
International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-21 December-2015

380

A Comparative Analysis of Deterministic Sorting Algorithms based on

Runtime and Count of Various Operations

Reyha Verma
1
 and Jasbir Singh

2*

Department of Computer Science, National Institute of Technology, Srinagar, India
1

Department of Computer Science & IT, University of Jammu, Jammu, India
2

Received: 24-September-2015; Revised: 01-November-2015; Accepted: 05-November-2015

©2015 ACCENTS

Abstract

Sorting algorithms find its application in many

practical fields of Computer Science. Efficient

solving of sorting problem has attracted a great deal

of research as it optimizes other algorithms also.

The main factor which is taken into consideration

while determining the efficiency of a sorting

algorithm is the time complexity. Mostly the

execution time of algorithms is investigated and

compared for analyzing time complexity. This paper

presents a comparative analysis of deterministic

sorting algorithms. Time complexity of six different

algorithms namely, Selection sort, Bubble sort,

Insertion sort, Quicksort, Heapsort and Mergesort

is determined in terms of number of comparisons,

swaps and assignment operations in addition to

average execution time. Also, the performance of

these algorithms on fully and almost sorted lists was

also analyzed. The study indicates that determining

the operation’s count is essential for analyzing time

complexity especially when algorithms are

theoretically analyzed.

Keywords

Deterministic sorting, Time complexity, Bubble sort,

Selection sort, Quicksort.

1. Introduction

An algorithm that takes as input a sequence of

numbers and outputs an ordered permutation of the

input sequence is termed as a sorting algorithm [1].

The order may be a numerical, lexicographical or any

other order. Information for many applications in

computer science is managed and retrieved easily if

the data is kept sorted.

*Author for correspondence

Processing data in a certain specific order is more

useful than processing randomized data[2].

Moreover, certain applications which require sorted

input data tend to be more optimal with efficient

sorting.

All the algorithms analyzed in the present paper are

having the property that the output of every operation

is uniquely defined and predictable. Algorithms with

this property are termed as deterministic algorithms

[3].

A number of deterministic sorting algorithms have

been developed in order to enhance efficiency.

Primarily the efficiency of a sorting algorithm is

determined by its time complexity. The time

complexity is the amount of computer time needed

by the algorithm to run to completion. It is estimated

theoretically by determining the number of

comparisons and swaps [4].

In this paper the time complexity of algorithms

namely, Selection sort, Bubble sort, Insertion sort,

Quicksort, Heapsort and Mergesort is determined for

unsorted, almost sorted and fully sorted lists. The

parameters used for analysis are average execution

time, number of comparisons, swaps and assignment

operations. The objective is to ascertain the efficient

algorithm and the effect of comparisons, swaps and

assignment operations on the average runtime.

2. Literature Review

Solutions to sorting problems have attracted a great

deal of research in the recent years and in this process

many sorting algorithms have originated with

improved efficiency. Certain algorithms perform

more efficiently under certain situations. Over the

years researchers have been comparing and analyzing

the sorting algorithms to determine their applicability

to applications. An example can be found in [6],

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-21 December-2015

381

where the authors had designed a new sorting

algorithm as index sort.

P. Adhikari [2], while comparing various

performance factors among selection sort and shell

sort algorithm, concludes that shell sort gives better

performance and that both the algorithms cannot be

used for large arrays. Pasetto and Akhriev [7] provide

a comprehensive analysis of the performance of

parallel sorting algorithms on modern multi-core

hardware. Several best known general-purpose

algorithms were considered. The authors provided an

insight as to which algorithm is most suited for a

specific application along with the shortcomings and

advantages of each algorithm.

In [8] the authors had compared the performance of

selection sort and quicksort algorithm for sorting

integer and string arrays. The algorithms were

analyzed on random data and results indicated that

selection sort performs better than quicksort and

string arrays have lesser processing time than integer

arrays. In [9] a statistical comparative study of

sorting algorithms, viz. Quick sort, Heap sort and K-

sort with asymptotically optimal average case

complexity, has been reported.

Based on the studies as available in the literature, the

algorithms have been compared by obtaining the

corresponding statistical bounds while subjecting

these procedures over the randomly generated data

from Binomial, Uniform and Poisson distribution.

The parameterized complexity analysis is also

provided. The performance of the new algorithm is

compared with four different sorting algorithms. The

authors have concluded that Index Sort algorithm

works well for all length of input values.

3. Methodology

Time complexity of six different algorithms namely,

Selection sort, Bubble sort, Insertion sort, Quicksort,

Heapsort and Mergesort are analyzed. All these

algorithms are a comparison sort. A comparison sort

arranges data in sorted order by comparing data items

[1]. Each algorithm uses a different mechanism to

sort data which is illustrated in the following

pseudocodes:

Selection Sort (A)

for i ← 1 to length[A] – 1

do min ← i

for j ← i + 1 to length[A]

 do if A[j] < A[min]

 then min ← j

exchange A[i] & A[min]

Bubble Sort(A) [2]

for i ← 1 to length[A]

do for j ← length[A] down to i + 1

do if A[j] < A[j - 1]

 then exchange A[j] & A[j - 1]

Insertion Sort(A) [2]

for j ← 2 to length[A]

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 : j - 1].

 i ← j - 1

 while i > 0 and A[i] > key

do A[i + 1] ← A[i]

i ← i - 1

 A[i + 1] ← key

Quicksort(A, P, R) [2]

if p < r

 then q ← PARTITION(A, p, r)

QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)

Mergesort(A, P, R) [2]

if p < r

 then q ← (p + r)/2

 MERGE-SORT(A, p, q)

MERGE-SORT(A, q + 1, r)

MERGE(A, p, q, r)

Heapsort(A) [2]

BUILD-MAX-HEAP(A)

for i ← length[A] downto 2

do exchange A[1] ↔ A[i]

 heap-size[A] ← heap-size[A] - 1

 MAX-HEAPIFY(A, 1)

In selection sort the sorting mechanism is to find the

minimum value in the list and exchange it with the

first element. The process is repeated with the rest of

the list. The time complexity of selection sort is O

(n
2
) [1][3][5].

In Bubble sort sorting is done by comparing each pair

of adjacent elements in the list and swapping them if

not in order. In each pass the last element gets to its

correct position. The time complexity of bubble sort

is O (n
2
).

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-21 December-2015

382

In Insertion sort the sorting mechanism is to insert the

elements one by one into their right position into a

new sorted list. The time complexity of insertion sort

is O (n
2
).

Quicksort is based on divide and conquer design

technique. A pivot element is chosen to partition the

list such that smaller elements are placed before the

pivot and greater elements are placed after it. The

process is applied to the sublists recursively. The

time complexity of quicksort is O (nlog2n) [1][3][5].

Mergesort is also a divide and conquer algorithm

which divides the list until it can be sorted easily and

then merges the sorted lists to obtain the complete

sorted list. The time complexity of merge sort is O

(nlog2n).

Heapsort accomplishes sorting by arranging the input

data into a heap. A heap is a complete binary tree

with the greatest or smallest element at the root node.

Heapsort creates a sorted list by deleting the root and

placing it at end of the list. The heap is then

rearranged and the process is repeated. The time

complexity of heap sort is O (nlog2n).

4. Implementation

All the sorting algorithms are implemented in java

using netbeans IDE. The algorithms are executed on

a window 7 professional machine having Intel(R)

core(TM) i5 CPU M 560@ 2.67 GHz and installed

memory (RAM) 2.00 GB. Input Dataset for the

algorithms is randomly chosen using the algorithms

implemented by the class Random of java’s util

package. This class generates uniformly distributed

pseudorandom numbers using a linear congruential

formula [4] and starts with a 48 bit seed. For runtime

analysis the number of inputs was fixed to 10000 and

number of runs (executions) was varied from 500 to

10000 in 20 steps. For determining operation counts

the number of inputs was fixed to 1000 and number

of runs (executions) was varied from 500 to 10000 in

20 steps. A ninety percent sorted list was taken as

almost sorted list. An additional Java API, JFreeChart

was used for graphical representation of results

obtained. JFreeChart is a free chart library for the

Java(tm) platform.

5. Results

Time complexity of all the six algorithms namely,

Selection sort, Bubble sort, Insertion sort, Quicksort,

Heapsort and Mergesort is determined in terms of no.

of comparisons, no. of swaps, no. of assignment

operations and average execution time. In addition

for all the algorithms the number of comparisons and

number of swaps was obtained fully sorted lists as

well as almost sorted list.

The average execution time obtained for the

algorithms is shown in figure 1.

Figure 1: Average Execution Time of Algorithms

The average number of comparisons obtained for the

algorithms is shown in figure 2.

Figure 2: Avg. no. of comparisons of Algorithms

The average number of swaps obtained for the

algorithms is shown in figure 3.

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-21 December-2015

383

Figure 3: Avg. no. of swaps made by Algorithms

The average number of assignments obtained for the

algorithms is shown in figure 4.

Figure 4: Avg. assignments made by Algorithms

The average number of comparisons obtained for the

algorithms for fully sorted list is shown in figure 5.

Figure 5: Avg. comparisons for fully sorted lists

The average number of swaps obtained for the

algorithms for fully sorted list is shown in figure 6.

Figure 6: Avg. no. of swaps for fully sorted lists

The average number of comparisons obtained for the

algorithms for almost sorted list is shown in figure 7.

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-21 December-2015

384

Figure 7: Avg. comparisons for almost sorted lists

The average number of swaps obtained for the

algorithms for almost sorted list is shown in figure 8.

Figure 8: Avg. no. of swaps for almost sorted lists

All the six algorithms are ranked according to their

performance in the results obtained. The algorithm

with lower value is ranked high. The ranking of

algorithms is listed in Table 1.

Table 1: Ranking of Algorithms

Algorithm

Avg. No.

of

Comparis

ons

Avg.

No. of

Swap

s

Avg. No.

of

Assignme

nts

Avg.

Run

Time

Selection Sort 5 2 6 6

Bubble Sort 6 5 4 5

Insertion Sort 4 6 5 4

Quicksort 1 3 1 1

Merge Sort 3 1 3 3

Heap Sort 2 4 2 2

In the present investigation, Quicksort is observed as

the better algorithm then the rest five algorithms in

terms of average no. of comparisons, assignment

operations and execution time. Also, on random data

bubble sort makes more number of comparisons than

selection sort. The number of comparisons tends to

increase in case of quicksort and decrease in case of

Mergesort when the list is fully sorted. Also, a slight

increase in no. of comparisons is also observed in

Heapsort.

One interesting observation had been made in case of

bubble sort and selection sort. Selection sort had

lesser no. of comparisons and swaps as compared to

bubble sort algorithm but had larger execution time

than bubble sort. This is attributed to the large

number of assignment operations in selection sort in

comparison to that in bubble sort. Thus, indicating

the importance of determining count of various

operations while analyzing time complexity of

Algorithms.

6. Conclusion and Future Work

In this paper we analyzed six different deterministic

algorithms on the basis of average number of

comparisons, swaps and assignment operations along

with the average runtime. Quicksort had been

observed to be the better algorithm. It has also been

observed that it is essential to ascertain the count of

each basic operation for theoretically analyzing time

complexity of algorithms.

Future work will continue in the direction of

analyzing sorting algorithms with larger data sets.

Efforts will be to use more algorithms and to take

into account the other factors like memory usage,

stability and adaptability while analyzing algorithms.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and

C. Stein, “Introduction to Algorithms”, 2nd ed.,

The MIT Press, McGraw Hill, 2001.

[2] P. Adikari, “Review on Sorting Algorithms: A

comparative study on two sorting algorithms”,

Mississipi state university, Mississippi 2007.

[3] E. Horowitz, S. Sahni and S. Rajasekaran,

“Fundamentals of Computer Algorithms”, 2nd ed.,

Universities Press, 2009.

[4] D. E. Knuth, “The Art of Computer

Programming”, Sorting and Searching, Volume

3, Addison Wesley, april 1998.

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-21 December-2015

385

[5] J. Hubbard, “Shaum’s Outline of Data Structures

with Java”, 2nd ed., McGraw Hill education,

2009.

[6] Bharadwaj, Ashutosh, and Shailendra Mishra.

"Comparison of Sorting Algorithms based on

Input Sequences." International Journal of

Computer Applications 78.14 (2013): 7-10.

[7] D. Pasetto and A. Akhriev, “Comparative Study

of Parallel Sort Algorithms”, IBM Dublin

Research Lab, Mulhuddart, Dublin 15, Ireland.

[8] A. M. Aliyu and P. B. Zirra, “A Comparative

Analysis of Sorting Algorithms on Integer and

Character Arrays”, The International Journal of

Engineering and Science (IJES), volume 2,Issue-

7, p 25-30, 2013.

[9] A. Kumari, N. K. Singh and S. Chakraborty, “A

statistical comparative study of some sorting

algorithms”, International Journal in Foundations

of Computer Science & Technology (IJFCST),

Vol.5, No.4, July 2015.

Reyha Verma (Jammu, India,

13/09/2015) is a 3rd year B.Tech

student, Department of Computer

Science and Engineering, National

Institute of Technology, Hazratbal ,

Srinagar (J&K State).

Jasbir Singh (Jammu, India,

13/09/2015) is MCA from University of

Jammu, India and currently working as

Assistant Professor in Department of

Computer Science & IT in

University of Jammu. His research

interest is Network Security

and Analysis Design of Algorithms.

Email: jasbirmca@gmail.com

