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Abstract 
 

Energy efficient test-able binary logarithmic 

multiplier and divider architecture using reversible 

logic has been reported in this paper. The focus of 

this paper is to avoid multiplication and division 

stages to reduce large layout area and make the 

circuit efficiently test-able. Here all the 

computations have been performed in radix-2 basis. 

Moreover to avoid the usage of large number of 

constant inputs, an efficient technique has been 

adopted. Though the procedure demands errors in 

the result, efforts have been made to achieve higher 

accuracy. 
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1. Introduction 
 

Digital multipliers and dividers are indispensable in 

DSP processors and cryptography. There are so many 

well-known multiplication and division algorithms 

used in DSP, image processing and artificial neural 

network. One important aspect of improving the 

multiplier and divider efficiency is through the 

arrangement of adders and sub-tractors. Carry or 

borrow propagation is a major challenge in high 

speed VLSI circuit. Moreover conventional 

multiplication and division techniques provide larger 

and complex circuit layout and computational 

complexity. 
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This issue can easily be resolved by using 

logarithmic processor. In addition to that in some 

complex DSP processors high speed achievement is 

prioritized than to get higher accuracy in results. To 

achieve faster operation and reduce the 

computational complexity and layout area, research 

has already been started on designing logarithmic 

processors [1], [2], [3], [4] from decades ago. 

Logarithmic processing technique has a wide range 

of application in Artificial Neural Network (ANN) 

[5]. 

 

As the number of transistors is increasing 

exponentially in VLSI circuits, the power 

consumption has become a great matter of concern. 

The situation is becoming worse for computation 

intensive logic circuits such as multipliers and 

dividers. To restrict large power consumption in 

designing VLSI circuits, logical reversibility is 

indispensable which was first proposed by Bennett 

[6]. Theoretically logical reversibility provides zero 

power consumption in the circuits. Therefore modern 

research is going on the reversible circuit synthesis 

[7], [8], and [9]. Though any Boolean function can be 

implemented by reversible logic, the problem is that 

this implementation may require large number of 

ancillary inputs and garbage outputs. Optimization of 

such parameters for an arbitrary reversible circuit is 

an open challenge to all the researchers. This paper 

proposes a test-able reversible logarithmic multiplier 

and divider using optimal ancillary inputs and 

garbage outputs. The numbers of ancillary inputs and 

garbage outputs have been greatly reduced using an 

efficient optimization technique. The quantum costs 

of the circuits have also been optimized by some 

novel techniques.  

 

This paper has been organized in the following 

manner. Section 2 describes some basic well-known 

reversible gates. In Section 3 background 

mathematics of logarithmic multiplication and 

division technique has been explained elaborately. 
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Section 4 describes the architecture of logarithmic 

multiplier and divider. Section 5 describes the error 

calculation and accuracy checking of the algorithm. 

The optimization techniques used in the architecture 

has been elaborated in Section 6. The test-ability 

checking of the circuit has been discussed in Section 

7. The optimized results have been tabulated in 

Section 8 and Section 9 is the conclusion. 

 

2. Basic Reversible Gates and Circuits 
 

Reversible gates are all n × n gates which have 1- to -

1 mapping between input and output lines. The four 

basic gates shown in figure 1 that are used in 

arithmetic circuits are 

(i)  NOT gate or inverter - 1 × 1 circuit having one 

input and one output line,  

(ii) CNOT (Controlled NOT) gate or Feynman Gate - 

2 × 2 circuit having two input and two output lines,  

(iii)Toffoli gate - n × n circuit (in figure-1 3×3 

circuit) which performs the logical AND operation 

based on the target input,  

(iv)Peres gate - 4 × 4 circuit consisting of double gate 

structure used for arithmetic addition based on the 

target line. 

 

The above mentioned gates can be decomposed into 

some unitary quantum gates such as, (a) Controlled V 

gate and (b) Controlled V+ gate. Theoretically both 

the gates are considered to be the square root of 

CNOT gate. The decomposition is essential to 

calculate and optimize the quantum cost of the 

circuit. Theoretically they can be equated as, 
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Figure 1: Basic Reversible gates 

3. Description of Logarithmic 

Multiplication and Division 

Technique 
 

A. Background Mathematics 

Let us consider two ’n’ bit binary numbers X and Y 

and    . We need to determine the result P which 

is either    or    . Now X and Y can be 

expressed as, 

       (    )   (3) 

 

       (    )   (4) 

 

Where    and    can be expressed as, 

    ∑   
  
         (5) 

 

    ∑   
  
         (6)   

 

It is suitable to call     and     as exponents or 

characteristics. So the logarithm of the result P can be 

expressed as, 

 

           ( )
                  (7) 

 

     [ 
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Here       is simply an addition or subtraction but 

    (    )      (    ) is not at all a simple 

addition or subtraction. So the logarithmic portion of 

equation “(9)” can be expressed as, 

 

    (    )      (    )      [(  
  )(    )

  ]    (10) 

 

 (             )  (11) 

 

Here    and    are floating point binary numbers 

called mantissa. So       must be a floating point 

number which is smaller than both   and  . 

 

             (   )            (12) 

 

                 (13) 

 

Here we are neglecting the term      . Therefore, 

 

    (             )       (14) 
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So equation (9) can be rewritten as, 

 

            (     )  (15) 

 

 
 

Figure 2: Schematic Diagram for Logarithmic 

Multiplier and Divider 

 

To achieve higher accuracy equation “(15)” can be 

slightly modified. If (     )    then       
        (       )  else           
   (     ). Therefore, If  (     )    then 

 

   (       )  (       )  (16) 

 

else 

 

   (     )  (     )  (17) 

 

B. Example of Binary to Logarithmic Number 

and Logarithmic to Binary Number 

Conversion 

Binary to Logarithmic Number Conversion: -Assume 

a 16bit number X = 0110011100110101. (For the 

sake of simplicity we assume a 16 bit number; higher 

number of bit can be implemented using same 

manner). For this number, the highest power of 2 is 

1410 which is the degree of the first non-zero bit. So, 

  = (14)10 = (1110)2 and m = 

(1001110011010100)2.So the result Y = log2 X = 

(1110.1001110011010100)2, which is a total of 20 

bit. 

Logarithmic to Binary Number Conversion: -

Consider a 20 bit hybrid number Y = 

(1110.1001110011010100)2(Logarithmic value of a 

number is given) whose antilogarithm is to be 

determined. For this number, exponent is    = 

(1110)2= (14)10 and mantissa is p = 

(0.1001110011010100)2. Now place 1 at the position 

of (14)10and shift the 16 bit mantissa towards left by 

(14)10 times and the newly generated number is 

(1100111001101010.0)2. Therefore antilogarithm of 

the number is equal to (1100111001101010.0)2 

4. Architecture of Logarithmic 

Multiplier and Divider 
 

In this section, the proposed logarithmic multiplier 

and divider architecture has been described 

elaborately. The proposed architecture shown in 

figure 2 consists of three basic building blocks: (i) 

Exponent Determinant and Residue generator 

(EDRG), (ii) Adder/Sub-tractor (ASU), and (iii) Left 

Shifter (LS). 

 

A. Exponent Determinant and Residue 

Generator (EDRG) 

This is the main conversion block to extract the 

exponent and mantissa part of the binary input. 

Figure 3 shows the architecture for EDRG used here. 

The terms shown in equations “(3)” and “(4)” i.e.    , 
   ,     and    are extracted using EDRG block. 

Here    and    known as exponents are the highest 

degrees of the binary numbers. The first part of 

figure4 is the exponent determinant. Here    and    

are the outputs of exponent determinant. The circuit 

is modular and extensible for any number of bit 

streams. Residue Generator is used to extract the 

residues (   and   ) i.e. the floating point or 

mantissa part of the logarithmfrom the input. The 

output of exponent determinant is necessary to 

extract the mantissa. The second part of figure 3 is 

the residue generator. Here   to    are the outputs of 

residue generator. The circuit is also modular and 

extensible for any number of bit streams. 

 

 
 

Figure 3: Architecture for Four bit Exponent 

Determinant and Residue Generator 

 

 
 

Figure 4: Optimized Adder/Subtractor Circuit 

using only one constant input 
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B. Addition/Subtraction Unit (ASU) 

ASU is required to add or subtract the two exponents 

as well as two mantissas generated from EDRG. 

Figure 4 shows the optimized circuit for 4 bit ASU. 

                 (18) 

 

         (   )   (19) 

 

        (   )(     )  (20) 

 

The Boolean expressions shown in equations “(18)” 

and “(20)” are required to obtain the result and the 

carry/borrow output of the ASU. In this architecture 

we require three ASU blocks shown in figure 2. 

There are three operands m1 and m2shown in 

equations “(16)” and “(17)” which are added or 

subtracted by two ASU blocks. The third ASU is 

operating as an adder only to add the exponents 

(     ) and the carry generated from the second ASU 

(in case of multiplication only). In figure 2, there is 

an AND gate followed by an Inverter which are 

required to put the carry from the second ASU to the 

adder in case of multiplication only. In case of 

multiplication ’CTRL’ signal shown in figure 2 is 

low. Then the output of the AND gate is the carry 

output generated from the second ASU. 

 

C. Left Shifter (LS) 

This module is essential to achieve the antilogarithm 

of the result. Figure 5 shows the hardware 

implementation of LS in reversible logic. From 

equation “(16)” and “(17)”, it is obvious that to 

retrieve P, we need to use the antilogarithm 

operation. From the exponential part shown in 

equation “(16)” and “(17)”, the MSB of the result is 

set to the proper position and the remaining positions 

at the right hand side of the MSB are occupied by the 

floating point result. In figure 5 single bit shifting 

module which is elaborated in figure 6 has been used 

repetitively. In figure 5 we have shown 8 bit left 

shifter but it can be extended for large number of bits 

also. We have to keep in our mind that only one 

ancillary input is required for single bit shifting 

shown in figure 6 and the other ancillary inputs are 

bypassed for the next stage of operation which is 

implied and not shown in figure 5. 

 

 
 

Figure 5: Circuit for 8bit left shifter 

 

 
 

Figure 6: Circuit for Single bit left shifter 

 

5. Error Calculation and Accuracy 

Checking 
 

From equation (11) and (12) we get, 

    (   )       (21) 

where,        . Now let us consider the error 

in calculation   can be expressed as, 

       (   )      (22) 
  

  
  

     

   
    

     

   
    (23) 

   

   
  

     

(   ) 
    (24) 

From equations “(23)” and “(24)”, it is clear that the 

error is minimized for small values of L and the 

minimum error occurs at L = 0.442. If       
    , then error will increase. Table 1 shows the 

error in calculation based on the proposed algorithm. 
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Table 1: Error Deviation in Proposed Algorithm 

 

Operan

d  Value 

Achieve

d  Result 

Exact  

Resul

t 

Error Error 

Deviatio

n 

1.5 0.375 0.405 0.030 7.40% 

1.75 0.468 0.559 0.090 16.27% 

2.00 0.500 0.693 0.193 27.84% 

2.25 0.531 0.810 0.279 34.44% 

2.5 0.938 0.916 0.022 2.40% 

3.5 1.281 1.252 0.144 2.31% 

3.75 1.293 1.321 0.028 2.11% 

4.5 1.460 1.504 0.044 2.92% 

   Averag

e 

11.96% 

 

6. Optimization of the Circuit 
 

In reversible logic, there is always a trade-off 

between quantum cost, ancillary inputs and garbage 

outputs. Therefore our goal is to reduce the ancillary 

inputs and garbage outputs with a permissible 

increment in quantum cost. The design mentioned in 

Section 4 (particularly EDRG and ASU blocks) 

require many ancillary inputs and garbage outputs. 

Here we propose a technique to decrease these two 

parameters. In this technique few well known 

reversible gates are added to the circuits obtained in 

section 4 to make one constant input free to be reused 

later and thereby the number of ancillary inputs and 

garbage outputs are drastically reduced. This 

optimization technique is known as circuit 

duplication. 

 

Optimization in ancillary inputs and garbage outputs: 

Data: number of line, target reused 

Whilenumberofline≠ 0 do 

Scan the current target line; 

Iftargetreused = true then 

Number of line=number of line-1; 

Go to next target line; 

else 

Use circuit duplication onto that target line; 

number of line=number of line-1; 

Go to next target line; 

end 

end 

 

Algorithm 1: Algorithm for Circuit Duplication 

Technique 

 

In this technique the target lines of the circuits 

obtained in Section 4 are scanned one by one. If one 

target line is not reused later again then the gates are 

duplicated on that target line to restore the original 

value. This line can be reused as one ancillary input 

for the future operation. So one ancillary input is 

reduced from the input side. Algorithm-1 shows the 

algorithm for circuit duplication technique. 

 

Example: In the reversible circuit shown in figure 

7(a), the number of ancillary inputs and garbage 

outputs are 3 and 6 respectively, which are reduced to 

2 and 5 respectively in figure 7(b) by inserting a 

reversible circuit shown by the rectangular box. 

Notice that we could do this optimization, because 

the 1
st 

ancillary input in figure 7(a) has the option to 

be reused. 

 

Optimization in quantum cost: To decrease the 

quantum cost, we have adopted the decomposition 

technique of the reversible gates using NCV-  >[8] 

plus double gate library. Figure 8 shows a XOR-OR 

circuit used in EDRG block shown in figure 3. The 

circuit has been decomposed into few V, V+ and 

CNOT gates and then the adjacent V and V+ gates 

have been eliminated and finally the reduced 

quantum cost is 4 instead of 5. 

 

 
 

Figure 7: Architecture for duplicate circuit 

 

 
 

Figure 8: Quantum Cost reduction for XOR-OR 

Circuit 
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Figure 9 shows an adder circuit with optimal 

ancillary and garbage lines. This circuit has been 

used in ASU block shown in figure 4. At first the 

circuit has been partitioned into two parts (Part-I and 

Part-II). Then each part has been decomposed into V, 

V+ and CNOT gates. Apparently, the quantum cost 

of the circuit should be equal to 1+1+5+1+5+1+1 = 

15. But we have shown that the transformation matrix 

of the circuit indicated by a box in figure 9(d) and (e) 

is a 4 × 4 unitary matrix for which its quantum cost is 

1. The proof is given by following equations. We 

know the transformation matrix of a CNOT gate is as 

follows, 

 

      

[
 
 
 
 
 

0100

1000

0010

0001

]
 
 
 
 
 

  (25) 

Again the transformation matrix of a Controlled V 

gate is 

    

[
 
 
 
 
 
 
 

2

1

2

1
00

2

1

2

1
00

0010

0001

ii

ii





]
 
 
 
 
 
 
 

  (26)  

 

 
 

Figure 9: Quantum Cost reduction for the Adder 

with optimal garbage 

 

 

Figure 10: Cascaded CNOT gates for SWAP gate 

 

So the transformation matrix of the circuit indicated 

by a rectangular box in figure 9(d) is given as, 

 

         

[
 
 
 
 
 
 
 

0
2

1

2

1
0

0
2

1

2

1
0

1000

0001

ii

ii





]
 
 
 
 
 
 
 

 (27) 

 

It can be easily be proved mathematically that the 

matrix shown in equation “(27)” is unitary and also 

follows a symmetric pattern with respect to the 

operation i.e. one of the two gates disappears 

virtually at exactly two different input combinations. 

So the circuit must have unit quantum cost. Also, we 

have verified the cost with the help of the technique 

discussed in [10]. Similar approach is applicable for 

figure 9(e). Therefore using circuit decomposition the 

cost has been reduced by 2 for a single stage of 

addition and the reduced cost becomes 6 + 6 + 1 = 13 

instead of 15.The quantum cost of the LS shown in 

figure 5 and 6 has been drastically reduced by the 

following technique. The quantum cost of the circuit 

shown in figure 6 (indicated by a rectangular box) 

has been optimized by the technique shown by 

Soeken et. al. [8] using NCV   > plus double gate 

library. They have shown that for an n-controlled 

Toffoli gate, the quantum cost is 2 × n+1. But if we 

have m number of cascaded n-controlled Toffoli 

gates in which k number of control lines are common 

then the reduced quantum cost becomes m × (2 × 

n+1) – 2 ×(m - 1) × k. In figure 6 there are three 4-

controlled Toffoli gates and three control lines are 

common. So the quantum cost of this part of the 

whole circuit is 3(2 × 4 + 1) -  2× 2 ×3 = 27 - 12 = 15 

instead of 3(2 × 4 + 1) = 27. Figure 10 shows the 

cascade connection of two and three CNOT gates 

which have been used in figure 6. Apparently the 

quantum cost of the circuit shown in figure 6 is 

2+7×3 = 23. Now if we study the transformation 

matrices of the gates then the idea is little bit 

changed. The transformation matrix of a CNOT gate 

is shown in equation “(27)”. Now the transformation 

matrix of the circuit shown in figure 10(a) is, 

 

          

[
 
 
 
 
 

0010

1000

0100

0001

]
 
 
 
 
 

  (28) 
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And similarly the transformation matrix of the circuit 

shown in figure 10(b) is, 

 

          

[
 
 
 
 
 

1000

0010

0100

0001

]
 
 
 
 
 

  (29) 

 

Mathematically it can be easily be shown that the 

matrices shown in equation “(28)” and “(29)” are 

unitary and thereby produce unit quantum cost and 

the total cost of the circuit is1 × 8 = 8 though the two 

gates do not follow any symmetric pattern discussed 

earlier. So the reduced quantum cost of single bit 

shifter is equal to 15 + 8 = 23 instead of 27 + 23 = 50. 

Therefore we are getting a significant reduction in 

quantum cost for the left shifter.  

 

7. Test-Ability Checking of the Circuit 
 

In this paper we have not only designed logarithmic 

multiplier and divider but we have also tested the 

whole architecture module wise. In this paper, 

transformation based fault detection technique has 

been introduced. 

 

A. Transformation Based Fault Detection 

Technique 

We have used two algorithms for the transformation 

based fault detection. The first algorithm has been 

developed to generate the transformation matrix of 

any reversible circuit and the second algorithm is for 

the generation of test pattern from the transformation 

matrices of the exact circuit and the faulty circuit. 

Algorithm-2 has been developed to generate the 

transformation matrix of the exact circuit and the 

faulty circuit. Here we are creating an image of the 

exact circuit i.e. flipping the circuit horizontally by 

180
0
. Then the output of the exact circuit will be the 

input of the image circuit and the input will be the 

output. Now the matrices of the exact image circuit 

as well as the faulty image circuit are generated. 

The test pattern of the circuit can easily be generated 

using Algorithm-3. Here TRk and TRk+1 are the 

transformation matrices of the exact image circuit 

and the faulty image circuit respectively. Using this 

technique we have generated the test pattern of all the 

circuit modules. 

 

 

Data:input bit pattern, output bit pattern,tmp 

Input :maxrow,maxcolumn 

Output:matrixTRk[maxrow,maxcolumn] 

Take the mirror image of the circuit; 

for i    0 tomaxrow- 1 do 

inputbitpattern = decimal to binary(i); 

outputbitpattern = image circuit(inputbitpattern); 

tmp = binary to decimal(output bit pattern); 

for j   0 to maxcolumn- 1 do 

if j = tmpthen 

TRk[i, j] = 1; 

else 

TRk[i, j] = 0; 

end 

end 

end 

 

Algorithm 2: Algorithm for Transformation 

Matrix Generation 

 

Example: Using the above mentioned technique we 

have generated the test pattern of the test circuit 

shown in figure 11.The transformation matrix for 

figure 11(a) is, 

     

[
 
 
 
 
 

0001

0010

0100

1000

]
 
 
 
 
 

   (30) 

 

Data:tmp 

Input :maxrow,maxcolumn,matrix 

TRk[maxrow,maxcolumn],matrix 

TRk+1[maxrow,maxcolumn] 

Output:matrix pattern[maxcolumn, log2maxcolumn] 

for i  0 to maxrow- 1 do 

for j    0 to maxcolumn- 1 do 

ifTRk[i, j] ≠TRk+1[i, j] then 

tmp = j; 

for   0 to log2(maxcolumn) - 1 do 

pattern[i, ] = decimaltobinary(tmp); 

end 

end 

end 

end 

 

Algorithm 3: Algorithm for Test Pattern 

Generation 
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Figure 11: Test Circuit on which transformation 

based technique applied 

 

The transformation matrix for figure 11(b) is, 

 

     

[
 
 
 
 
 

0001

0010

1000

0100

]
 
 
 
 
 

   (31)  

 

The transformation matrix for figure 11(c) is, 

 

     

[
 
 
 
 
 

0001

0010

1000

0100

]
 
 
 
 
 

   (32)  

 

From equations “(30)” and “(31)” we get the change 

of value in column number 2 and 3. So the test 

pattern (10 or 11) is sufficient to detect the SMGF 

fault occurred to the first gate of figure 11(a). 

Similarly from equations “(30)” and “(32)” the 

change in value is observed in column number 0 and 

1. So the test pattern (00 or 01) is sufficient to detect 

the PMGF fault occurred to the first gate of figure 

11(a). 

 

B. Testing of EDRG 

 

Table 2: Test Pattern for EDRG 

 

Tests             

   0 0 1 0 

   0 1 0 1 

   1 0 0 0 

   1 0 1 0 

   1 1 1 1 

 

From Table 2, we get five tests which are optimal to 

test all SMGF (Single Missing Gate Fault) and 

PMGF (Partial Missing Gate Fault). 

Table 3: Test Pattern for a Single Bit  

ASU 

 

Tests             
   0 1 0 0 

   0 1 1 0 

   1 1 0 0 

 

Table 4: Test Pattern for a Three Bit ASU 

 

Tes

ts 

                                    

   0 1 0 0 0 1 0 0 1 0 

   0 1 1 0 0 1 0 0 1 0 

   1 1 0 0 0 0 0 1 1 0 

   0 0 1 0 1 1 0 0 0 0 

 

C. Testing of ASU 

Table 3 shows the three tests which are optimal to 

detect all SMGF and PMGF faults for a single bit 

ASU whereas Table 4 shows four tests to detect all 

SMGF and PMGF in a two bit ASU though the Table 

can be extended for n bit and the patterns are 

repetitive in nature. 

 

D. Testing of LS 

 

Table 5: Test Pattern for LS 

 

Tes

ts 

                                 

   0 0 0 1 1 0 0 0 0 0 0 

   0 0 1 0 0 0 0 0 0 0 0 

   0 1 0 0 0 0 0 0 0 0 0 

   1 0 0 0 0 0 0 0 0 0 0 

   1 1 1 0 1 0 1 0 1 0 1 

   1 1 1 1 0 1 0 1 0 1 0 

   1 1 1 1 1 1 1 1 1 1 1 

 

Table 5 shows 7 patterns to detect all SMGF and 

PMGF in the LS block shown in figure 6. Since it is 

nothing but a shifting circuit so we require testing all 

nodes of the multiple controlled Toffoli gates and 

thus we get the 7 tests which are essential for the 

circuit. 

 

8. Result Analysis 
 

From Table 6 and Table 7, we observe a significant 

amount of reduction of ancillary inputs and garbage 

outputs. Though the quantum cost has been increased 

but it exists in the tolerable limit. From the two 

Tables it is observed that all the parameter values for 
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4 bit architecture are almost getting doubled in case 

of 8 bit architecture. Therefore we have to observe 

that for 4n bit architecture, all the parameter values 

are approximately increased by n times or not. 

Moreover our future aim is to achieve success in 

designing higher order logarithmic circuit with 

optimal ancillary inputs and garbage outputs. 

 

Table 6:  Tabular Form of Calculated Parameters 

for Four bit Logarithmic Multiplication and 

Division 

 

parameters Without 

optimization 

With 

optimization 

Ancillary Input 60 28 

Garbage Output 40 10 

Quantum Cost 438 458 

 

Table 7:  Tabular Form of Calculated Parameters 

for Eight Bit Logarithmic Multiplication and 

Division 

 

parameters Without 

optimization 

With 

optimization 

Ancillary Input 112 52 

Garbage Output 87 27 

Quantum Cost 754 914 

 

9. Conclusion 
 

In this paper our aim is to exhibit multiplication and 

division technique using Logarithmic Number 

system. The technique is faster than any other 

technique for multiplication and division though the 

result produces some errors. This circuit is very 

helpful for the system where faster operation is 

prioritized than to achieve high accuracy in 

computation. Method of circuit duplication has been 

introduced to achieve the reduction in input and 

output pins which can drastically reduce the 

fabrication cost. Moreover circuit decomposition 

technique has been used to reduce the quantum cost 

of the circuits. Finally efforts have been given to 

make the circuits easily and efficiently test-able. 
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