bit-stream into 

MBs. The example of MB processing is the motion 

estimation step. The total execution time of the video 

encoding application is the sum of execution time for 

frame data processing and the execution time for MB 

processing. If a video frame consists of “N” MBs, 

MB data processing part is invoked “N” times for 

each of the frame data processing part. 

 
 

Figure 3:  Proposed Analysis Methodology  

 

Parallelization at Macro-block Level: 

Once the source code is separated into frame data 

processing and MB data processing, the MB 

processing part is parallelized between different 

processing elements of the target heterogeneous 

reconfigurable architecture. The output is in the form 

of maximum possible performance gain with parallel 

execution. In this step, we do not consider the 

dependencies between different MBs. Section 6 of 

this article calculate the maximum possible 

performance gain for the H264 video encoding 

application on the Molen architecture. 

 

Analysis of Dependencies in Macro-blocks: 

The performance gain obtained in the second step is 

not realistic because of the data dependency between 

MBs. There is a time duration during which the 
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maximum parallelism is not achieved. In other words, 

there are some MBs which are not processed at 

maximum parallelism. Some MBs are processed 

before the maximum parallelism and some MBs are 

processed after the maximum parallelism. 

Dependency analysis is performed to formulate the 

sum of total time duration. Section 7 describes this 

step in more detail. The output of this step is the 

performance gain with parallel execution after 

considering the MBs dependency. 

 

Performance Analysis with Slow Down Factors: 

The performance gain obtained in the previous steps 

is further reduced by some slow down factors. These 

slow down factors cannot be determined at compile-

time and are measured at run-time only. They depend 

on the characteristics of the input video bit-stream. 

The examples of slow down factors are the non-

uniform execution time and the idle time for the 

reconfigurable processors.  

 

5. Separation of Source Code 
 

This section describes the first step of the proposed 

analysis methodology.  We use X264 [22], [23] that is 

an open source implementation of H.264 video 

encoding algorithm.  The profiling results with gprof 

profiling tool [24] are shown in Figure 4.  
 

 
 

Figure 4:  Results for x264 with GPROF Tool 

 
The results in Figure 4 shows that computational 
intensive parts of the application are motion 
prediction and estimation (Here after we call it as MB 
Analysis). The other computational intensive part is 
encoding of macro-block (MB Encode). 
 
The summary of source code separation is shown in 

Figure 5.  The first block is “ReadFile” which parses 

the incoming video bit-stream into MBs. The 

processing in “ReadFile” is at frame level. The next 

two parts (blocks) are “MB Analysis” and “MB 

Encode”. The processing in these blocks is at macro-

block level. Again, at the end, the two blocks 

“Entropy Encoding” and “Write File” represent 

processing at frame level.  For each frame, the macro-

block processing section is invoked “N” times, if a 

frame consist of “N” macro-blocks. We can further 

pipeline the MB processing section itself between the 

MB Analysis and the MB Encode module as shown in 

Figure 5. 
 

 
 

Figure 5: Separation of Source Code  

 

6. Parallelization at Macro-block 

Level 
 

Section 5 separated the source code into “frame data 

processing” and “MB data processing”. This section 

describes the maximum performance gain with 

parallel execution without considering the MBs 

dependency. 

 

Sequential Execution on PowerPC: 

Figure 6 shows the sequential execution profile after 

pipelining the X264 encoding algorithm on the GPP 

of Molen architecture. PowerPC (PPC) is used as a 

GPP in our case study.  

 

 
 

Figure 6: Sequential Execution on PowerPC  
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Figure 6 shows that the MB processing part (MB 

Analysis module and MB Encode module) is 

executed “N” times for each frame processing part 

(FileRead, FileWrite and Entropy Encoding 

modules). “N” represents the total number of MBs in 

a frame. The reference sequential execution in Figure 

6 will be used for the performance comparison with 

parallel execution (described in Section 6.2).  

 

Parallel Execution on PowerPC and 

Reconfigurable Co-processor: 

In parallel execution, we move MB Analysis module 

to reconfigurable co-processor (RP) of the Molen 

architecture as shown in Figure 7. MB Encode 

module and frame data processing part are still 

executed on the PPC. However, MB Analysis module 

is shifted to the RP for parallel execution. 

Consequently, MB Analysis and MB Encoding 

overlap most of their executions to hide the MB 

Encoding time. On the other hand, the PPC should 

pay synchronization overhead between the two 

threads. 

 

 
 

Figure 7: Parallel Execution Profile  

 

Similar to work in [7], we need to define the 

following notations for analysis of parallel execution: 

 

 “Tf”: Sum of the execution time of the 

frame processing modules that are executed 

sequentially on the PowerPC.   

 “Te”: Execution time of the MB Encod, 

which is 2 % in Figure 4. 

  “R”: Performance ratio between the 

PowerPC and the RP. We assume that RP is 

faster than PowerPC by a ratio of 0.5.  

 “P”: Total number of co-processors used. 

  “C”: Overhead between the PowerPC and 

the RP for data transfer.  We assume this 

value as 5 % of the total execution time.  

 

Then, the equation for parallel execution time can be 

written as: 

 

T=Tf + (R) + C   (1) 

As Tf = 0.04 (4 %) and Te = 0.02 (2 %). We have 

assumed that R = 0.5, P = 8 and C = 0.05 (5 %). 

Consequently, we get T = 0.14875.  We know that 

the performance gain is the ratio of the execution 

time of the serial execution on a single processor to 

the parallel execution time. Therefore, the maximum 

performance gain with 8 co-processors (P=8) can be 

as large as 6.72 (1 divided by 0.14875), compared 

with the reference sequential execution on PPC. This 

gain is possible only if the macro-block processing is 

fully parallelizable. But it is not realistic so that we 

may not achieve that much performance gain due to 

the dependency of MBs (we will discuss it in Section 

7) and slow down factors (we will discuss it in 

Section 8). 

 

The work in [7] dis not compare the notations with 

the well-known Amdahl’s law [19][20].  Before 

proceeding further, we compared our parallel 

execution notations with Amdahl’s law. 

 

Comparison of Parallel Execution with Amdahl’s 

law: 

According to Amdahl’s law, speedup is the original 

execution time divided by an enhanced execution 

time. It implies that if we enhance a fraction “Par” of 

a computation by “P” number of processors, the 

overall speedup is:  

 

Speedup =    (2) 

 

Where “Par” in Equation 2 shows the code which can 

be run in parallel and “1-Par” represents the code  

which is executed sequentially. However, the 

Amdahl’s law, described in Equation 2 is based on 

the assumption that the processors upon which the 

code executes are homogeneous. Therefore, it does 

not take into account the performance ratio between 

main processor and co-processors [19] [20]. 

Similarly, data transfer overhead between main 

processor and co-processors has not been taken into 

account. If “R” is the performance ratio and “C” is 

the overhead, the equation of speedup becomes:  

 

Speedup =     (3) 
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The denominator of Equation 3 is similar to the 

denominator of Equation 1. Therefore, the term“Par” 

in Equation 3 is represented by the term “1-Tf-Te” in 

Equation 1. We have also mentioned that “MB 

Encode” time is overlapped with “MB Analysis”. 

Consequently, “1 - Par” in Equation 3 is represented 

by “Tf” in Equation 1. 

 

This section provided a performance analysis 

equation without considering slowdown factors and 

compared the equation with Amdahl’s law. The next 

two sections will add the slowdown factors of 

parallel execution. First, Section 7 will add slowdown 

factors due to dependency on previous MBs. Then, 

Section 8 will describe the input-dependent slow 

down factors. 

 

7. Analysis of Macro-blocks 
 

Dependency Analysis on Previous Macro-blocks:  

Consider the example of a simple frame structure as 

shown in Figure 8. 

 

 
 

Figure 8: A simple frame that consists of 66 MBs 
 

The frame consists of 66 macro-blocks, where MBs 

are indexed by (a,b). During the execution of MB 

analysis, there is a dependency between MBs [22]. 

The analysis of an MB needs to refer to the analysis 

results of some other MBs as shown in Figure 9.  For 

example, in order to obtain the analysis results for 

“MB(a,b)”, we need to refer to the analysis results of 

“MB(a-1,b)”, “MB(a-1,b+1)” and “MB(a,b-1)”.  

 
 

Figure 9: Dependency on previous MBs 

Initially two MBs, “MB(1,1)” and “MB(1,2)” are  

analyzed sequentially. Suppose “t” be the execution 

time of one MB analysis. After the time “2t”, two 

MBs, “MB(1,3)” and “MB(2,1)”, can be concurrently 

analyzable. After the time “4t”, three MBs are 

concurrently analyzable, and so on. Thus “N” macro-

blocks are not fully parallelizable for their 

processing. Let us estimate the performance gain 

from parallel execution of macro-blocks processing. 

First we calculate the potential parallelism of the 

application with the following equation: 

 

PotentialParallelism = min ( ) (4) 

Equation 4 consists of two terms: The first term 

shows the total number of columns divided by 2. For 

example, the number of columns is 11, then this term 

will be equal to 5.5. However, the number of 

columns should be natural numbers. Consequently, 

we take this value equal to 6. Similarly, if the total 

number of columns is 9, we take this value as 5 and 

so on. The second term represents the number of 

rows. Finally, the potential parallelism will be equal 

to the minimum of the two terms. We calculate the 

maximum number of concurrently analyzable macro-

blocks by Equation 5: 

 

n = min (PotentialParallelism,P)  (5) 

 

Where “n” is the maximum number of concurrently 

analyzable macro-blocks and “P” is the total number 

of co-processors (RPs) used. If potential parallelism 

is larger than the number of co-processors, the 

maximum number of concurrently analyzable MBs 

(represented by n) is limited to “RPs”.  

 

Formulation of Maximum Parallelism: 

Equation 5 shows the maximum number of 

concurrently analyzable macro-blocks. 

Mathematically, “2(n-1)” time units are consumed 

before achieving the maximum parallelism.  

 

Similarly, “2(n-1)” time units are consumed at the 

end of the profile. Consequently, the total number of 

time units consumed before and after the maximum 

parallelism are “4(n-1)”. The total execution time 

consumed for the processing of macro-blockss before 

and after the maximum parallelism is represented by 

T1 and is given by the following equation: 

 

T1= [ ] *[4(n-1)]  (6) 
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The term “4(n-1)” in Equation 6 shows the sum of 

time durations before and after the maximum 

parallelism. The remaining MBs can be processed at 

full parallelism and its duration is computed with the 

term“N-2n(n-1)” divided by “n”(Where “N” is the 

total number of MBs in a frame). The execution time 

consumed for the processing of macro-blocks at 

maximum parallelism is represented by “T2” and is 

given by Equation 7. 

 

T1 = [ ] *[ ]  (7) 

Formulation of Execution Time for Macro-block 

Analysis: 

The total execution time of parallel execution for MB 

Analysis “T (analysis)” becomes, 

 

T (analysis) = T1 + T2   (8) 

 

Putting the values in Equation 8, we get, 

 

T (analysis) = [ ] *[4(n-1 + ] (9) 

After simplification, we get Equation 10. 

  

T (analysis) = [ ] *[  + 2 * (n-1)]       (10) 

Equation 10 shows the total execution time of 

parallel execution of MB Analysis. 

 

Formulation for Total Execution Time:  

If we include the MBs dependency effects in 

Equation 1, the total execution time considering the 

MBs dependency becomes: 

 

T (analysis) = [ ] *[  + 2 * (n-1)]  + C  

(11) 

Decrease in parallel execution due to the dependency 

of MBs is computed by dividing the second term of 

Equation 11 with the second term of Equation 1. The 

amount of slow down “S” due to the macro-blocks 

dependency is given by: 

 

T (analysis) =   * [  + 2 * (n-1)]  (12) 

 After simplification, we get, 

 

T (analysis) =   + * [2 * (n-1)]  (13) 

Equation 13 implies that the value of “S” depends 

upon two ratios: (1) the first ratio is the number of 

available co-processors (RPs) to the maximum 

parallelism. Greater this ratio is, larger will be the 

value of “S” and vice versa, (2) the second ratio is the 

number of available “RPs” to the total number of 

MBs in a frame. Figure 10 shows the value of “S” 

with the corresponding values of “P” and “n”. The 

value of “N” for Figure 10 is taken as 300. 

 

 
 

Figure 10: Slow down due to MBs dependency 

 

This section provided the performance analysis 

equation after considering the dependency on 

previous MBs. It calculated the maximum number of 

concurrently analysable macro-blocks. Accordingly, 

it divided the total execution time of MB Analysis 

into: (a) the time duration during which maximum 

parallelism is achieved and (b) the time duration 

during which maximum parallelism is not achieved. 

Finally, it provided the slowdown due to dependency 

on previous MBs. The next section will provide the 

slowdown factors which cannot be determined at 

compile time and are dependent on the input video 

sequence. 

 

8. Input Dependent Slow Down 

Factors 
 

In this section, we describe two factors that hinder 

the speedup of parallel execution of H.264 video 

encoder. These slow down factor are dependent on 

the input video sequence. Therefore, it is not possible 

to compute them at compile-time. 
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Description of Non-uniform Execution Time: 

The three types of frames are: “I”, “P” and “B”. The 

time variance of MB Analysis is not significant for 

“I” frames. However, the time variance for “P” and 

“B” frames is significant. Consequently, the MB 

Analysis of “P” and “B” frames consists of 5 steps as 

shown in Figure 11.  

 
 

Figure 11: Steps of macro-block analysis 

 

A“16x16” macro-block is first analyzed. If the 

difference between the motion estimated macro-block 

and the current macro-block is smaller than a 

threshold, the MB analysis is terminated, which is 

called early termination and saves significant portion 

of execution time. If the condition for early 

termination is not met, macro-block is divided into 

four “8x8” blocks for further analysis. If the 

computation cost of “8x8” analysis is smaller than 

that of “16x16” analysis, then next step “16x8” or 

“8x16” is performed. Once analysis of macro-blocks 

is done, quarter pixel refinement is performed. 

Finally, the last step is to perform Intra Prediction. It 

implies that the total execution time of MB analysis 

is not fixed and depends upon the input video 

sequence. 

 

Description of Idle Time for Reconfigurable 

Processor (Co-processors): 

Another slow down factor for parallel execution of 

MB analysis is the idle time for co-processors. For 

example, MB(2,1) is finished earlier due to early 

termination than MB(1,3) during [2T,3T]. As 

MB(2,2) and MB(1,4) depends on MB(1,3), the RP 

that executes MB(2,1) should wait until MB(1,3) is 

completed 

 

Formulation for Total Execution Time with Slow 

Down Factors: 

Let “D” represents all slow-down factors of parallel 

execution, the total execution time of H.264 video 

encoding application can be represented with the 

following equation:  

  

T = Tf + ( )(       (14) 

Where, the first term in Equation 14 represents the 

frame processing time. The second term shows the 

parallel execution of the MBs processing including 

dependency analysis and slows down factors of 

parallel execution. The third term shows the 

communication overhead between PowerPC and the 

reconfigurable processors. 

 

9. Conclusion 
 

This article proposed a performance analysis 

methodology of video encoding applications on 

heterogeneous reconfigurable architectures. The key 

benefit of the proposed methodology was the 

performance analysis of parallel execution prior to 

HW/SW co-simulation. H.264 video encoding 

application was used as a case study. The target 

platform was the Molen architecture. We formulated 

the performance in terms of maximum concurrently 

analyzable MBs, total number of MBs, performance 

ratio and data transfer overhead. 
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