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1.Introduction 
It is important to reach an optimal way of doing 

things in the real world because resources are 

normally limited. Optimisation is about reaching 

better results using resources available. Some 

examples of optimisation include, but not limited to 

electricity network operation, electricity generation, 

wireless communications routing and minimization 

of energy losses during electricity transmission. 

Proper validations of optimisation algorithms require 

assessment of computational time and convergence 

rate in addition to the accuracy to determine the 

minimum or maximum values [1-7]. 

 

Cuckoo search (CS) algorithms have proved to be 

more effective than other nature-inspired algorithms 

in solving complex problems [8, 9].  

 

The original CS algorithm step sizes are derived from 

the Levy probability distribution function. However, 

some researchers have managed to improve the 

performance of CS by using different probability 

distributions to determine step sizes. 

 

 
*Author for correspondence 

The first study (in 2012) was done by Zheng and 

Zhou [10] who used Gauss distribution instead of 

Levy distribution. When applied to find global 

minimum values of 6 mathematics test functions, the 

Gauss CS performed better than the Levy CS in all 

cases. Furthermore, the Gauss and Levy CS 

algorithms were used to solve engineering design 

optimisation problem. The results further confirmed 

that Gauss CS is better than the Levy CS in terms of 

the higher convergence rate and the average 

generation was reduced from 20.15 to 13.95 for 

Gauss CS. 

 

The rapid growing rate of documentation in the 

internet space poses some challenges, especially in 

the documentation retrieval process.  Zaw and Mon 

[11], solved this web document clustering by using a 

Gauss based CS algorithm. The algorithm was tested 

on 3 clusters and 300 documents. The results 

confirmed that the Gauss CS algorithm outperformed 

Levy CS algorithm. More specifically, the 

convergence rate of Gauss CS and Levy CS are 120 

and 160 iterations, respectively. The quality of 

clustering was determined by a combination of 

precision and recall, called the F - measure where 

high F-measure indicated high accuracy. The Gauss 
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CS algorithm and Levy CS algorithm produced F-

measure of 0.626 and 0.619, respectively.  

 

In 2014, Ho et al. [12] proposed CS by using 

Gaussian and Cauchy distributions and applied them 

to solve economic emission load dispatch problem 

with multiple fuel options. The new versions of CS 

algorithms resulted in fewer parameters, fewer 

equations and shorter computational processes when 

compared to Levy CS. In addition, the Gauss CS 

performed better than the Cauchy CS algorithm. The 

application of Gauss CS and Cauchy CS to short term 

hydrothermal scheduling with reservoir volume 

constraint was done by Nguyen et al. [13].  In this 

study, however, Levy CS produced the best results 

with lowest minimum compared to Gauss and 

Cauchy CS algorithms. Furthermore, the Gauss CS 

algorithm average time was 1.47% more than the 

Levy CS algorithm average time. While the Cauchy 

CS algorithm average time was 4.83% more than that 

of a Levy CS algorithm. 

 

Roy et al. [14] managed to improve CS by using a 

Gamma distribution instead of original Levy 

distribution. When tested on 6 mathematical test 

functions, the Gamma based CS proved to be more 

accurate and efficient than the Levy CS algorithm. 

The best performance was recorded for the Ackley 

test function for 1000 iterations where Levy and 

Gamma CS algorithms produced average minimum 

valves of 1.0923exp (-15)  and  2.22507exp (-308), 

respectively.  

 

There are many probability distribution functions and 

the studies presented in the previous paragraphs, only 

used few probability functions to test their impact on 

the performance of the cuckoo search algorithm. The 

aim of this paper is to develop a Pareto based CS 

optimisation algorithm and compare its performance 

to current versions of CS algorithms.  

 

The rest of this paper is organised as follows: section 

2 introduces the cuckoo breeding behaviour, levy 

distribution and CS algorithm. Section 3 discusses 

the methodology adopted in comparing the 

performance of the CS algorithms, the benchmarking 

measures used and the test functions used in the 

experiments. The experiments and discussions are 

presented in section 4.  Finally, section 5 concludes 

the paper and provides some of the further research 

suggestions regarding other probability distributions 

impact on CS performance. 

 

 

2.Cuckoo search algorithm  
2.1Cuckoo breeding behaviour 

Cuckoos are a family of birds with a unique 

reproductive strategy more aggressive compared to 

other bird species. Some of cuckoo bird species like 

Ani and Guira lay eggs in communal nests; however, 

they may remove others’ eggs to increase the 

hatching probability of their own eggs. Other species 

use brood parasitism method of laying their eggs in 

the nests of other birds or host nests [15].  

 

Their timing of laying the eggs is very precise; the 

parasitic cuckoos are good in sporting nests where 

eggs have just been laid. They lay one egg in the host 

nest, which will normally hatch quicker than the 

other eggs. When this happens the foreign cuckoo 

would remove the unhatched eggs from the nest by 

pushing the eggs out of the nest. This behaviour is 

aimed at reducing the probability of the legitimate 

eggs from hatching. Furthermore, the foreign cuckoo 

chick can gain access to more food by mimicking the 

call of the host chicks. There are times when the host 

cuckoo discovers that one of the eggs is foreign. In 

that case the cuckoo either gets rid of the egg or 

abandon the nest altogether and moves to build a new 

nest somewhere else [15]. 

 

2.2Levy distribution and Levy flights 

Levy distribution is defined mathematically by (1), 
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  ,            (1) 

 

Where 0< µ< s< ∞ and    is a scale parameter.  

 

From (1), we can obtain generalised Levy 

distribution, (2) by increasing s towards infinity.  
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                                         (2)  

 

Levy flights are random walks whose directions are 

random and their step lengths are derived from the 

Levy distribution.  These Levy flights are performed 

by animals and insects and they are characterised by 

series of straight flights followed by sudden     

turns. Compared to normal random walks, Levy 

flights are more efficient in exploring large-scale 

search areas. That is mainly due to Levy flights 

variances increases much faster than that of the 

normal random walk. 
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Levy flights can reduce the number of optimisation 

algorithms iterations by about 4 orders compared to 

normal random walk [9]. 

 

2.3Cuckoo search algorithm 

CS algorithm is a nature-inspired algorithm 

developed by Yang and Deb in 2009 [9] based on the 

reproduction on cuckoos birds. While working with 

CS algorithms, it is important to associate potential 

solutions with cuckoo eggs. Cuckoos normally lay 

their fertilized eggs in other cuckoos’ nests with the 

hope of their offspring being raised by proxy parents. 

There are times when the cuckoos discover that the 

eggs in their nests do not belong to them, in those 

cases the foreign eggs are either thrown out of the 

nests or the whole nests are abandoned. The CS 

optimisation algorithm is basically based on the 

following three rules: 

 Each cuckoo selects a nest randomly and lays one 

egg in it. 

 The best nests with high quality of eggs will be 

carried over to the next generation. 

 For a fixed number of nests, a host cuckoo can 

discover a foreign egg with a probability    є [0, 

1]. In this case, the host cuckoo can either throw 

the egg away or abandon the nest and build a new 

one somewhere else.  

 

The last assumption can be approximated by 

replacing a fraction    of the n host nests with new 

nests (with new random solutions). The quality or 

fitness of a solution can simply be proportional to the 

value of the objective function. From the 

implementation point of view, the representation that 

is followed is that each egg in a nest represents a 

solution, and each cuckoo can lay only one egg (thus 

representing one solution). We can safely make no 

deference between an egg, a nest or a cuckoo. The 

aim is to use the new and potentially better solution 

(cuckoo egg) to replace a bad solution in the nest.  

 

CS algorithm is very effective for global optimisation 

problems since it maintains a balance between local 

random walk and the global random walk. The 

switching between local and global random walks is 

controlled by a switching parameter     є      .  The 

local random walk is determined by (3). 

 

  
        

       (     )  (   
      

 )       (3)      

                                                         

Where; 

  
     is next random walk position and   

  is current 

position;                                                                            

  
           

   are different solutions selected by 

random permutation; 

  is positive step size scaling factor, relates to the 

scales of the problem to be solved; 

 s is the step size; 

  is the entry-wise product of two vectors; 

 H is a heavy-side function; 

   is random number from uniform distribution. 

 

The global random walk is determined using Levy 

distribution by (4).  
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Where; 

The     is the step size scaling factor, which is 

related to scales of the problem being solved. 
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 (   ) ,    (s > 0)              (5)            

                                                                                                                                                      

 ( ) is known as a gamma function and defined  in 

(6)  [16]. 

 

 ( )  ∫        

  
                                                (6) 

 

The integral in (6) converges for   ≥ 1  

The gamma function can also be expressed in terms 

on factorial as    (  )= ( -1)!. 

 

The basic steps of the CS algorithm based on three 

rules can be summarized as pseudo code shown in 

Figure 1. 

 

Objective function  (  )      (              )  

Generate initial population of n host nests    (i = 1,2..n)  

While (t < Max Generation) or (stop criteria) 

    Get a cuckoo (say i ) randomly by Pareto distribution;  

Evaluate its quality/fitness   ; 

Choose a nest among n (say j) randomly; 

Evaluate its quality/fitness   ; 

    If (          ) 

      Replace j by the new solution; 

   End 

    A fraction (   ) of worse nests are abandoned and 

    new ones are built at new locations via Levy flights; 

    Keep the best solutions (or nests with quality solutions); 

    Rank the solutions and find the current best; 

End while  

Post processing 

 

Figure 1 Levy based CS pseudo code for a global     

optimisation  
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3.Proposed Pareto based cuckoo search 

algorithm 

We are proposing the use of Pareto distribution 

function in determining the global random walk for 

CS algorithm. 

 

Pareto distribution is a skewed heavy tailed 

distribution named after Vilfredo Pareto. It was 

originally used to model the distribution of income in 

a society [17]. Pareto probability function is defined 

in (7). 

 

 ( )    
 

      ,          )                                  (7) 

 

Where    is called shape parameter and 1      . 
This function is increasing and continuous on [1,  ], 

and it evaluates to   ( )    and  ( )    as 

    . 
 

When       , then Pareto distribution function is 

known as standard Pareto distribution.  

 

Pareto cumulative distribution function is defined in 

(8). 

 

 ( )  
 

      ,          )                                      (8) 

 

The step size of Pareto random walk is represented as 

a Pareto quantile function defined in (9). This 

quantile function is an inverse function of cumulative 

distribution function [18]. 
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For Pareto distribution, we determine the global 

random walk as;  
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Where     is the step size multiplier and;  
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Where         and        are normally distributed 

stochastic random numbers in the range [0, 1]. 

 

The Pareto based Cuckoo search algorithm pseudo 

code is shown in Figure 2. 

 

 

 

  
Objective  function  (  )      (              )  

Generate initial population of n host nests    (i = 1,2..n)  

While (t < Max Generation) or (stop criteria) 

    Get a cuckoo (say i ) randomly by Pareto distribution;  

Evaluate its quality/fitness    ; 

Choose a nest among n (say j) randomly; 

Evaluate its quality/fitness    ; 

    If (          ) 

      Replace j by the new solution; 

   End 

    A fraction  (   ) of worse nests are abandoned and 

    new ones are built at new locations via Levy flights; 

    Keep the best solutions (or nests with quality 

solutions); 

    Rank the solutions and find the current best; 

End while  

Post processing 

Figure 2 Pareto based CS pseudo code for a global 

optimisation  

 

4.Methodology  
4.1Fair comparison 

Fair comparison of optimisation algorithms required 

a lot of thought before one can conclude which 

algorithm is better than the other. The main challenge 

is that during the optimisation process, algorithms do 

not start at the same point. The second challenge is 

that the algorithms follow different paths due to the 

nature of stochastic randomness. These problems are 

addressed by ensuring firstly that the algorithms are 

tested on the same test functions or problems. Then 

the critical solution to run simulations for a defined 

number of times and then determine some statistical 

variables like maximum, mean, minimum and 

standard deviation values for each algorithm. The 

statistical results provide a fair indication based on 

the test problems only as to which algorithms 

performed better. On the other hand, then if 

algorithm A performs better than algorithm B on one 

test function, it does not mean that algorithm A can 

perform better than algorithm B for all test functions 

or problems[19].  No-free-lunch theorem states that 

there is no algorithm that can outperform all other 

algorithms for all the problems [20]. 

 

4.2Benchmarking and measure 

There is no optimiser that can be classified as best for 

all problems. That means the optimizer can only be 

claimed to be best for the test functions it has been 

tested and it would be incorrect to generalise best on 

few test functions used. Benchmarking is a process of 
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 determining an algorithm’s capability to optimise a 

group of problems using systematic tests. Normally, a 

set of test problems is available and there is no need 

to recompile these test functions [19]. 

 

4.3Characteristics of test functions 

Ten benchmark test functions are introduced in this 

section. Some of these functions are unimodal, have 

only one optimum position and other functions are 

multimodal, have more than one local optimum 

position. 

 

Ackley function is a multimodal continuous test 

function mostly used in testing minimisation 

optimisation algorithms. It has large number of local 

minima and only one global minimum[21]. It is 

defines by (12). 

 

 ( )            (
 

 
)  (

 

 
)∑   

  
        

     (
 

 
)∑     (   

      )] + 20 +                       (12)     

 

 Where,  n = 1,2.,   -32.768           32.768  and i = 

1,2,..,n.  

 

   This has a global minimum    = 0 at    = (0,0,.0).  

 

Griewank function is a multimodal function with 

many widely and regularly spread local minima. Its 

number of minima grows exponentially when the 

number of dimensions increases [21]. It is defined by 

(13). 

 

 ( )  (
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    ∏    ( 

  

√ 
 )    

         (13)                     

       

 Where, -600           600 and the global minimum 

   = 0 at    = (0,0,..0). 

 

Bohachevsky function [9]  is a multimodal 

minimisation test function defined in (14). 

 

   ( )     
     

        (     )  
      (     )                                                 (14) 

 

Where, -100           100 and the global minimum 

         = 0 at    = (0,0). 

 

De Jong function is a unimodal, convex, simple and 

widely used test function with no local but one global 

minimum [22]. 

 

 ( )   ∑   
  

                                                      (15)                                                                               

 

 Where, -5.12           5.12 and the global minimum 

   = 0 at    = (0,0,..0). 

Matyas function [9] is a unimodal defined as;  

 

 ( )      (  
    

 )                             (16)                                                                                    

 

Where, -10           10 and the global minimum is 

located at   = (0,0) with    =0. 

 

Zakharov function is a unimodal test function with 

only one global minimum but no local minima [9]. 

 

 ( )  ∑   
  

    (   ∑    
 
 )  (   ∑    

 
 )   (17)                                                     

 

  Where, -5          10 and the global minimum is     
= 0 at    = (0, 0,..0). 

 

Goldstein-Prices function is a slightly multi-modal 

continuous test function with no local minima but 

one global minimum [9]. 

 

 ( )     (            ) (             
  

                  
 )       (         )

 (   
          

                        
 )      (18)                                                                                                            

                    
Where,   -2           2 and the global minimum        

   = 3 at    = (0,-1). 

 

Rosenbrock function is a unimodal test function 

with one global minimum in a narrow parabolic 

valley and no local minima. However, it is difficult to 

find the global minima since the valley is very non-

linear. Optimisation algorithms can converge slowly 

because they constantly have to change directions 

[23]. 

 

 ( )   ∑   (     )     (        
 )     

       (19)                                                      

 

Where, i = 1,2...,n  and  -5          5 and has  global 

minimum    = 0 at    = (1,1,...1). 

 

Easom function is a unimodal test function with 

several local minima and a global minimum found in 

a very small area relative to the entire search area. 

[9]. 

 

 ( )      ( )    ( )     (    )  (  
       )                                                                    (20) 

 

Where, n = 1,2., and  -100    x,y    100 and  has a 

global minimum    = -1 at    = ( , ). 

 

Michalewicz function [24] is a highly multimodal 

test function with n! local minima .  
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         (
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Where, m = 10 (default), and 0            for i= 1, 

2….n. and has a global minimum     = -9.66. 

 

4.4Simulation settings 

Figure 3 depicts methodology flowchart. Five CS 

algorithms (Levy, Cauchy, Gauss, Gamma and 

Pareto) were developed in MATLAB version 

7.10.0.499 (R201a). The number of Cuckoo nests 

(population size n) was fixed at n =25. The 

probability of discovering an egg (   ) was fixed at 

0.25.  Each test function was run 20 times and 

statistical variables (maximum, minimum, mean and 

standard deviation) were determines in order to 

overcome the issue of random walk nature of CS 

algorithms. The average computational time for each 

CS version was also recorded. 

 
Start

Initialise population on n host Cuckoo nests  

Using Pareto distribution, randomly select  a cuckoo nest say i    

Using Pareto distribution, randomly select  a cuckoo nest say j    

Evaluate its Fitness Fi    

Evaluate its Fitness Fj  

Fi > Fj

Replace j by a new nest i

Abandon a (Pa) fraction of worse nests             

Keep best nests

Stop ?

Keep best nests

      

Yes

Objective Function f(x) definition

 
Figure 3 Proposed methodology flowchart  

 

 

The test environment was FUJITSU laptop with the 

following specifications; RAM: 3.0GB, CPU: Intel 

Celeron 900@2.2Ghz and 32bit windows 7 home 

Basic operating system. 

 

5.Results and discussions 

This section presents and discusses the results on the 

four CS versions; namely the Levy, Gauss, Cauchy, 

Gamma and Pareto based CS algorithms. 

 

From Table 1, Pareto outperformed other CS 

algorithms in three out of ten test functions, namely; 

Matyas, Zakharov and Rosenbrock. The next 

algorithm is Cauchy which outperformed all the 

algorithms in two test functions (namely; Griewank 

and De Jong). Levy-based CS outperformed all other 

algorithms in one test function, Michalewicz. For 

Ackley test functions, the Levy, Cauchy and Pareto 

performed equally well followed by Gauss and then 

Gamma. All the five algorithms performed the same 

for Bohachevsky, Goldstein-Prices and Easom test 

functions. 

 

From Figure 4, the order of the CS algorithms 

convergences is as follows; The Pareto-based CS 

algorithm is approaching the global minima value of 

zero faster than the other CS algorithms. Then the 

Levy based CS algorithm follows, the third algorithm 

is Cauchy-based CS. The fourth position is Gauss and 

the last is Gamma based CS. The information 

obtained from Figure 5 shows that Pareto based CS is 

the fastest algorithm to converge towards the value of 

zero. The convergence rate of other versions on CS 

are as follows; Levy, Gauss, Cauchy and Gamma. 

 

Pareto based CS took about 10 iterations to converge 

to zero while Levy based CS took as per Figure 6. 

The Cauchy, Gauss and Gamma took 38, 42 and 45 

iterations, respectively. 

 

The Pareto based CS converged to zero after 52 

iterations in Figure 7. The other algorithms had not 

reached the correct value of zero after 100 iterations. 

However, their convergence order was Cauchy lead, 

followed by Levy and Gamma, with Gauss is the last 

or slow to converge. 

 

In Figure 8 the order of convergence rate starting 

from fastest to slowest is as follows; Cauchy, Pareto, 

Gamma, Levy and Gauss. All functions converged to 

the correct value of zero in less than 50 iterations.  
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The plots of Figure 9 shown that Pareto based CS 

outperformed other CS algorithm (Gauss, Levy, 

Cauchy and Gamma) by converging quickly to the 

true value of zero. Pareto based CS converged very 

quick after 10 iterations to correct value of zero. The 

other algorithms (Levy, Gamma, Gauss and Cauchy) 

had not reached correct value after 100 iterations due 

to their slowly convergence from Figure 11. 

 

 

 

Table 1 Global minima values 

Function Parameters Levy Cauchy Gauss Gamma Pareto 

Ackley 

 

Max 

Min 

Mean 

Sd 

Duration 

4.45E-15 

4.45E-15 

4.45E-15 

0 

1.51E-3s 

4.44E-15 

4.44E-15 

4.44E-15 

0 

1.21E-03s 

7.99E-15 

4.44E-15 

4.97E-15 

1.302E-15 

1.22E-03s 

7.99E-15 

4.44E-15 

4.97E-15 

1.302E-15 

4.42E-03s 

4.45E-15 

4.45E-15 

4.45E-15 

0 

1.27E-3s 

Griewank  

 

 

Max 

Min 

Mean 

Sd 

Duration 

5.929E-14 

0 

3.103E-15 

1.323E-14 

1.48E-3s 

0 

0 

0 

0 

1.11E-03s 

5.918E-14 

0 

4.741E-15 

1.483E-14 

1.04E-03s 

4.030E-11 

0 

2.365E-15 

9.039E-15 

2.04E-03s 

4.241E-14 

0 

2.132E-15 

9.481E-15 

1.09E-3s 

Bohachevsky 

 

 

Max 

Min 

Mean 

Sd 

Duration 

0 

0 

0 

0 

1.22E-3s 

0 

0 

0 

0 

7.88E-04s 

0 

0 

0 

0 

8.47E-04s 

0 

0 

0 

0 

1.68E-03s 

0 

0 

0 

0 

7.94E-4s 

De Jong 

 

 

Max 

Min 

Mean 

Sd 

Duration 

4.33E-35 

4.19E-37 

1.17E-35 

1.301E-35 

1.19E-3s 

1.27E-36 

3.40E-39 

1.43E-37 

3.15338E-37 

8.43E-04s 

4.38E-33 

6.47E-35 

5.68E-34 

9.723E-34 

9.54E-04s 

4.87E-33 

2.12E-35 

9.39E-34 

1.131E-33 

1.72E-03s 

3.12E-36 

6.05E-38 

9.49E-37 

8.755E-37 

7.77E-4s 

Matyas 

 

 

Max 

Min 

Mean 

Sd 

Duration 

4.05E-66 

4.18E-79 

2.81E-67 

9.5382-67 

1.20E-3s 

6.04E-73 

7.26E-86 

3.04E-74 

1.34997E-73 

7.66E-04s 

9.35E-68 

3.09E-81 

4.74E-69 

2.089E-68 

7.87E-04s 

6.89E-96 

7.35E-79 

5.93E-70 

1.672E-69 

1.67E-03s 

3.14E-74 

3.03E-83 

2.62E-75 

8.05E-75 

7.90E-4s  

Zakharov 

 

 

Max 

Min 

Mean 

Sd 

Duration 

1.96E-20 

3.35E-22 

4.98E-21 

4.829E-21 

1.20E-3s 

4.77E-21 

1.88E-23 

7.12E-22 

1.20198E-21 

7.81E-4s 

5.08E-20 

1.46E-21 

1.46E-20 

1.138E-20 

7.96E-04s 

1.23E-19 

2.15E-21 

4.26E-20 

3.209E-20 

1.67E-03s 

1.08E-21 

4.26E-23 

4.13E-22 

3.213E-22 

8.63E-4s 

Goldstein-

Prices 

 

 

Max 

Min 

Mean 

Sd 

Duration 

3 

3 

3 

0 

1.23E-3s 

3 

3 

3 

0 

7.86E-04s 

3 

3 

3 

0 

7.91E-04s 

3 

3 

3 

0 

1.68E-03s 

3 

3 

3 

0 

7.54E-4s 

Rosenbrock  

 

 

 

Max 

Min 

Mean 

Sd 

Duration 

4.35E-4 

2.46E-9 

2.66E-5 

9.7262E-5 

1.23E-3s 

2.59E-04 

2.61E-08 

3.13E-05 

7.54288E-05 

7.82E-04s 

1.48E-04 

1.90E-08 

1.26E-05 

3.401E-05 

7.69E-04s 

3.25E-04 

1.53E-09 

4.51E-05 

8.858E-05 

1.64E-03s 

6.08E-5 

8.39E-9 

4.55E-6 

1.3873E-5 

7.77E-4s 

Easom 

 

 

Max 

Min 

Mean 

Sd 

Duration 

-1 

-1 

-1 

0 

1.48E-3s 

-1 

-1 

-1 

0 

8.05E-04s 

-1 

-1 

-1 

0 

8.00E-04s 

-1 

-1 

-1 

0 

1.83E-03s 

-1 

-1 

-1 

0 

8.01E-4s  

Michalewicz 

 

 

Max 

Min 

Mean 

Sd 

Duration 

-7.56 

-9.08 

-8.39 

0.402096 

1.62E-3s 

-7.25 

-9.26 

-7.89 

-0.444263 

1.21E-03s 

-7.45 

-8.81 

-7.99 

0.349764 

1.42E-03s 

-7.21 

-8.51 

-7.95 

-0.374807 

2.06E-03s 

-7.2 

-8.52 

-7.93 

0.360561 

1.70E-3s 
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From Figure12, the Cauchy based CS algorithm is 

the first to converge to the correct value of -1. The 

second algorithm to converge to correct value is 

Gauss based CS, and then Gamma based CS and then 

the Pareto. Finally the last algorithm to converge to 

correct value is Levy based CS.  

 

From the Figure 13, all other CS based algorithms 

except the Pareto are converging to values below the 

-9.66 which is incorrect since the global minimal 

value of Michalewicz is -9.66. In this case, the 

Pareto-based CS algorithm is considered the best, 

since it is still converging and it has not passed the -

9.66 value. 

 

The general observation is that Pareto outperformed 

other CS algorithms in 6 test functions as per Figure  

4, 5, 6, 7, 9 and 11, out of 10 test functions in 

converging closest to the global minimum value. The 

second best performing algorithm is Cauchy CS 

outperformed in three test functions as per Figure  8, 

10 and 12. 

Figure 4  Average CS convergences on Ackley function 

 
Figure 5 Average CS convergences on Griewank function 

 

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

Iteration

Fu
nc

tio
n 

va
lu

e

 

 

Levy

Cauchy

Gauss

Gamma

Pareto

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

Fu
nc

tio
n 

va
lu

e

 

 

Levy

Cauchy

Gauss

Gamma

Pareto



Mahlaku Mareli et al. 

172 

 

 
Figure 6 Average CS convergences on Bohachevsky function 

 

 
Figure 7 Average CS convergences on De Jong function 

 

 
Figure 8 Average CS convergences on Matyas function 
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Figure 9  Average CS convergences on Zakharov function 

 
Figure 10 Average CS convergences on Goldstein-Price function 

 

 
   Figure 11  Average CS convergences on Rosenbrock function 
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Figure 12 Average CS convergences on Easom function 

 

 
Figure 13 Average CS convergences on Michalewicz function 

 

6.Conclusions and future work 
This paper implemented a new CS algorithm whose 

step size is derived from Pareto distribution. Its 

performance was validated using standard test 

functions and compared to CS algorithms with step 

sizes determined from other probability distributions. 

In terms of accuracy,  

 

The general observation is that Pareto outperformed 

other CS algorithms in 6 test functions as per Figure 

4, 5, 6, 7, 9 and 11, out of 10 test functions in 

converging closest to the global minimum value. The 

second best performing algorithm is Cauchy CS 

outperformed in three test functions as per Figure 8, 

10 and 12. 

One of future works where the Pareto based cuckoo 

search algorithm can be used is to train neural 

networks for electricity load forecasting. 
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