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Abstract

Keywords

In this paper, the perturbation of fuzzy connectives and the robustness of fuzzy reasoning are investigated. This
perturbation of Schweizer-Sklar parameterized t-norms and its residuated implication operators are given. We show that
full implication triple I algorithms based on Schweizer-sklar operators are robust for normalized Minkowski distance.
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1.Introduction

Since Zadeh [18] proposed the concept of fuzzy sets
in 1965, the fuzzy theory is widely used in
mathematics and many other application fields. As
for fuzzy reasoning, the most basic models are given
as follows (see [16, 22]):

Given the input “x is A" and fuzzy rule “if x is A
then y is B”, try to deduce a reasonable output “y is
B"”, fuzzy modus ponens (FMP);

Given the input “y isB"” and fuzzy rule “if x is A
then y is B”, try to deduce a reasonable output “ x is

A", fuzzy modus tollens (FMT).

Zadeh [19, 20, 21] introduce an influential approach
called compositional rule of inference (CRI method)
to deal with FMP and FMT. But CRI method lacks
solid logical basis and has some arbitrariness.

In 1999, Wang [12, 13] propose a triple | method for
fuzzy reasoning based on Rq-implication operator by
combining fuzzy logic and fuzzy reasoning,
establishing the triple I principles for the models
FMP and FMT.
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Wang and Fu [15] established full implication triple |
inference algorithms based on regular implications
and normal implications. Pei [10] discuss the full
implication inference for all residuated implication
introduced by left continuous t-norms to solve FMP
and FMT problem. In addition, Pei [11] conducted a
detailed research into the triple I algorithms based on
the monoidal t-norm basic logical system MTL
setting a sound logic foundation. Furthermore, Luo
and Yao [8] studied the full implication triple |
algorithms based on Schweizer-Sklar parameterized
family of t-norms and the continuity of this
algorithm.

In fuzzy control, practical fuzzy reason schemes are
likely to be perturbed by various types of noise.
Therefore, the robustness of fuzzy inference
algorithms is important. Cai [1] analyzed the
robustness based on measuring the errors of
consequents produced by the errors of premises in
fuzzy reasoning based on equalities. Dai et al. [2]
discuss the perturbation of some t-norms and
corresponding residuated implication operators, and
the robustness of the CRI solution for the FMP and
FMT model. Subsequently [3] investigate the degree
of equality of fuzzy sets and some important fuzzy
implications and the robustness of triple 1 methods
for fuzzy reasoning. Li et al. [9] studied the
robustness of fuzzy reasoning by a concept similar to
the modulus of continuity.

In this paper, the perturbation of Schweizer-Sklar
operators and the robustness of triple | algorithms
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based on Schweizer-Sklar operators are investigated
based on approximately equal under Minkowski
distance. First, we review the necessary definitions
and some lemmas relate to this paper. In section 3,
the perturbation of Schweizer-Sklar operators is
studied. In section 4, the robustness of triple I
algorithms based on Schweizer-Sklar operators is
discussed.

2.Preliminaries

In this section, the definitions of Schweizer-Sklar t-
norms, their residuated implication operators and the
solution of parameterized triple | algorithms are
reviewed; in addition, some necessary lemmas are
listed.

Definition 1 ([5, 7, 14]) The Schweizer-Sklar
parameterized family of t-norms is a function

T,:[0,1]° —[0,1], forall x,y<[0,]]andmeR,

1

(maX(O, Xm + ym _1))E ,Me (_OO’O) U (0,00),
Xy, m=0 (the product T,);
T,(xy)=ymin{x,y}, m=—co (the minimumTy);

i Y =1
{mm{xy} xay=1

0, otherwise

(drastic product T,).

Definition 2 ([5, 14]) The Schweizer-Sklar family of
residuated implication operators induced by
parameterized t-norms is also a function

I,:[0,1” —[0,1], forall x,ye[0,JandmeR,

min{l, @-x"+ ym)rlﬂ},m € (—0,0) U (0,0);

min{l,z},mzo;
X

{l,x§y
|m:_®1
Y, X>Yy

Y, X = 1, Mo

1Lx=1
Definition 3 ([6]) The normalized Minkowski
distance of fuzzy sets A and B is

d,(AB)=p %i‘,IA(xi)—B(yi)Ip :

where p is a parameter satisfying.

Im(Xl y):

Definition 4 ([2]) Let U ={x X, X} be a

universe, Aand B be two fuzzy sets defined onU ,
and £ €[0,1]. If

d (AB)=7 %i|A(xi)—B(xi)|" <,

then A and B are said to be &(p)-approximately
equal, denoted All  (¢)B. Also, B is called an

£(p) -perturbation of A.

We denote the residuated implication operators based
on the Schweizer-Sklar t-norm by —_ .

Lemma 1([8]) The —, type triple I solution B" for
FMP is given by the following formula:VyeY,
when m<oo,

SUP{((A(X) =y B+ (A (X)" —1)m}.

XeE,

me (—O0,0) v (0’00)1

B'(y) =
V) sup{((AC) =, B(Y)- A" (¥} m =0,
up{ A" (%) (A() 5 By, m ==
Where

{xe X|(AX) =, BY)"+ (A (9)"-1) >0},
m e (~o0,0) U (0,0);

E =
' {xe X|A"(x)>0and A(X) -, B(y)>0],
m =0, —o.

when m = oo
sup{A"(x)A (A) > B(y)}.

8'(y) =1 ={xe XA (x)v (AX) — B(y) =1};
0,
E, ={><e X|A () v (A() >, B(y))il}.

Lemma 2([8]) The — type triple I solution A" B
for FMT is given by the following formula: V x € X,
when m<oo,



iggx{(l— (A(X) =, BY)™ +(B"(¥)™ "},
m e (—0,0) U (0, );

A(X) = .
(X) in &}7 m= 0,
veECA(X) =, B(Y)

inf{B"(y)}, m=—;

where E, ={er|B*(y)< A(X) =, B(y),m<oo};

when m=oo,

A inf {B"()}.E, ={y €Y |A(Y) -, B(y) =1};
X) =<7
LE, ={yeY|A(X) >, B(y)=1}.

Lemma 3 ([4]) Let x,y>0and x # y, then

X (X=y)>x =y >ry"t (x=y)(r<0orr>1)
X (x—y)<x =y <ry(x—y) (0<r<1)
X (x—y)=x"—y" =ry""(x~y)
(r=0,r=1x=y)

Lemma 4 ([17]) Let | be a non-empty finite index
set, then

<vla b,

iel

<vla-hl,

iel

A&~ Ab

iel iel

VA — b

iel iel

Lemma5 Let X,y €[0,1],r >1, then

X =y <r|x-y]|

The proof is easy to carry out from Lemma 3.

Lemma 6 Let the function

f(x)=@" +x" _1)% , X e[c,b]=[0,1](c <b),
ae[0,1],m>1,m=0, then | f(b)— f(c)|<|b—c|.
Lemma 6 is obtained from a proof of progress of
Theorem 5 in paper [8].

Lemma 7 When m<1 andm =0, let two functions
g =(-a"+x")’"  andh(x)=(L—x" +a™)",
g(x),h(x) €[0,1], a<[0,1], xe[b,c]=[0,1], then
|g(b)—g(c)| <|b—c| and |h(b)—h(c)|<|b—c|.

The proof of Lemma 7 is similar to Lemma 6.
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Lemma 8 (Minkowski’s inquality) Let(a,,a,---a,),
(b,b,---b,) eR",and 1< p<oo. Then

Clac+b[" <l + (bl

3.Perturbation of Schweizer-Sklar

operators
Proposition 1 Supposed (A, A)<¢, d,(B,B)<g,

.A and A’ are two fuzzy sets defined on a finite
universe contain n elements ,B and B’ are two
fuzzy sets defined on anther finite universe contain k
elements, then we have

d,(T,(AB),T,(A,B)) <

&+¢&, Me(-x,0)u(0,0);

&+e, m=0;
ff(glp +&)), M=-w;
ff(glp +&)), m=oo,

Oor3or 4 element in{a,,a,, by b, fis1.

Proof: Suppose
A=(a,.a,,--a,), A =(8,,8,, ),
B= (bu'blz,--.blk), B = (b21!b22"”b2k)

C=T,(AB)={c;}i=12--n j=12:k.,
C'=T,(A.B)={c;},i=12:n,j=12-k

Form>1,

o, | =|(@r +b5; -/ - @z +bz -0

1, . . -
Sﬁkaﬁ +bj -1) - (a; +b;] —l)|(Lemma 5)

Sl( +
m

byj -b;

8 -~ )
< %qm(am _azi)| +|m(b1j —sz)|)(Lemma 5)

:|a1i _a2i|+|b1j _sz|-

For m<1 andm=0,
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ey i =|ta +b5 -0/ - a5 45, -1

@ +op -1 - @y +bg, -1y
(@] +b] -1)%n ~(a] +by —1)m

Db 17— (a] +b -1)"

+‘( oy _1)% (al +b7, ~1)n
S|blj _b2j|+|a1i -

a, |(Lemma 6).

Thus we obtain
d, (T, (A A),T,(B,BY))

1 n k ,
:\/WZZM -G '

i=1 j=1
1 n k b
Spﬁ;;(lall 2||+|b1j b21|)
1 & k b
S’J_ZZ(lan a2|| +
nk = =
1 n k
J ZZ(Ibl b2,| (Lemma 8)
i=1 j=1
Lég+eg,
For m=0,

d(T, (A A),T,(B,B")

J > -l

i=1 j=1
Zzall blj i ij
;;aﬂ.l b; — aii'sz"'aii‘sz_azi'sz‘p

= Zz(alllblj b2]|+b2]|a1| 2i|)p

i=1 j=1

= #WZZ(“}LJ _b2j|+|a1i _azil)p
i=1 j=1
<g te&,

For m=—0,

d, (T, (A B),T,(A,BY)

l n_k
ZZ|CIJ_ |J|

i=1 j=1

k
Z‘mln a;,b
=1 j=1

n k
;maxﬂaﬂ _a2i|’|b1j _b2j|}p

i=1 j=

1 p

min{aZi,sz}‘

< p|—
k

(Lemma 4)

ZZ(Iai.

i=1 j=1
< ff(gl” +&))

When if there is none element in
{a,,8,.,,;,b,;} is 1, the result of the perturbation is

Ay p +|b1j _sz|p)

m=oo,

0; if there is one element in {a,,a,;,by;,b,; }is 1, the
result of the perturbation is uncertain, we need to deal
with situation like [c; —cj|=ly;; if there two
elements in{ay,a,,by;,b,;}is 1, the result of the
perturbation is uncertain we need to deal with
situation like |c; —cj|=|a, —b,|; if there three
elements in {a,,a,,b;,b,

perturbation is f/(glp +¢5) ; if there four elements in
{aii,aﬁ,blj,sz}is 1,the result of the perturbation is
0.

;}is 1, the result of the

Remark 1 When m=1,
Lukasiewicz t-normis e, +¢, .

the perturbation of

Proposition 2 Suppose d,(AA)<g,

d,(B,B)<s,, A and A" are two fuzzy sets defined

on a finite universe contain n elements, B and B’
are two fuzzy sets defined on anther finite universe
contain k elements, then we have



d,(I,(AB),1,(A,B)

&+é&, Me(-0,0)u(0,x);
1

—(g +¢&,), m=0,

a(1 2)

a=min{a,;-a,},i=12--n

IN

&, M=-—om,

a; >ayandb; >b,; ora; <ayandb; <b,;

Proof: Suppose

A=(ay,a,,ay) A =(ay,8,, " 8y,),
B=(b,,b,, b)), B =(0,,b,,, by)
C:Tm(A,B)={Cij},i:LZ,---n,j:1,2,...k.’
:Tm(A’rB,):{Ci;—},i:1,2,'~'n,j:1'2’...k_

For m>1,

ey 65| =|(L-a 4" - @ b5

gi\(l—a;; +b[1) - (L-aj +b]})| (Lemma 5)

| 2 ]

< E(Im(au —ay)|+|m(b,; —b,)|)(Lemma 5)

:|a1i _a2i|+|b1j _b2j|'
For m<1 andm;tO’

|6, —cj H A—ay +b1)™ —(1-a] +b7}) " |
| (L-a +b)/" - 0-2f +b5)"
-a" +bm.)%n —(1-a] +b0) |
= (L-a; +b1
F(1-a) +b7)P —(-a b)) |

< blj _sz | +]a; —a, | (Lemma 7).
Thus we obtain

—(1-a b5

&, M=ow,A=1land A'=1or A=land A'#1.
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d, (I, (A A),1,(B,BY)

1 k
e 2ley el
i=1 j=1
< 1 n k . -7b - o
Pl— Z(lall 2I|+|blj ZJ|)
i=1 j=1
1 & k
< p— Z(lall
i=1 j=1

n

1 Kk
ol §(|b1J b2]| (Lemma 8)
j=1

i=1

<& té&,.
For m=0
k
dpcrm(A,B),Tm(A',B'»=Q/—ZZIc., cil”
i=1l j=1
1 & k i bl i bz_}p
=pl— min<{l,——min<1, =
(S 2o 2

Si/i n i(azi|b2]_b1j|+b2j|a1i_a2i|)p

nk = j=1 &y -8y

Si\/ 33" b, by +]a, -2,

ZZkI(\al —ay|" +

qubl, b21| (Lemma 8)

i=1 j=1
1
SE(81+52)

a=min{a, a,},i=12n

For m=—oo, if a;<b;a, <b2j, then
d,(c;,ci)=0; if a;, >b;,a; >b,;,  then
d, (1, (AA)1,(B,B)<¢,; ifa,<b;a,>b),or
a; >b;,a, <b,;, the result of
d, (1,,(A A),1,(B,B")is uncertain.

For m=oo , if a;=la, =1, then

d,(I,(AA)1,(B,BY)=0; if a,=La,=1, then
d, (I, (AA)I1,(B,B)<¢,; if a;#La,=1 or
a; =l a, =1, the result of d (I,,(A A),1,(B,B))is
uncertain.

Remark 2 When m=1, the perturbation of
Lukasiewicz implication is & +¢, .
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4.Robustness of full implication triple | - 1 & e
algorithms d,(B",B ):pﬂzzwm—dqi
In this section, we will study the robustness of triple | a=l il

algorithms based on Schweizer-Sklar parameterized 1
<=(&+&)+é
a

operators. =

Theorem 1 Supposed (A A)<g,d (B,B)<¢,,

d (A, A")<g,, B'and B"are the —_ -type triple | by Lemmal and Proposition 1.
solutions for FMP, then When m=—, o ,
4 (B'B")< let C=A—, B, C' =A >, B,

(C/\A*)z{dqi}aqzlvzl”'vnkyi =1,21’”1n,
(C'AA") ={d;}a=12,nk,i=12,--,n
Then we have d (C,C") <&, by Proposition 2, and

&+é&+&, Me(—»,0)u(0,),
(A—_B)"+(A)"-1>0,
(A= B)"+(A")"-1>0;

1 ) ] . . nk n

E(@+e;~2)+.gs,m=0(a=m|n{a1i ‘8, },i=12,n) d,(B",B’ )=§/%k22|dqi —dl;i|p
K4 ia

A >0and A>B,A” >0and A'>B Spi82p+83p

A(e) +&)), m=—o,

A >0and A>B,A" >0and A'> B’ by Lemmal and Proposition 1.

When m =00
(e +&f), m=oo,

. . lt C=A— BC'=A - B,
A" v(A—s B)=land A" v (A > B)=1 T m

CAA)={dy},q=12,,nk,i=12-n,

0, m=oo,
A"V (A—, B)zland A" v (A — B)=#1 C'AA)={ds},a=12,nk,i=12,,n
Proof: For m e (—o0,0) U (0,00), Then we have d, (C,C’) <¢, by Proposition 2, and
letC=A—>, B, C'=A—>_ B, d (B 8" 1 Jk i _d o
B,B")=p— —d
(Cm+(A*)m_l)%]:{dqi}vq:ll“'ankai:ll"'vn1 P( ) nquZ:;Z:l] ‘ q|
(C/m +(A'*)m _l)}r/n :{dc;i}'q :l,'*',nk,i =1---,n. < p¢52p +83p
Then we have d (C,C’) < ¢ +¢, by Proposition 2. by Lemmal and Proposition 1.
Moreover, we have
- ] Ea i Theorem 2 Supposed (A A)<g,d (B,B)<¢,,
d(B B )Sdﬂgghqi _dqi| d (B",B")<gand A'and A”are the — -type
<g4e te triple 1 solution for FMT, then
= Tey e P
by Lemmal . Proposition 1 and Lemma 4. dp(A A
When m=0, & +&,+&,Me (-0,0)U(0,);
letC=A—>_ B, C'=A"—>_B', 1 - _
(CDA*):{dqi},q=L2,---,nk,i:1,2,---,n, < B(gl+gz+.93),m=0,(b=m|n{blj,sz},J=1,2,~~k;)
(C,DA,*):{d(;i}’q:]-lzy”'lnkli:1,2,"‘,n. gs,m:—OO,

N1
Then we haved, (C,C") sg(gl +&,),
For B'<A—_ B and B" <A —_ B,

a=min{a, -ay},i =12,---n by Proposition 2, and
when m<oo,

6



&,
. .. |A> B=land A B'=1
d, (A, A") =

A—, B=zland A'— B'=1
Proof: For m e (—,0)w(0,),
letC=A—>_ B, C'=A"—>_ B,
(l—C”‘+(B*)m)ym ={dqi},q=l,---,nk,i=L---,n,
@-C™ +(B")"Yn ={dg g =L+ ,nk i =L,
Then we have d(C,C')<¢g +¢, by Proposition 2,
and

. . 1 nk n
d(A A )s§/W22|dqi ~dy

g=1 i=1

g +6,+é&

by Lemma 2 , Proposition 2 and Lemma 4.
When m=0,

letC=A—, B, C'=A">, B,

B’ B A-B’ .
—_—) =) === d , :1'-..,nk,|=1’...’n
(=g =5 1.0
B” B” A-B” , .
()= Grg) ™y ~lGbamtnki-y
Then we have d(A-B,A-B")<g+g by
Proposition 1, and

o 1 nk n ,
d(A.A )=\/722‘dqi‘dqi‘p

Nk =i

1
SB(gl +¢&,+6,),

b=min{by;.by;}, j=12-k;
by Lemma 2 and Proposition 2.

When m=-o0 and m=oo, we have

dp(A*,A'*)Sdp(B*,B'*)=$3 by Lemma 2 and
Lemma 4.

5.Conclusion

In this paper, the perturbation of Schweizer-Sklar
parameterized family of operators was investigated.
The robustness of triple | algorithms based on
Schweizer-Sklar operators were studied. We proved

7
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that triple I algorithms based on Schweizer-Sklar t-
norms have robustness forme (—o0,0), and

robustness with special conditions for m=-o0 and
m=oco. These conclusions will provide a reliable
theoretical basis for fuzzy reasoning.
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