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1.Introduction 
A technique, fairly similar to the Karhunen-Loève 

transform, is the Fukunaga-Koontz transform (FKT); 

this effective discrimination technique can be utilized 

where two-class classification issues crop up 

enabling retrieval of second-order relations of 

Gaussian distributed data [1, 2]. Implementation of 

this technique has led to diverse results such as 

identification and ensuing tracking of targets [3, 4], 

recognition of faces [2], and obtaining hyperspectral 

images [5].  

 

Perusal of existing work in the field over the past few 

decades reveals that kernel-based learning techniques 

have often been employed to extract statistics of non-

Gaussian data. For example, in the work of Liu et al. 

the kernel version of FKT (KFKT or kernel FKT) has 

been used to prove the presence of small targets in 

forward-looking infrared images [6]. 
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KFKT has also proved to be immensely helpful in the 

field of face detection and recognition [7], helping to 

resolve difficulties arising out of hyperspectral image 

classification issues [8, 9] as well as the 

dimensionality reduction of hyperspectral data [10].  

Another new technique has been put forward by 

Binol et al. that suggest employing differential 

evolution algorithm-based kernel parameter selection 

technique for radial basis function (RBF) kernel 

within KFKT [11]. What makes it different from the 

other one is the lack of kernel evaluation and the 

selection method for FKT. 

 

This paper highlights the multiple kernel learning 

(MKL) problems within KFKT which have its roots 

in the ensemble learning (EL) approach [12]. EL is 

an approach that works through an amalgam of 

several classifiers/experts. In a scenario where there 

is a base classifier accompanied by a set of kernels 

and each of these kernel-based classifiers are termed 

a sub-classifier, a correlation can be established 

between EL and MKL. In fact, as is evident from 

[13], it was proved that MKL is a characteristic EL. 

This research paper employs the fundamental 

premise of EL to resolve the inherent problem of 
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MKL within KFKT along with using the proposed 

algorithm for binary classification issues. According 

to this technique, a kernel with different parameters is 

chosen. These different kernel parameters in a 

training data lead to a prediction result of each KFKT 

which, in turn, are combined with various weighted 

and unweighted combination processes.  For the 

weighted processes, the weight assignment is based 

on the preciseness of classification of each classifier 

on training data. Four data sets from UPI were 

sourced to conduct the proposed experiments [14].  

  

2.Overview of kernel Fukunaga-Koontz 

transform 
The FKT [1] is a unique technique that selects 

features, in the sense that if one specific feature is 

selected through this technique, it provides 

information only about that class and gives minimal 

information about the other class. The inherent 

second-order data correlations in FKT do not provide 

optimum performance and this has led to many 

researchers in this field to employ kernel machines to 

enable use of FKT in its non-linear forms [6, 7].  To 

put it simply, with the help of a mapping scheme   

[15], the input data       is entered into high-

dimensional feature space, * ( )+    .  

 

In such a scenario, the dot products in  , that is, 

〈 (  )  (  )〉, can be assessed through kernel 

function, that is,  (     )  〈 (  )  (  )〉, which is 

a positive definite function. The aforementioned 

kernel-based learning is described in detail along 

with its basic theory in [16]. Summary of data sets 

are shown in Table 1. For this paper, two widely used 

kernel functions with one free parameter are 

employed. These functions are Gaussian radial basis 

function (RBF) and spherical kernel (Table 2). To 

clarify, vectors of two classes,    ,          - 
which is positive and ,           - that is negative, 

are centered. The mapped versions    
 

 and   
 

 can 

be considered the input data. In such a situation, the 

resultant covariance matrices, termed the kernel 

matrices, can be      
 
  
  

 and      
 
  
  

. The 

elements of these kernel matrices can be computed 

by using any of the kernel functions such as  (   )  

 (     ). The Eigen-decomposition of the sum of 

training kernel matrices can be put down as shown 

ahead 

           
  (1) 

Once the transform operator          is 

formulated, we can assume  
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 are transformed using  , that is, 
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). Now the 

altered  ̂  and  ̂  constitute the new covariance 

matrices: 
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The key point of KFKT can be deduced from (2) and 

(3) given earlier as  

 ̂   ̂   ̂   
 (     )    (4) 

 

It can be assumed that if    is the eigenvector of 

 ̂ that correlates to Eigen value   , then (    ) is 

likely to be the eigenvalue of  ̂  corresponding to the 

same eigenvector. Further, the quadratic correlation 

filter (QCF) is used to ascertain the class of test 

vector z [17]. The output of the optimal coefficient 

matrix for QCF for the test vector will be greater for 

      (positive class) and smaller for       

(negative class). It is observed that matrix elements 

of   are eigenvectors associated with the eigenvalues 

of  ̂  and organised in descending order as    
             .     denotes the first    

eigenvectors and belongs to the positive class and    

denoting the rest of the eigenvectors, represents the 

negative class. The equation ahead gives the output 

of the classification system 

        
      

    (5) 

 

Where    is   
  ̂ ,    is   

  ̂   and  ̂  is the 

transformed version of    with  . When the mapping 

function is avoided and computation is used on its 

own,    is centralized [18] by 

 ̃                       (6) 

 

Where    is the     matrix which has the same 

elements of    .  

 

The eigenvectors of  ̃ , *  +, that are related to the 

    give the largest eigenvalues                . 

The i-th feature vector    of the testing vector   is 

determined as 

          
 

√  
  
 , (    )  (    )      (    )-  (7) 

The feature vector   ,           - is modified, 

 ̂     , and projected onto the subspaces 

     
  ̂  and      

  ̂. (8) 

Eventually, the (5) can be redrafted as      
   
      

   . 
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3.Constructing a KFKT ensemble 
Ensemble learning (EL) is a statistical mode of 

learning that makes use of numerous learning 

algorithms. This combined method leads to better and 

enhanced performance. Many sub-classifiers with 

their own precise fusion rules are combined to lead to 

a better result [19]. Studies in this field reveal the 

presence of multiple strategies pertaining to feature, 

data, and classifier combinations [20]. 

 

At the classifier level, diverse classifiers (either the 

same or of different kinds) are directed at the same 

specific data. The predictions that are obtained are 

merged, thus leading to better classification 

outcomes. For this research to resolve the MKL 

issue, a similar combined strategy has been 

employed. Figure 1 depicts a general architecture of 

the proposed KFKT ensemble. 

 

Fusion techniques generally used for EL lead to 

combined results called decision level fusion. Each 

class is given winner labels before being confirmed. 

Further, the linear fusing methods are of two kinds, 

unweighted or majority, and weighted voting. The 

former is simpler as all voters have the same weight. 

The unweighted average of sub-KKFT’s results (as 

shown in (9)) is then taken to calculate the decision 

for the i-th sample (because of the two labels, +1 and 

-1 for positive and negative class).  

        {
        

 

 
 ∑         

    
   

           
 

 
∑         

    
   

   (9) 

 

In (9),   is the number of sub-classifiers and 

      (  ) is the final decision label for i-th sample. 

Even though the majority or unweighted method is 

the easiest technique to combine, it may not provide 

the perfect results. Unlike in weighted voting, where 

each voter has samples of different weights and the 

final decision is taken accordingly (10).  

       {
        

 

 
 ∑            

    
   

            
 

 
∑            

    
   

   (10) 

Where    is the weight for each classifier. A crucial 

issue inherent in the weighted combination technique 

is related to the calculation of the ideal weight of 

each base classifier [21]. In this technique, the weight 

is generally determined based on the proportion to 

the classification accuracies of base classifiers on 

training data [22]. The formulation employed to 

decide the weights in classifier fusion for the 

purposes of this study is given ahead  

   
 

 
∑ (      )
 
    (11) 

Here   refers to the number of samples in training 

data,     denotes the true labels (ground-truth), and 

   refers to a sub-classifier’s (or a sub-kernel’s) 

predictions. 

 
Figure 1 A general architecture of KFKT ensemble 

 

4.Experiments 
This segment of the study gives facts about the data 

used for the research, the norms used to assess the 

performance, and the results of the experiments 

performed. 

 

4.1Test data 

This section evaluates the functioning of ensemble 

KFKT algorithms used for binary classification 

problems. Four data sets available in the UCI 

repository were chosen arbitrarily to conduct the 

tasks, the results of which are shown in Table 1. 

 

4.2Performance evaluation 

The evaluation of classification performance is 

generally undertaken through classification accuracy 

and Kappa coefficient [23]. The classification 

accuracy of binary classification is formulated as 

    (     ) (   )⁄  (12) 

 
Where    denotes the true positives and    the true 

negatives about a classifier. 

 

Table 1 Summary of data sets 
Name # Classes # Instances # Attributes 

Ionosphere 2 351 33 

Wisconsin 
Breast Cancer 
(Original) 

2 683 9 

Sonar 2 208 59 

Skin 2 245057 3 
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Table 2 Employed kernel functions 

Name Formula 

RBF     (   )     ( ‖   ‖
    ⁄ ) 

Spheric

al           (   )      ⁄
‖   ‖

 

   (
‖   ‖

 
)

 

⁄  

 

In (12), the number of data samples in the set is 

considered the denominator. The Kappa coefficient, 

shown ahead, evaluates the accuracy of the system 

with the accuracy of a random system  

 

      
(              )

(            )
          (13) 

 

Here, random accuracy (          ) refers to the 

total of the products of reference likelihood and result 

likelihood for each specific class. Kappa, in this case, 

is 
,(     ) (     ) (     ) (     )-

,(   ) (   )-
              (14) 

Where    is the number of false negatives, and     

is the number of false positives. 

4.3Experimental results 

For each data set, RBF and spherical kernels (see 

Table 2) with 21 different bandwidths are utilized 

separately to construct sub-kernels. The bandwidths 

for RBF kernel are *                      
            +, and *                  + for 

spherical kernel. The central parameter    of both 

kernels for each training data is set 

 

   √∑ ‖    ̅‖   ⁄  (15) 

 

Where  ̅ is the centroid of the total   training data. 

 

The training samples for each trial are chosen 

arbitrarily with constant training sample percentages 

given. For instance, for skin data, 0.1% is the chosen 

sample for training, whereas for sonar, ionosphere, 

or Wisconsin breast cancer data (Original; WBCO), 

the percentage is set at 10%. The processes are 

repeated 10 times and their mean values (µ) and 

standard deviations (STD) of metrics are calculated. 

The best scores for each data set in Table 3 and Table 

4 are highlighted in boldface font. 

 

Table 3 Accuracy (Acc) (%) and Kappa statistic (𝜅) (%) for RBF kernel with different algorithms over 10 

independent runs.  

Data set Percentage 

of training 

samples 

 KFKT  E-KFKT 

  Majority voting  Weighted voting 

Acc 𝜅  Acc 𝜅  Acc 𝜅 

Ionosphere 10 µ 

std 

73.84 

6.15 

51.35 

9.90 

 80.88 

6.99 

61.98 

12.02 

 83.70 
4.99 

66.91 
8.85 

WBCO 10 µ 

std 

63.15 

18.22 

40.29 

27.14 

 58.18 

28.23 

33.00 

42.32 

 81.35 
21.92 

67.07 
34.63 

Sonar 10 µ 

std 

57.93 

1.34 

10.87 

2.86 

 57.93 

1.23 

10.64 

2.64 

 58.70 
1.12 

12.24 
2.54 

Skin 0.1 µ 

std 

78.20 

2.68 

24.59 

1.23 

 79.80 

0.69 

4.68 

5.56 

 98.86 
0.35 

96.61 
1.01 

 

Table 4 Accuracy (Acc) (%) and Kappa statistic (𝜅) (%) for spherical kernel with different algorithms over 10 

independent runs.  

Data set Percentage 

of training 

samples 

 KFKT  E-KFKT 

  Majority voting  Weighted voting 

Acc 𝜅  Acc 𝜅  Acc 𝜅 

Ionosphere 10 µ 

std 

48.77  

1.77 

15.56  

2.46 

 53.42  

3.78 

21.19  

5.03 

 57.21  
2.48 

26.16  
3.61 

WBCO 10 µ 

std 

67.82  

5.89 

45.74  

9.35 

 78.57  

11.50 

59.76  

17.33 

 84.57  
5.51 

69.51  
9.85 

Sonar 10 µ 

std 

56.88  

0.65 

8.04  

1.47 

 57.31  

0.93 

8.97  

2.11 

 57.64  
0.27 

9.73  
0.62 

Skin 0.1 µ 

std 

70.06  

3.05 

40.71  

6.00 

 69.85  

5.73 

40.30  

11.21 

 80.53 

 5.37 
61.31  
10.60 

Table 3 presents the results of all techniques used for 

RBF kernels. The bold fonts depict the winners, the 

majority or unweighted voting is shown to improve 

the performance in the skin and the ionosphere. 
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However, the performance goes down in the WBCO. 

As for the sonar set, there is no significant difference 

between majority voting based E-KFKT and single 

KFKT, as far as Kappa and accuracy are concerned.  

Overall, it proves that weighted voting E-KFKT leads 

to much better classification performance for all data 

sets chosen. 

 

Table 4 presents the results obtained through various 

methods for spherical kernels. Here, E-KFKT with 

majority voting is seen to get better performance 

results than single KFKT, except in the skin. All data 

sets have better classification accuracy with E-KFKT 

with weighted voting. 

 

5.Conclusion  
This paper presents an ensemble learning-based 

multiple kernel FKT in order to enhance the 

performance of a KFKT classifier. For this purpose, 

pre-defined kernel sets were developed by using two 

different kernels with different parameters. The linear 

combination of these KFKTs that resulted through 

the candidate kernels were obtained through 

unweighted and weighted voting methods of EL. The 

experiments conducted showed the impact of the 

suggested technique on MKL in KFKT.  

 

Further research will use selective EL to improve this 

strategy. The numbers and multiplicity of kernels 

could also form an important aspect of future 

research in the field. The work undertaken in this 

study to classify binary patterns could also be 

employed for multi-class tasks.  
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