
International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

205

A Simplistic Mechanism for Query Cost Optimization

Debopam De
*
, Deblina Banerjee, Sneha Mukherjee and Jayati Ghosh Dastidar

St. Xavier’s College, Kolkata

Received: 06-May-2015; Revised: 03-June-2015; Accepted: 7-June-2015

©2015 ACCENTS

Abstract

The cost of a database query can be optimized so

that a more efficient query can be generated.

However not many tools are available which work

independently to optimize the cost of a query. This

article is based on a tool that we developed to serve

the purpose. It uses an Oracle Database and Linear

Programming Problem concepts to evaluate the

optimum cost of the query and compares it with the

original cost of the query that the user gives. The

optimum cost can also be used to devise a new query

which serves the same purpose as the original one

and with reduced cost.

Keywords

Database statistics, plan table records, cost retrieval,

cardinality retrieval, bytes retrieval, optimization of cost,

cost comparison, simplex.

1. Introduction

Optimization is the act of obtaining the best result

under given circumstances. In design, construction

and maintenance of any real-life system, we have to

take many technological and managerial decisions at

several stages. The ultimate goal of all such decisions

is either to minimize the effort required or to

maximize the desired benefit. The effort required or

the benefit desired in any practical situation can be

expressed as a function of the conditions that give

maximum or minimum value. As a reference we can

see the graph in Figure 1. Here the point x*

corresponds to the minimum value of the function

f(x), the same point also corresponds to the maximum

value of the negative of the function, -f(x). Thus

without loss of generality, optimization can be taken

to mean minimization since the maximum of a

function can be found out by seeking the minimum of

*Author for correspondence

the negative function. The project cost evaluation and

optimization tool uses the cut edge technology of

Cost-Based Optimization available in versions of

Oracle (Oracle 7.0 onwards). The main theme of our

paper is to develop software that takes as input a

query and analyses its execution plan. After the

analysis is done on the query, the total cost, bytes

consumed when the query is being executed, the I/O

cost and the cardinality of each and every statement

of the query is extracted. These factors are the pillars

on which cost depends. We will attempt to optimize

the cost of a query execution and our algorithm finds

out an optimized cost wherever is possible (there are

queries for which no further optimization is

required). As the cost and other factors are retrieved,

these factors are used to form equations and in-

equations of the Simplex Method [9, 10]. The

ultimate value of the objective function (formed by

the cost only) tells us whether any further

optimization is required or not and if so, then what

can be the optimized value of the Objective Cost

Function.

Figure 1: Minimum of f(x) is same as maximum of

–f(x)

f(x)

-f(x)

0 x

f(x)

x*

x*, Minimum of f(x)

x*, Maximum of f(x)

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

206

There are two types of optimization models, viz. Rule

Based Optimization (RBO) and Cost Based

Optimization (CBO). The RBO uses a set of rules to

determine how to execute a query. If an index was

available on a table, the RBO always uses the index.

There are some cases where the use of an index slows

down a query. RBO, armed with its set of discrete

rules, does not always make great decisions. The

biggest problem with the RBO is that it does not take

the data distribution into account. The RBO always

uses an index if present, because it is so designed. In

contrast, the CBO uses statistics about the table, its

indexes and the data distribution to make better

informed decisions. The CBO uses database statistics

to generate several execution plans, picking the one

with the lowest cost, where cost is dependent on

system resources required to complete the operation.

Basically, the RBO used a set of rules to determine

how to execute a query. As it turns out that this is

simpler to implement but not the best strategy. RBO

was supported in earlier versions of Oracle. (SQL

Server supports table hints which in a way can be

compared to RBO, as they force the optimizer to

follow a certain path). Motivation behind CBO is to

come up with the cheapest execution plan available

for each SQL statement. The cheapest plan is the one

that will use the least amount of resources (CPU,

Memory, I/O, etc.) to get the desired output. This can

be a daunting task for DB engine as complex queries

can generate thousands of possible execution paths,

and selecting the best one can be quite expensive.

CBO is supported by most databases including

Oracle, SQL Server, etc.

2. Literature Review

A considerable amount of research has been done on

query optimization. The author in [1] has presented a

generalised overview of query optimization in

relational database systems. The paper discusses the

need and modalities of query optimization in

relational database models. The ways and means of

query optimization for a database containing

multimedia repositories has been discussed by the

authors in [2]. The authors in [3. 4, 5, 6] have

discussed the theoretical aspects of query

optimization in their respective text books. The query

optimization principles as implemented in the

relational database Oracle have been discussed in [7]

and [8]. The authors of the paper [11] present an

approach using object-oriented databases under

inheritance that permits to enrich technique of query

optimization existing in the object-oriented

databases. Their experimental study shows

performance of query after implementation of

inheritance method using relational as well as object

oriented database. The Oracle White Paper [12] has

discussed the mechanics of the explain Plan Table.

The purpose of the Oracle Optimizer is to determine

the most efficient execution plan for our queries. It

makes these decisions based on the statistical

information it has about the data and by leveraging

Oracle database features such as hash joins, parallel

query, and partitioning. The explain plan is by far the

most useful tool at our disposal when it comes to

investigating why the Optimizer makes the decisions

it makes. By breaking down the explain plan and

reviewing the four key elements of: cardinality

estimations, access methods, join methods, and join

orders; we can determine if the execution plan is the

best available plan. The authors in [13] discuss query

optimization for queries involving large join

operations. It combines heuristics and combinatorial

techniques for such queries. The authors in [14] have

presented a novel technique for query optimization

using the Genetic Algorithm. Their paper proposes a

set of mutation strategies that are conscious of the

nature of execution plans, and show that their

combination, or their use with crossover operations,

yields faster convergence and better plans than other

more trivial mutation strategies. In addition, their

mutations do not require repair operations after

applying them.

The use of simplex method [9, 10] as a possible cost

optimization technique for queries is yet to be fully

explored. Thus we tried to apply this technique in

trying to optimize the cost and met with reasonable

success.

3. Methodology

Our attempt at cost optimization begins by using the

Explain Plan feature of Oracle. The Explain Plan

statement displays execution plans chosen by the

Oracle optimizer for Select, Update, Insert and Delete

statements. A statement's execution plan is the

sequence of operations Oracle performs to run the

statement. The Explain Plan results let us determine

whether the optimizer selects a particular execution

plan, such as, nested loops join. It also helps us to

understand the optimizer decisions, such as why the

optimizer chose a nested loop join instead of a hash

join, and lets us understand the performance of a

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

207

query. The Explain Plan method does not require the

query to be run. Thus saving a lot of time and

resource compared to Autotrace. We next retrieve the

cost constraints such as Bytes Constraint, I/O Cost

Constraint and Cardinality Constraint from the output

of the Explain Plan. These constraints are then

formulated in the form of linear in-equalities. Finally

the objective cost function is generated which

represents the total cost. The final step involves

finding an optimum solution to the linear

programming problem that has been generated

through the plan. For this we use the Simplex Method

for Linear Programming Problem. The output gives

us the optimized cost. The Figure 2 below depicts the

flow of our proposed method:

Figure 2: Optimization Process

The following algorithm summarises our approach to

cost optimization:

Step 1: Begin

Step 2: Set a unique statement_id for a particular

SQL statement and explain it through Oracle (Oracle

7.0 onwards).

Step 3: Any SQL statement, be it a DDL, DML,

DQL or DSL has some cost cardinality and some

byte consumption. Retrieve the cost, cardinality and

the bytes used to execute the SQL query.
Step 4: Once the cost and the bytes are determined
the inequations are formed and the objective function

based on cost is retrieved as follows:

Minimize Z = C1x1 + C2x2 + ………. + Cnxn

Subject to the constraints:

Bytes Constraint:

B1x1+B2x2 + … +Bnxn ≥ (B1+ B2 + … + Bn)

I/O Cost Constraint:

I/O1x1+I/O2x2+…+I/Onxn ≥ (I/O1+I/O2+ …+ I/On)

Cardinality Constraint:

Cr1x1+Cr2x2+…+Crnxn ≥ (Cr1+Cr2+…+Crn)

where, Cj, Bj, I/Oj and Crj are Cost, Bytes, I/O Cost

and Cardinality constants retrieved, and are about the

query for which cost estimation and optimization is

done.

The program used for simplex algorithm, takes as

input the objective functions and the subjective

functions and evaluates the cost in every step and

displays it. Thus, we can see whether the costs given

in the format of equations are optimized or not.

We have used the Simplex Algorithm to optimize the

cost. Following is the Simplex algorithm used to

solve the Linear Programming Problem formulated

above:

Simplex Algorithm:

Step 1: Modify the constraints so that the RHS of

each constraint is nonnegative (This requires that

each constraint with a negative RHS be multiplied by

-1. Remember that if we multiply an inequality by

any negative number, the direction of the inequality

is reversed!). After modification, identify each

constraint as a <, >, or = constraint.

Step 2: Convert each inequality constraint to

standard form (If constraint is a < constraint, we add

a surplus variable s
i
; and if constraint is a >

constraint, we subtract an excess variable e
i
).

Step 3: Add an artificial variable a
i
to the constraints

identified as > or = constraints at the end of Step 1.

Also add the sign restriction a
i
> 0.

Step 4: If the Linear Programming Problem is a

maximisation problem, add (for each artificial

variable) -Ma
i

to the objective function where M

denote a very large positive number.

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

208

Step 5: If the LP is a minimisation problem, add (for

each artificial variable) Ma
i
to the objective function.

Step 6: Solve the transformed problem by the

simplex method. Since each artificial variable will be

in the starting basis, all artificial variables must be

eliminated from the rows before beginning the

simplex. Now in choosing the entering variable, we

have to remember that M is a very large positive

number.

If all artificial variables are equal to zero in the

optimal solution, we have found the optimal solution

to the original problem. If any artificial variables are

positive in the optimal solution, the original problem

is infeasible!

4. Results and Discussion

We have developed a Graphic User Interface using

Visual basic which will enable one to input the query,

analyse it, determine the cost and then optimize it.

The Optimization module has been developed using

the C programming language. Figure 3 shows the

user interface that has been designed by us through

which the query will be entered.

Case Study: We take up the following query and

analyse it through the tool developed by us:

SELECT ENAME, EMPNO, DNAME, LOC

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

Figure 3: Graphic User Interface

By clicking on the Explain button, the supplied query

will be “EXPLAINED” in Oracle and a message will

appear in the model as “Explained”. Oracle maintains

a PLAN_TABLE and stores the related records,

mentioned above in statement no 1, in that

PLAN_TABLE against the supplied

STATEMENT_ID. Subsequently, if we “Execute”

the same query Oracle will supply the relevant

records from the PLAN_TABLE and that will be

displayed through the MSFlexGridControl provided

in the model.

Figure 4: Outcome of Explanation of query

Figure 5 shows the estimated cost taking into account

all the factors described before. The coefficients for

the different variables are obtained from the result of

the query explanation (Figure 4 and Figure 5).

Figure 4 shows that there are four processes related

with the above SQL statement. The Processes are

identified by the Process_IDs as 0,1,2,3. The

corresponding Parent_IDs are NULL, 0, 1, 1. For

avoiding the syntactical malfunctioning the NULL

values have been converted to 0. If the above SQL

query is analysed, it will be observed that the

statement consists of SELECT statement (first

operation of the program). The records are to be

retrieved from two different tables. But the two tables

have been joined through an INNER JOIN. Joins are

stored as the HASH JOIN through Oracle. For this

reason, the second operation that is displayed is

“Hash Join”. The next two operations are “TABLE

ACCESS” related to two tables “EMP” and “DEPT”

which are displayed in the OBJECT_NAME

attribute. Thus there are four operations in total that

would have to be executed by the underlying

database application (Oracle in this case).

At the time of execution of the query the EMP table

contained 14 tuples (Cardinality 14) and the DEPT

table contained 4 tuples (Cardinality 4). For

execution of each process of the above SQL

statement, the corresponding Cardinality that is to be

traversed is displayed under the cardinality attribute.

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

209

They are 14, 14, 4 and 14 respectively. The last two

tuples show the exact cardinality of the two relations

(tables). Other attributes like Bytes, Cost and IO Cost

determine the respective resource consumption of the

given SQL statement.

Figure 5: Cost estimation of query

Here the total of all the constraints including the Cost

which is to be minimized is obtained and the linear

programming problem is formulated. Three

constraints viz. Byte Constraint (no. of bytes

retrieved), I/O Constraint (no. of I/O operations –

disk I/O) and Cardinality Constraint (no. of tuples

retrieved) have been considered. The formulated

Linear Programming Problem is as follows:

Minimize (Cost) Z = 3x1 + 3x2 + 1x3 + 1x4

Subject to the constraints:

Byte Constraint:

392x1 + 392x2 + 72x3 + 140x4 ≥ 996

I/O Constraint:

3x1 + 3x2 + 1x3 + 1x4 ≥ 8

Cardinality Constraint:

14x1 + 14x2 + 4x3 + 14x4 ≥ 46

x1, x2, x3, x4 ≥ 0.

Figure 6 represents the module of simplex where the

actual optimization is done involving the above

mentioned equations.

Figure 6: Screenshot of LPP solution

The initial cost function has a value 3042.00, whereas

post optimization the computed cost is 8.00. This

shows that there is further scope of optimising the

query.

Figure 7 shows the graphical representation of the

cost optimization process. It can be seen that the cost

has become optimized when it acquires a value 8.00.

The implication of this result is that the given query

has further scope of optimization.

Figure 7: Graph to represent cost optimisation

Table 1 below shows the behaviour of 4 different

queries. The total cost pre and post optimization has

been shown.

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

210

Table 1: Comparative results of different queries

Query

no.
Query

Pre-

optimized

Cost

Post-

optimized

Cost

1 select price from

book,publish where

book.id = publish.book_id;

558 48

2 select price from book

Minus select b1.price from

book b1,book b2 where

b1.price < b2.price;

206 14

3 select no_of_publicaions

from author a,book

b,publish p where a.id =

p.auth_id and b.id =

p.book_id and price > 200;

336 28

4 select price from book

b,publish p where b.id =

p.book_id and auth_id =

'A001';

210 19

5. Conclusion and Future Work

This tool is user friendly software which is specially

designed for providing an aid to the DBMS

programmer to ascertain the COST of an SQL query.

It will be a helpful tool to find out the Total Cost

which will be incurred at run time because of

utilization of System Resources. It is known that the

cost and profit are dual of each other. So, if cost can

be minimized (Optimized) then obviously, Profit can

also be maximized (Optimized). The tool can also be

used to find out whether a query is optimal or not.

Attempts can be further made to develop a design

pattern of those un-optimized SQL queries so that

they may attain the total cost that will be generated

through this model.

References

[1] Victor Muntes Mulero, Josep Aguilar Saborit,

Josep Lluis Larriba Pey y Calisto Zuzarte, “A

Study of Execution Plan Aware Mutations for

Genetic Cyclic Query Optimization”, XV

Jornadas De Paralelismo Almeria, September

2004.

[2] An Oracle white Paper, “The Oracle Optimizer,

Explain the Explain plan”, May 2011.

[3] Arun N. Swami, “Optimization of large join

queries: Combining heuristic and combinatorial

techniques”, In SIGMOD Conference, ACM

Press, pages 367-376, 1989.

[4] Abhijit Banubakode, G. S. Mate, “Query

Optimization and Execution Plan Generation in

the ObjectOriented Databases under Inheritance”,

International Journal of Advanced Research in

Computer Science and Software Engineering,

Volume 4, Issue 12, December 2014, pages 963-

969.

[5] Surajit Chaudhuri, “An overview of query

optimization in relational systems", PODS '98

Proceedings of the seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of

database systems, pages 34-43.

[6] Surajit Chaudhuri, Luis Gravano, Method for

cost-based optimization over multimedia

repositories, Patent no. US 5806061 A.

[7] Abraham Silberschatz, Henry F. Korth, S.

Sudarshan, “Database System Concepts”,

McGraw-Hill International Edition, 5th edition.

[8] Thomas Connolly and Carolyn Begg, “Database

Systems – A practical approach to

Design,Implementation and Management”,

McGraw-Hill International Edition, 5th edition.

[9] Arun K. Majumdar and Pritimoy Bhattacharyya,

“Database Management Systems”, Tata

McGraw-Hill Education Private Limited, New

Delhi, edition: 29th reprint, 2011.

[10] Hector Garcia-Molina, Jeffrey D. Ullman,

Jennifer Widom, “Database Systems: The

Complete Book”, Prentice Hall Upper Saddle

River, New Jersey 07458.

[11] “Oracle9i, Database Performance Tuning Guide

and Reference”, Release 2 (9.2), October 2002,

Part No. A96533-02.

[12] Jonathan Lewis, “The Expert’s Voice in Oracle –

Cost-Based Oracle Fundamentals”, Apress, 2006.

[13] J. A. Nelder, R. Mead, “A Simplex Method for

Function Minimization”, Oxford Journal –

Science & Mathematics, Computer Journal,

Volume 7, Issue 4, pages 308-313.

[14] George B. Dantzig, Alex Orden, Philip Wolfe,

“The Generalized Simplex Method for

minimizing a linear form under linear inequality

restraints”, Pacific Journal of Mathematics, Vol.

5, No. 2 October, 1955, pages 183-195.

https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Surajit+Chaudhuri%22
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Luis+Gravano%22

International Journal of Advanced Computer Research

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

Volume-5 Issue-19 June-2015

211

Debopam De is currently an under

graduate student of St. Xavier’s

College, Kolkata under the University

of Calcutta in the department of

Computer Science. His area of interest

is Database Management System.

Email: debopamde94@gmail.com

Deblina Banerjee is currently an under

graduate student of St. Xavier’s

College, Kolkata under the University

of Calcutta in the department of

Computer Science. Her area of interest

is Computer Programming.

Sneha Mukherjee is currently an

under graduate student of St. Xavier’s

College, Kolkata under the University

of Calcutta in the department of

Computer Science. Her area of interest

is Web Page Designing.

Jayati Ghosh Dastidar completed her

Master in Engineering (IT) from the

WBUT, Kolkata. She is currently an

Assistant Professor in the Department

of Computer Science, St. Xavier’s

College (Autonomous) under the

University of Calcutta, Kolkata, India.

