
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

752

Analysis for Parallel Execution without Performing

Hardware/Software Co-simulation

Muhammad Rashid

Abstract

Hardware/software co-simulation improves the

performance of embedded applications by executing

the applications on a virtual platform before the

actual hardware is available in silicon. However,

the virtual platform of the target architecture is

often not available during early stages of the

embedded design flow. Consequently, analysis for

parallel execution without performing

hardware/software co-simulation is required. This

article presents an analysis methodology for parallel

execution of video encoding applications targeting

heterogeneous reconfigurable architectures without

performing HW/SW co-simulation. We formulate

the application performance on the target

architecture with an equation. The equation shows

the overhead factors that reduces the speedup of

parallel execution. H264 video encoding application

is taken as a case study.

Keywords

Parallel execution, application analysis, heterogeneous

reconfigurable architectures, video encoding.

1. Introduction

Embedded systems are becoming more and more

complex. It includes complexity of application as

well as the architecture heterogeneity [1], [2], [3].

However, time-to-market is constantly decreasing.

The importance of being able to keep pace with both

trends is posing serious challenges. To reduce this

gap, hardware/software co-simulation has been

around for more than two decades and has shown a

lot of potential for embedded systems design. The

objective of hardware/software co-simulation is to

find an optimized solution such that all the design

constraints are satisfied [4]. It generally requires

heterogeneous platforms combining general purpose

processor with reconfigurable hardware such as

FPGA (Field Programmable Gate Arrays).

Manuscript received July 26, 2014.

Muhammad Rashid, Department of Computer Engineering,
Umm Al-Qura University, Makkah, Saudi Arabia.

The performance is improved by partitioning

(mapping) an embedded application among software

running on a microprocessor and reconfigurable

hardware for parallel execution. Performance

improvement by parallel execution on heterogeneous

reconfigurable platforms depends upon three factors:

 The optimal mapping of application on the

target architecture. The performance gains in

these heterogeneous multicore architectures

depend on effective application

parallelization across multiple cores [5].

 Exploitation of potential parallelism [6]. To

get most benefit of such a heterogeneous

platform, it is essential to exploit the

parallelism of the application [7].

 Data exchange registers between different

processing cores of the target architecture

[8].

Hardware/software co-simulation requires either the

actual hardware platform or virtual prototype of the

target platform which in turns require considerable

time and efforts. The availability of such tools, such

as virtual prototype of the target architecture, in early

stages of the design flow is a real bottleneck.

Consequently, there is no generally accepted

methodology to separate applications onto hardware

and software execution [9]. The separation of

application into hardware and software parts is called

partitioning [5] – [9].

The partitioning problem in heterogeneous systems is

more critical due to the exponential growth of VLSI

(Very Large Scale Integration) technology. At the

same time, the continuous growing effort of

developing multimedia standards with higher

compression efficiency and more functionality have

resulted in application complexity [3].

This article presents a performance analysis

methodology for video encoding applications to

estimate the expected performance of parallel

execution on heterogeneous reconfigurable

architectures without performing HW/SW co-

simulation. The important steps of proposed

methodology in this article are: separation of source

code, parallelization at macro-block level, dependency

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

753

analysis of macro-blocks, and identification of slow

down factors.

Separation of source code divides the original code

into two types: frame data processing and Macro-

block (MB) processing. Then, the MB processing part

is parallelized between different processing elements

of the target heterogeneous reconfigurable

architecture. However, the maximum parallelism is

not always achieved due to dependency among

macro-blocks.

Therefore, dependency analysis is performed to

formulate the sum of time duration before and after

maximum parallelism. Finally, slow down factors are

identified. To the best of our knowledge, no such

methodology exists that can analyze the video

encoding applications for heterogeneous

reconfigurable architectures without performing

HW/SW co-simulation.

H.264 video encoding application [10] serves as a

case study and the target platform in this article is the

Molen architecture [11] (a heterogeneous

reconfigurable platform). H.264 is commonly used

due to its high-quality coding characteristics of video

contents at very low bit-rates. Molen architecture

supports integrated hardware-software co-simulation

starting from profiling and partitioning to synthesis

and compilation.

The remainder of this article is organized into

multiple sections: Section 2 provides the essential

background information. Section 3 describes

parallelization opportunities for video encoding

applications. Section 4 presents the four steps of

proposed performance analysis methodology:

separation of source code, parallelization at macro-

block level, dependency analysis of macro-blocks,

and identification of slow down factors, described in

Sections 5, 6, 7 and 8 respectively. Finally, Section 9

provides conclusion.

2. Essential Background Knowledge

Before discussing the proposed performance analysis

methodology, we briefly summarize the Molen

architecture and the H.264 video encoding

application. Our methodology is general purpose and

is not specific to a particular application or target

architecture. The H.264 is being selected due to its

wider acceptance as a video encoding application.

Molen architecture is chosen because it represents the

characteristics of a typical heterogeneous

reconfigurable platform used in embedded

applications.

Block diagram of Molen Architecture:

Molen architecture is used to speed up the

applications execution by implementing its most

critical functions as hardware accelerators, referred to

as Custom Computing Units (CCUs). The Molen

machine organization is shown in Figure 1.

Figure 1: The Molen Machine Organization

The main parts are the general purpose processor

(GPP), the reconfigurable co-processor (RP) and the

Arbiter. The GPPs Instruction Set Architecture (ISA)

is extended to control the hardware accelerators. The

Arbiter fetches and decodes the application

instructions from the main memory. It checks

whether it belongs to the standard or to the extended

ISA and arbitrates them to the corresponding

processor. Exchange registers (XREG) are used for

the transfer of data between GPP and the RP.

Block diagram of H.264 Video Application:

The block diagram of H.264 video encoding

application (standard) is shown in Figure 2. The input

frame (shown as Fn in Figure 2) is processed in units

of macro- block. A macro- block corresponds to

16x16 pixels in the original image. Each macro-block

of the target image is encoded in either intra or inter

prediction mode. In each prediction mode, a macro-

block P is constructed.

In Intra prediction mode, macro-block P is

constructed from samples in the current frame that

have previously been encoded, decoded and

reconstructed. In Inter prediction mode, macro-block

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

754

P is constructed by motion-estimated (ME) and

motion-compensated (MC) prediction from one or

more reference frame(s). Once the macro-block P is

constructed, it is subtracted from the current macro-

block to produce a difference macro-block Dn.

Figure 2: H.264 Video Encoder

The difference macro-block Dn is then transformed

(T) and quantized (Q) to give X (a set of quantized

transform coefficients). These quantized transform

coefficients are re-ordered and then entropy encoded.

The entropy encoded coefficients, together with side

information required to decode the macro-block from

the compressed bit-stream is passed to a Network

Abstraction Layer (NAL) for transmission or storage.

3. Parallelization Opportunities

This section explores the various possibilities in the
domain of parallel execution of video encoding
applications.

Parallel Execution at Group of Pictures Level:

At Group of Pictures (GoP) level, several groups of

consecutive frames are encoded simultaneously. It

contributes to increased throughput. Authors in [13]

defined a GoP as 15 consecutive frames.

Computation resources were available in the form of

cluster nodes. Consequently, a real time response is

achieved but with a high latency.

Parallel Execution at Frame Level:

At frame level, frames are divided in several slices

and processed in parallel. However, the drawback is

limited scalability. Consequently, the real time

response is achievable only under limited

circumstances [14]. Similarly, authors in [12] and [16]

implemented the H.264 video encoder using the

concept of multithreading. [12] and [16] exploited the

concepts of thread level parallelism and OpenMP

programming model respectively.

Integration of GoP and Frame Level:
Integration of parallel execution at GoP and frame

level ensures the compromise between throughput and

latency [15], [21]. If the real time response is

achieved, additional computational resources are used

to parallelize GoP encoding in order to reduce latency.

Parallel Execution at Motion Estimation Level:

Parallel execution at motion estimation level is well-

suited for hardware implementation. Authors in [17]

and [18] classify the techniques at motion estimation

level into three types: 1-D array, 2-D array and

hierarchal architectures. However, these techniques

deal with the fixed block size (16x16 or 8x8) and are

not appropriate for the variable block size

Limitation of Existing Techniques:

Parallelization at GoP level, frame level, combination

of GoP and frame level or motion estimation level is

not suitable for heterogeneous reconfigurable

platforms like the Molen architecture (case study in

this article) due to following reasons:

 Space limitation of the exchange registers.

 Dynamic allocation of data buffer in

reconfigurable processor of the Molen

architecture is needed if the frame size is

changed, which is not a good programming

model for our target platform.

 In case of parallelization at motion

estimation level, we have to pay huge

overhead of data transfer between

reconfigurable processor and main memory.

 These techniques are based on simulations

performed in a PC environment (not in an

embedded environment). Our objective in

this article is to analyze the parallel

performance without performing HW/SW

co-simulation.

Macro-Block Level

Parallel execution at macro-block level is used for

communication architectures. The constraints in these

architectures are size of exchange registers and the

overhead of data transfer between different processors

and the main memory. Consequently, Molen

architecture is communication architecture and we

parallelize the H.264 video encoding algorithm at

macro-block level. Examples of macro-block level

parallelism can be found in [25] and [26].

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

755

Our interest in this article is to develop an analytical

model for video encoding applications. One such

example of parallel execution at macro-block level is

presented in [7] that analyses the H.264 video

encoding application for Cell processor. However, the

following points make our work novel and useful:

 We have proposed a methodology for

parallelization of video encoding

applications, consisting of four steps. Then

the proposed methodology is tested for

H.264 video encoding application. It makes

our work modular and thus the proposed

methodology can be used for parallelization

of other video encoding standards such as

H.263, MPEG-4 etc. On the other hand, such

a generic methodology is not found in [7]

making the work dedicated to H.264 video

encoders only.

 The proposed methodology is not specific to

a particular platform. Molen architecture just

serves as a case study. Consequently, the

methodology can easily be applied to other

heterogeneous platforms. On the other hand,

the work in [7] exploits special features of

Cell processor. For example, in order to

execute a program using any of the 8

Synergistic Processor Elements (SPEs), it is

essential to load the code and data on the

256KB local store (LS). If the sum of code

and data memory requirements is larger than

256KB, code overlay technique should be

used, which makes the parallelization

difficult to achieve.

Parallel programming on heterogeneous

reconfigurable architecture (such as Molen) is flexible

as compared to Cell processor. It allows the design of

parallel video encoders adapted to almost any

requirement by selecting different number of custom

computing units (described in Section 2 of this

article).

4. Performance Methodology

This section proposes a performance analysis

methodology for parallel execution of video encoding

applications. The application performance is

formulated with an equation. The main steps are

shown in Figure 3.

Division of Source Code into Frame Data and

Macro-block Data:

The source code in the form of C files is divided into

two types: frame data processing and macro-block

(MB) data processing. The example of frame data

processing is the parsing of video bit-stream into

MBs. The example of MB processing is the motion

estimation step. The total execution time of the video

encoding application is the sum of execution time for

frame data processing and the execution time for MB

processing. If a video frame consists of “N” MBs,

MB data processing part is invoked “N” times for

each of the frame data processing part.

Figure 3: Proposed Analysis Methodology

Parallelization at Macro-block Level:

Once the source code is separated into frame data

processing and MB data processing, the MB

processing part is parallelized between different

processing elements of the target heterogeneous

reconfigurable architecture. The output is in the form

of maximum possible performance gain with parallel

execution. In this step, we do not consider the

dependencies between different MBs. Section 6 of

this article calculate the maximum possible

performance gain for the H264 video encoding

application on the Molen architecture.

Analysis of Dependencies in Macro-blocks:

The performance gain obtained in the second step is

not realistic because of the data dependency between

MBs. There is a time duration during which the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

756

maximum parallelism is not achieved. In other words,

there are some MBs which are not processed at

maximum parallelism. Some MBs are processed

before the maximum parallelism and some MBs are

processed after the maximum parallelism.

Dependency analysis is performed to formulate the

sum of total time duration. Section 7 describes this

step in more detail. The output of this step is the

performance gain with parallel execution after

considering the MBs dependency.

Performance Analysis with Slow Down Factors:

The performance gain obtained in the previous steps

is further reduced by some slow down factors. These

slow down factors cannot be determined at compile-

time and are measured at run-time only. They depend

on the characteristics of the input video bit-stream.

The examples of slow down factors are the non-

uniform execution time and the idle time for the

reconfigurable processors.

5. Separation of Source Code

This section describes the first step of the proposed

analysis methodology. We use X264 [22], [23] that is

an open source implementation of H.264 video

encoding algorithm. The profiling results with gprof

profiling tool [24] are shown in Figure 4.

Figure 4: Results for x264 with GPROF Tool

The results in Figure 4 shows that computational
intensive parts of the application are motion
prediction and estimation (Here after we call it as MB
Analysis). The other computational intensive part is
encoding of macro-block (MB Encode).

The summary of source code separation is shown in

Figure 5. The first block is “ReadFile” which parses

the incoming video bit-stream into MBs. The

processing in “ReadFile” is at frame level. The next

two parts (blocks) are “MB Analysis” and “MB

Encode”. The processing in these blocks is at macro-

block level. Again, at the end, the two blocks

“Entropy Encoding” and “Write File” represent

processing at frame level. For each frame, the macro-

block processing section is invoked “N” times, if a

frame consist of “N” macro-blocks. We can further

pipeline the MB processing section itself between the

MB Analysis and the MB Encode module as shown in

Figure 5.

Figure 5: Separation of Source Code

6. Parallelization at Macro-block

Level

Section 5 separated the source code into “frame data

processing” and “MB data processing”. This section

describes the maximum performance gain with

parallel execution without considering the MBs

dependency.

Sequential Execution on PowerPC:

Figure 6 shows the sequential execution profile after

pipelining the X264 encoding algorithm on the GPP

of Molen architecture. PowerPC (PPC) is used as a

GPP in our case study.

Figure 6: Sequential Execution on PowerPC

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

757

Figure 6 shows that the MB processing part (MB

Analysis module and MB Encode module) is

executed “N” times for each frame processing part

(FileRead, FileWrite and Entropy Encoding

modules). “N” represents the total number of MBs in

a frame. The reference sequential execution in Figure

6 will be used for the performance comparison with

parallel execution (described in Section 6.2).

Parallel Execution on PowerPC and

Reconfigurable Co-processor:

In parallel execution, we move MB Analysis module

to reconfigurable co-processor (RP) of the Molen

architecture as shown in Figure 7. MB Encode

module and frame data processing part are still

executed on the PPC. However, MB Analysis module

is shifted to the RP for parallel execution.

Consequently, MB Analysis and MB Encoding

overlap most of their executions to hide the MB

Encoding time. On the other hand, the PPC should

pay synchronization overhead between the two

threads.

Figure 7: Parallel Execution Profile

Similar to work in [7], we need to define the

following notations for analysis of parallel execution:

 “Tf”: Sum of the execution time of the

frame processing modules that are executed

sequentially on the PowerPC.

 “Te”: Execution time of the MB Encod,

which is 2 % in Figure 4.

 “R”: Performance ratio between the

PowerPC and the RP. We assume that RP is

faster than PowerPC by a ratio of 0.5.

 “P”: Total number of co-processors used.

 “C”: Overhead between the PowerPC and

the RP for data transfer. We assume this

value as 5 % of the total execution time.

Then, the equation for parallel execution time can be

written as:

T=Tf + (R) + C (1)

As Tf = 0.04 (4 %) and Te = 0.02 (2 %). We have

assumed that R = 0.5, P = 8 and C = 0.05 (5 %).

Consequently, we get T = 0.14875. We know that

the performance gain is the ratio of the execution

time of the serial execution on a single processor to

the parallel execution time. Therefore, the maximum

performance gain with 8 co-processors (P=8) can be

as large as 6.72 (1 divided by 0.14875), compared

with the reference sequential execution on PPC. This

gain is possible only if the macro-block processing is

fully parallelizable. But it is not realistic so that we

may not achieve that much performance gain due to

the dependency of MBs (we will discuss it in Section

7) and slow down factors (we will discuss it in

Section 8).

The work in [7] dis not compare the notations with

the well-known Amdahl’s law [19][20]. Before

proceeding further, we compared our parallel

execution notations with Amdahl’s law.

Comparison of Parallel Execution with Amdahl’s

law:

According to Amdahl’s law, speedup is the original

execution time divided by an enhanced execution

time. It implies that if we enhance a fraction “Par” of

a computation by “P” number of processors, the

overall speedup is:

Speedup = (2)

Where “Par” in Equation 2 shows the code which can

be run in parallel and “1-Par” represents the code

which is executed sequentially. However, the

Amdahl’s law, described in Equation 2 is based on

the assumption that the processors upon which the

code executes are homogeneous. Therefore, it does

not take into account the performance ratio between

main processor and co-processors [19] [20].

Similarly, data transfer overhead between main

processor and co-processors has not been taken into

account. If “R” is the performance ratio and “C” is

the overhead, the equation of speedup becomes:

Speedup = (3)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

758

The denominator of Equation 3 is similar to the

denominator of Equation 1. Therefore, the term“Par”

in Equation 3 is represented by the term “1-Tf-Te” in

Equation 1. We have also mentioned that “MB

Encode” time is overlapped with “MB Analysis”.

Consequently, “1 - Par” in Equation 3 is represented

by “Tf” in Equation 1.

This section provided a performance analysis

equation without considering slowdown factors and

compared the equation with Amdahl’s law. The next

two sections will add the slowdown factors of

parallel execution. First, Section 7 will add slowdown

factors due to dependency on previous MBs. Then,

Section 8 will describe the input-dependent slow

down factors.

7. Analysis of Macro-blocks

Dependency Analysis on Previous Macro-blocks:

Consider the example of a simple frame structure as

shown in Figure 8.

Figure 8: A simple frame that consists of 66 MBs

The frame consists of 66 macro-blocks, where MBs

are indexed by (a,b). During the execution of MB

analysis, there is a dependency between MBs [22].

The analysis of an MB needs to refer to the analysis

results of some other MBs as shown in Figure 9. For

example, in order to obtain the analysis results for

“MB(a,b)”, we need to refer to the analysis results of

“MB(a-1,b)”, “MB(a-1,b+1)” and “MB(a,b-1)”.

Figure 9: Dependency on previous MBs

Initially two MBs, “MB(1,1)” and “MB(1,2)” are

analyzed sequentially. Suppose “t” be the execution

time of one MB analysis. After the time “2t”, two

MBs, “MB(1,3)” and “MB(2,1)”, can be concurrently

analyzable. After the time “4t”, three MBs are

concurrently analyzable, and so on. Thus “N” macro-

blocks are not fully parallelizable for their

processing. Let us estimate the performance gain

from parallel execution of macro-blocks processing.

First we calculate the potential parallelism of the

application with the following equation:

PotentialParallelism = min () (4)

Equation 4 consists of two terms: The first term

shows the total number of columns divided by 2. For

example, the number of columns is 11, then this term

will be equal to 5.5. However, the number of

columns should be natural numbers. Consequently,

we take this value equal to 6. Similarly, if the total

number of columns is 9, we take this value as 5 and

so on. The second term represents the number of

rows. Finally, the potential parallelism will be equal

to the minimum of the two terms. We calculate the

maximum number of concurrently analyzable macro-

blocks by Equation 5:

n = min (PotentialParallelism,P) (5)

Where “n” is the maximum number of concurrently

analyzable macro-blocks and “P” is the total number

of co-processors (RPs) used. If potential parallelism

is larger than the number of co-processors, the

maximum number of concurrently analyzable MBs

(represented by n) is limited to “RPs”.

Formulation of Maximum Parallelism:

Equation 5 shows the maximum number of

concurrently analyzable macro-blocks.

Mathematically, “2(n-1)” time units are consumed

before achieving the maximum parallelism.

Similarly, “2(n-1)” time units are consumed at the

end of the profile. Consequently, the total number of

time units consumed before and after the maximum

parallelism are “4(n-1)”. The total execution time

consumed for the processing of macro-blockss before

and after the maximum parallelism is represented by

T1 and is given by the following equation:

T1= [] *[4(n-1)] (6)

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

759

The term “4(n-1)” in Equation 6 shows the sum of

time durations before and after the maximum

parallelism. The remaining MBs can be processed at

full parallelism and its duration is computed with the

term“N-2n(n-1)” divided by “n”(Where “N” is the

total number of MBs in a frame). The execution time

consumed for the processing of macro-blocks at

maximum parallelism is represented by “T2” and is

given by Equation 7.

T1 = [] *[] (7)

Formulation of Execution Time for Macro-block

Analysis:

The total execution time of parallel execution for MB

Analysis “T (analysis)” becomes,

T (analysis) = T1 + T2 (8)

Putting the values in Equation 8, we get,

T (analysis) = [] *[4(n-1 +] (9)

After simplification, we get Equation 10.

T (analysis) = [] *[+ 2 * (n-1)] (10)

Equation 10 shows the total execution time of

parallel execution of MB Analysis.

Formulation for Total Execution Time:

If we include the MBs dependency effects in

Equation 1, the total execution time considering the

MBs dependency becomes:

T (analysis) = [] *[+ 2 * (n-1)] + C

(11)

Decrease in parallel execution due to the dependency

of MBs is computed by dividing the second term of

Equation 11 with the second term of Equation 1. The

amount of slow down “S” due to the macro-blocks

dependency is given by:

T (analysis) = * [+ 2 * (n-1)] (12)

 After simplification, we get,

T (analysis) = + * [2 * (n-1)] (13)

Equation 13 implies that the value of “S” depends

upon two ratios: (1) the first ratio is the number of

available co-processors (RPs) to the maximum

parallelism. Greater this ratio is, larger will be the

value of “S” and vice versa, (2) the second ratio is the

number of available “RPs” to the total number of

MBs in a frame. Figure 10 shows the value of “S”

with the corresponding values of “P” and “n”. The

value of “N” for Figure 10 is taken as 300.

Figure 10: Slow down due to MBs dependency

This section provided the performance analysis

equation after considering the dependency on

previous MBs. It calculated the maximum number of

concurrently analysable macro-blocks. Accordingly,

it divided the total execution time of MB Analysis

into: (a) the time duration during which maximum

parallelism is achieved and (b) the time duration

during which maximum parallelism is not achieved.

Finally, it provided the slowdown due to dependency

on previous MBs. The next section will provide the

slowdown factors which cannot be determined at

compile time and are dependent on the input video

sequence.

8. Input Dependent Slow Down

Factors

In this section, we describe two factors that hinder

the speedup of parallel execution of H.264 video

encoder. These slow down factor are dependent on

the input video sequence. Therefore, it is not possible

to compute them at compile-time.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

760

Description of Non-uniform Execution Time:

The three types of frames are: “I”, “P” and “B”. The

time variance of MB Analysis is not significant for

“I” frames. However, the time variance for “P” and

“B” frames is significant. Consequently, the MB

Analysis of “P” and “B” frames consists of 5 steps as

shown in Figure 11.

Figure 11: Steps of macro-block analysis

A“16x16” macro-block is first analyzed. If the

difference between the motion estimated macro-block

and the current macro-block is smaller than a

threshold, the MB analysis is terminated, which is

called early termination and saves significant portion

of execution time. If the condition for early

termination is not met, macro-block is divided into

four “8x8” blocks for further analysis. If the

computation cost of “8x8” analysis is smaller than

that of “16x16” analysis, then next step “16x8” or

“8x16” is performed. Once analysis of macro-blocks

is done, quarter pixel refinement is performed.

Finally, the last step is to perform Intra Prediction. It

implies that the total execution time of MB analysis

is not fixed and depends upon the input video

sequence.

Description of Idle Time for Reconfigurable

Processor (Co-processors):

Another slow down factor for parallel execution of

MB analysis is the idle time for co-processors. For

example, MB(2,1) is finished earlier due to early

termination than MB(1,3) during [2T,3T]. As

MB(2,2) and MB(1,4) depends on MB(1,3), the RP

that executes MB(2,1) should wait until MB(1,3) is

completed

Formulation for Total Execution Time with Slow

Down Factors:

Let “D” represents all slow-down factors of parallel

execution, the total execution time of H.264 video

encoding application can be represented with the

following equation:

T = Tf + ()((14)

Where, the first term in Equation 14 represents the

frame processing time. The second term shows the

parallel execution of the MBs processing including

dependency analysis and slows down factors of

parallel execution. The third term shows the

communication overhead between PowerPC and the

reconfigurable processors.

9. Conclusion

This article proposed a performance analysis

methodology of video encoding applications on

heterogeneous reconfigurable architectures. The key

benefit of the proposed methodology was the

performance analysis of parallel execution prior to

HW/SW co-simulation. H.264 video encoding

application was used as a case study. The target

platform was the Molen architecture. We formulated

the performance in terms of maximum concurrently

analyzable MBs, total number of MBs, performance

ratio and data transfer overhead.

References

[1] Jason Howard et al. “A 48-core IA-32 processor

in 45 nm CMOS using on-die message-passing

and DVFS for performance and power scaling”,

IEEE Journal of Solid-State Circuits, Vol. 46,

No. 1, pp. 173-183, 2011.

[2] Dawid Zydek and Henry Selvaraj, (2011) “Fast

and efficient processor allocation algorithm for

torus-based chip multiprocessors”, Computer and

Electrical Engineering, Vol. 37, No 1, pp. 91-

105, 2011.

[3] Zhenyu Liu et al., “HDTV1080p H.264/AVC

encoder chip design and performance analysis”,

IEEE Journal of Solid-State Circuits, Vol. 44,

No. 2, pp. 594-608, 2009.

[4] J. Teich, “Hardware/software co-design: The

past, the present, and predicting the future”,

Proceedings of the IEEE, Vol. 100, pp. 1411-

1430, 2012.

[5] K. Pingali et al., “The tao of parallelism in

algorithms”, ACM Sigplan Notices, Vol. 47, No.

6, pp. 12-25, 2011.

[6] S. Zalan et al. “High-level multicore

programming with C++”, Computer Science and

Inf. Systems, Vol. 9, No. 3, pp. 1187-1202, 2012.

[7] J. Park, S. Ha, “Performance analysis of parallel

execution of H.264 encoder on the cell

processor”, In Proc. of IEEE/ACM Workshop

on Embedded Systems, pp. 27–32, 2007.

[8] M. A. Shami and A. Hemani, “An improved self-

reconfigurable interconnection scheme for a

Coarse Grain Reconfigurable Architecture”,

IEEE Proceedings on 28th NORCHIP conference,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

761

pp.1-6, Tampere, November 2010.

[9] R. Patel and A. Rajawat, “A survey of embedded

software profiling methodologies”, International

Journal of Embedded Systems and Applications,

Vol. 1, No. 2, 2011.

[10] “ITU-T Rec. H.264-ISO/IEC 14496-10 AVC,

Document JVT-D157”, Austria, July 2002.

[11] S. Vassiliadis et al., “The molen polymorphic

processor.”, IEEE Transactions on Computers,

Vol. 53, No. 11, pp. 1363–1375, 2004.

[12] M. Alipour and H. Taghdisi, “Effect of thread

level parallelism on the performance of optimum

architecture for embedded applications”,

International Journal of Embedded Systems and

Applications , Vol. 2, No. 1, 2012.

[13] A. Rodriguez, A. Gonzlez and M. P. Malumbres,

“Performance evaluation of parallel MPEG-4

video coding algorithms on clusters of

workstations”, In Proceedings of the International

Conference on Parallel Computing in Electrical

Engineering, pp. 354–357, 2004.

[14] Cor Meenderinck et al. “Parallel scalability of H.

264”, Proceedings of the first Workshop on

Programmability, Issues for Multi-Core

Computers. 2008.

[15] A. Rodriguez, A. Gonzalez & M. P. Malumbres,

“Hierarchical parallelization of an H.264/AVC

video encoder”, In Proceedings of the

International Symposium on Parallel Computing

in Electrical Engineering, pp. 363-368, 2006.

[16] Y. Chen, X. Tian, S. Ge and M. Girkar, “Towards

efficient multi-level threading of H.264 encoder

on intel hyper-threading architectures”, In

Proceedings of the 18th International Parallel and

Distributed Processing Symposium, pp. 63–70,

2004.

[17] C. Y. Cho, S. Y. Huang and J. S. Wang, “An

embedded merging scheme for VLSI

implementation of H.264/AVC motion

estimation” In Proc. of the IEEE Conf. on Image

Processing, Vol. 3, pp. III - 1016-19, 2005.

[18] C. Y. Cho, S. Y. Huang and J. S. Wang, “An

embedded merging scheme for H.264/AVC

motion estimation”, In Proc. of the IEEE

International Conference on Image Processing,

Vol. 1, pp. I - 909-12, 2003.

[19] J. M. Paul & B. H. Meyer, “Amdahl’s law

revisited for single chip systems” In International

Journal of Parallel Programming, Vol. 35, No. 2,

pp. 101-123, 2007.

[20] M. D. Hill, “Amdahl’s Law in the Multi core

Era” In Proc. of the International Symposium

High Performance Computer Architecture,

Keynote, pp. 33-38, 2008.

[21] W. Haitao, J. Yu, J. Li, “The design and

evaluation of hierarchical multi-level parallelisms

for H.264 encoder on multi-core architecture”,

Computer Science and Information Systems, Vol.

7, No. 1, pp. 189-200, 2010.

[22] X264 video encoder, Available:

http://www.videolan.org/developers/x264.html.

[23] JM Reference, Available:

http://iphome.hhi.de/suehring/tml/index.htm.

[24] GNU GCC Tool Suit, [Online]. Available:

http://gcc.gnu.org

[25] S. Sun, D. Wang and S. Chen, “A Highly

Efficient Parallel Algorithm for H.264 Encoder

Based on Macro-Block Region Partition”,

Lecture Notes in Computer Science, Vol. 4782,

pp. 577-585, 2007.

[26] Z. Wang et al.,“Novel Macro-Block Group

Scheme of AVS Coding for Many-Core

Processor”, Journal of Signal Proce. Systems,

Vol. 65, No. 1, pp. 129-145, 2011.

Muhammad Rashid received the

Bachelor’s degree in electrical

engineering from the University of

Engineering and Technology,

Peshawar, Pakistan, in 2000, the

Master’s degree in embedded systems

design from the University of Nice,

Sophia-Antipolis, France, in 2006, and

the Ph.D. degree in embedded systems design from the

University of Bretagne Occidentale, Brest, France, in 2009.

Currently, he is an Assistant Professor with the Computer

Engineering Department, Umm Al-Qura University,

Mecca, Saudi Arabia.

Author’s Photo

http://www.videolan.org/developers/x264.html
http://iphome.hhi.de/suehring/tml/index.htm
http://gcc.gnu.org/

