
International Journal of Advanced Computer Research, Vol 11(56)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2021.1152031

103

Classifying bug reports to bugs and other requests: an approach using topic

modelling and fuzzy set theory

Mohammed D. Ali1* and Ahmed A. Abusnaina2
Master Program in Software Engineering, Birzeit University, Ramallah, Palestine1

Faculty of Engineering and Technology, Department of Computer Science, Birzeit University, Ramallah, Palestine 2

Received: 10-July-2021; Revised: 16-September-2021; Accepted: 20-September-2021

©2021 Mohammed D. Ali and Ahmed A. Abusnaina. This is an open access article distributed under the Creative Commons

Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

1.Introduction
1.1Overview

Bug Tracking Systems like Bugzilla, Gnats and Jira [1,

2] are a type of systems that are used to support the

maintenance activities during the lifecycle of software

systems [3]. They are a communication mean between

users and developers to report and fix issues [4]. In

particular, these systems commonly manage the

following two types of reported requests: corrective

requests (bugs), and perfective requests (non-bugs)

such as new feature request, improvement request,

documentation, and so on [3–7]. Software bugs are

unavoidable. Therefore, more and more bug reports

are continually submitted to bug tracking systems.

Specifically, statistical information in [8] states that

more than 30 maintenance requests are reported daily.

*Author for correspondence

Hence, bug tracking systems are considered a rich

source of historical information that could be crucial

to support several software engineering tasks such as

bug priority assignment, bug severity identification,

developer recommendation for bug resolution [9], bug

localization [10], defect prediction, duplicate bug

report identification [7], and bug categorization [4].

The perfect support for these software engineering

tasks reduces the costs of maintenance activities [6];

decreases developer time and effort; and generally,

achieves better overall reliability [2, 11]. Thus, to

perfectly enrich such these tasks, bug tracking systems

need to be enhanced with an automatic classification

feature to correctly and accurately classify reported

issues to bugs and other requests.

1.2Research Motivation

Misclassification of the reported bug reports is a

common problem that threatens the quality of software

engineering tasks and activities that are carried out

during software system life cycle. Simply, it happens

because bug tracking systems lack the feature of

automatic classification of bug reports. Instead, the

Abstract
Stakeholders of a software system usually deliver bug reports to a software bug tracking system to report problems they

encounter during the use of that system. After that, those incoming requests are assigned to the proper technicians to be

analysed and fixed. However, issue reporters frequently misclassify bug requests as non-bug and vice versa. This problem

is called bug report misclassification. In fact, it is very costly in terms of time and effort as developers have to manually

reclassify those requests to then be able to take the appropriate action. Accordingly, the automatic classification of incomi ng
new reports would be of a valuable demanded feature in bug tracking systems. Careful analysis for literature related to this

problem was carried out. It has been found that a hybrid approach combining between topic modelling as a feature

extraction technique and the fuzzy logic as a classification technique is promising but rarely utilized approach. In this work,

a combined approach of topic modelling and fuzzy logic was introduced to classify bug reports to bugs and non-bugs. The

proposed approach was validated using three open-source projects. Finally, the conducted experiments have shown that
proposed classifier achieves significant and competitive predictive accuracy.

Keywords
Software maintenance, Bug reports, Fuzzy sets, Topic modelling, Classification, Bug tracking systems.

Research Article

Mohammed D. Ali and Ahmed A. Abusnaina

104

process itself is accomplished manually.

Consequently, its quality completely depends on

human understanding [3, 9], and the number of issue

reports submitted during a specific time window. On

the other hand, manual classification of issue reports

is a time-consuming and error-prone process [5, 6, 8].

According to [12], researchers manually examined

more than 7000 issue reports during 90 days and they

found that 30.8% of inspected reports were really

misclassified. As well as, bug reports may be

originally submitted to bug tracking systems with

missing labels which also leads to the same problem

[5]. As a result, high maintenance costs are incurred

[13], uncertainty is increased, and project planning is

negatively affected [4]. As well, the costs of manual

categorization of bug reports increase dramatically

according to the size and complexity of the software

system being supported [8].

Accordingly, this work will address the following

research problem: Given a new bug report and

historical bug reports, predict the type of the new bug

report with respect to either Bugs or Other Requests.

1.3Research questions

In order to resolve the research problem mentioned

above, the following two research questions are going

to be answered by this study:

 RQ1: In terms of performance metrics, how

effective is the proposed approach to classify bug

reports as compared with baseline approaches?

 RQ2: How much performance could be achieved by

tuning the number of topics hyperparameter that

model a bug report?

1.4Main contributions

In this paper, a new approach is proposed to classify

Jira bug reports into bugs and non-bugs, and to

validate the type of already submitted report.

Exclusively, this approach was built using a hybrid

method that combined topic modelling as a natural

language processing technique with fuzzy logic as a

classification mechanism. Considering the conducted

experiments, it is concluded that the highest F-

measure ranges between 78-84% which is considered

a significant improvement to the baseline works.

Moreover, this paper concludes that topic modelling

using a number of topics equals 20 topics is the

optimal hyperparameter setting that could be used to

model Jira bug reports.

2.Literature review
This section sheds lights on the most related works.

Then, it analyses related works by focusing on two

factors; the technique used to extract useful features

from textual data of bug reports, and the main

classifier technique used to classify bug reports to

either bugs or other requests.

In Pingclasai et al. [3]. proposed a two-phase approach

to automatically classify bug reports to either bugs or

other requests. First, topic modelling was used to

convert textual data into numeric membership vectors.

Then, ADTree, Naive Bayes classifier, and Logistic

Regression were utilized to classify reported bug

reports. As a result, F-measure metric score was

ranging between 0.66-0.76, 0.65-0.77, and 0.71 0.82

for HTTPClient, Jackrabbit, and Lucene datasets

respectively.

In Chawla and Singh [5] proposed an automatic

classification of bug reports using a fuzzy logic-based

approach. In particular, the proposed approach used

the concept of membership in fuzzy logic. First, they

extracted the terms form bug reports for the both

categories. Then, the membership value for a term in

a specific category was calculated by dividing term

frequency in that category with the term frequency of

both categories. After that, a bug report was classified

to the category that gets the higher overall membership

value from summing the membership values of all

terms contained in that bug report. The results showed

that the fuzzy logic-based approach achieved better

results than the machine learning based approach.

In Zhou et al. [6] proposed a three-phase approach for

automatic bug report classification. The first phase

used Multinomial Naive Bayes Classifier that

analysed the textual fields of bug reports to extract

three features defining three levels of possibilities:

high, middle, and low. The second phase used Data

grafting technique to link between structured and

unstructured features. The third phase applied

Bayesian Net Classifier as a machine learning

technique to finally achieve competitive results.

In Terdchanakul et al. [9], conducted a study aiming at

comparing performance of N-gram IDF based

classification models with topic-based models. First,

they applied N-gram IDF to create features vector,

then it was pre-processed using correlation-based

methods for feature selection purposes. After that,

Logistic Regression and Random Forest models were

trained. The results showed that proposed approach

had a higher performance than the topic-based models.

In Qin and Sun [10] built a model for bug classification

using Long Short-Term Memory (LSTM). The

followed approach included three general steps; data

International Journal of Advanced Computer Research, Vol 11(56)

105

preparation aimed to eliminate the noise from the

textual fields of the bug document; representing words

as vectors; and applying RNN. Cleary, results showed

that LSTM-based technique outperformed both topic-

based and N-gram IDF-based techniques as shown in

terms of f-measure performance metric.

In Hammad et al. [13] proposed a new automatic and

unsupervised approach to identify the feature or topic

that handled by a given bug report based on finding

and analysing the similar previous bug reports using a

technique called agglomerative hierarchical clustering

(AHC) which produces a set of clusters of bug reports

and also labels each cluster with tags the represent the

topic existing in that cluster.

All the reviewed papers have made several textual data

preparation steps that aimed to reduce the effects of

noise and increase the performance of the main

classifier models used. For example, tokenization and

stemming were employed in [2, 3, 6, 7, 8, 10, 13, 14].

However, some papers [11, 15] intentionally did not

apply stop words removals because this action may

influence the meaning of the reported bug report.

With regard to feature extraction techniques, the

majority of the reviewed papers have used term-based

methods to convert textual data to numeric useful

features [1, 5, 7, 10, 13]. However, the literature has

stated that topic modelling techniques are the most

appropriate techniques to extract features from textual

content in form of topic distributions for each bug

report because topic modelling is very similar to the

manual methodology followed by human to classify

textual data. Basically, this method is based on

linguistic classification rules [3, 14]. Despite of this

fact, it has been found that only one paper [3] has used

it. The reasons for limited usage of topic modelling in

this context are the complex configuration to apply

topic modelling algorithms and poor scientific

documentation on how to use them [16, 17]. Besides,

there is no silver bullet to determine the optimal

number of topics that do well for a given data set [3,

5].

On the other hand, regarding the main classification

technique used to classify bug reports, it is found that

supervised machine learning was the dominant field

for this problem since it was used by many works [1,

3, 4, 6, 7, 9, 11, 15]. Whereas, two of the surveyed

papers have used unsupervised machine learning

techniques: clustering [13], and association rule

mining [18]. Only three papers [5, 14, 19] have used

fuzzy logic-based approaches to support the current

research problem.

More importantly, although machine learning did well

in supporting the current research problem, fuzzy

logic-based classification techniques still have a

strong motivation to be used. This is because bug

reports naturally have some vagueness in its content

that came out from the lack of information and the

syntax errors as well [5]. Moreover, according to

literature, it is unfair to hardly classifying a bug report

into just two categories. Conversely, it is likely that

bug report may have a certain degree of membership

to both categories [19].

In conclusion, To the best of our knowledge, this study

proposes a newly approach to tackle the

misclassification problem of reported bug reports.

This approach will be based on topic modelling and

the fuzzy logic. Moreover, to overcome the limitation

of using topic modelling algorithms identified by

literature, the proposed approach will utilize Stanford

LDA Topic Modelling Toolbox [20].

3.Background
This section presents some background information

with regard to the main ideas employed through

proposed approach such as the process of bug

reporting, topic modelling, and fuzzy logic.

3.1Bug reports

Software bug reports are artifacts that manage the

faults of software systems. Because they contain

useful information about the submitted bugs,

developers depend on the description of these defects

in resolving the corresponding bugs [17]. Many papers

have described the bug reporting process [17, 18].

Initially, the newly incoming bug report is given the

state “Unconfirmed”. When a developer verifies

severity of the bug report, its status is updated to

“New”. Then, the bug report is assigned to an

appropriate developer or fixer. After that, when the

developer resolves the bug, “Resolved” state is given.

Otherwise, “New” state is given a gain to start a new

cycle. Finally, Once the bug is resolved successfully,

the cycle is finished and the state is changed to

“Closed”. Figure 1 shows a sample issue report taken

from Lucene project. Surprising, the assigned type for

this report is bug. However, the manual classification

process for this report proved that this report is a

request for new feature. In fact, it is misclassified.

Mohammed D. Ali and Ahmed A. Abusnaina

106

Figure 1 A sample misclassified bug report from Lucene project

3.2Topic modelling

Classically, topic modelling was originally used as a

method of clustering and changing large unstructured

documents into structured ones [16]. In particular,

Topic Modelling is a statistical model that can extract

the “topics” from a corpus of textual documents. Each

discovered topic is actually consisting of a certain

number of terms that existed or occurred in the textual

document. As well as, each document may be related

to one or more topics in form of membership values.

In the terminology of topic modelling, it could be said,

for example, document (d) contains the topic (t) with

probability 30% [16, 17]. In the same way, if two bug

reports belong to the same topic or topics; they

absolutely have some similarity. Therefore, topics are

considered a kind of features that could be used as

inputs for several data mining techniques [16, 17] to

train models that are capable to offer certain solutions.

As it was mentioned earlier, this work utilized Latent

Dirichlet Allocation (LDA) to find the topics and their

terms from a group of historical bug reports. So that, it

can be possible to know the bug reports that are similar

to the newly submitted one.

Moreover, application of LDA algorithm requires to

set and configure four hyperparameters. N refers to the

number of topics; R symbolizes the number of

iterations; α and β are association factors. Higher value

of α means that a bug report will associate with many

topics in a higher probability. As well, higher value of

β means that a topic will associate with many terms in

a higher probability [17].

3.3Fuzzy set theory

Classical or crisp set is a group of distinct values that

have specific and precise membership value to that set.

For example, given a set A. An element x, in the

universe X, has either 0% or 100% of membership in

the set A [21]. Fuzzy logic is a type of multi-valued

logic. It deals with approximate reasoning rather than

exact one. It resembles the way followed by humans

to make decisions based on if-then rules.

Importantly, it is used to model the Vagueness

associated with a specific problem. Moreover, fuzzy

logic deals with fuzzy sets which were proposed by

Lotfi Zadeh in 1965 [21].

Fuzzy sets are considered as extension of crisp or

classical sets. In this context, elements of a fuzzy set

have a multi-valued membership relation toward that

set, on the contrary of the elements of classical sets

which have only a binary membership value, 0, or 1.

The membership function µÃ(x) of an element x in the

fuzzy set Ã produces degree of membership for that

element in the given fuzzy set. It is given in the range

[0,1], where 1 indicates that the element is completely

in the set, 0 indicates that the element is completely

not in the set, whereas values between 0 and 1 indicate

that the element has a partial membership in the set.

Another essential point, fuzzy logic does not function

similar to probability theory. In fuzzy logic, the sum

of memberships of an element towards a set is not

essentially equals one. Oppositely, in probability

theory it needs to equal one [5].

4.Methods
4.1Data collection

Proposed approach was validated using datasets from

three open-source projects: Jackrabbit [22], Lucene

[23], and HttpClient [24]. These datasets have been

International Journal of Advanced Computer Research, Vol 11(56)

107

used by the majority of the surveyed papers and

especially in baseline papers. Each dataset contains

two fields bug id and summary.

In addition, each dataset has corresponding corrective

dataset that contains the actual data type. Actually,

these corrective datasets were manually classified by

Herzig et al. [12] and they were downloaded from

[25].

The following lines introduce a brief information of

these three projects:

 Apache HTTPClient: it implements HTTP protocol

from client side. It streamlines HTTP requests and

used in testing HTTP-based applications. It is also

helps in client-side authentication, state

management [5, 24].

 Apache Jackrabbit: it is a content repository for java

used to store structured and unstructured data, text

search, version management, and others [5, 22].

 Apache Lucene: it is an open-source Java library for

full text search that could be used by any application

[5, 23].

Table 1 shows dataset sizes and modelling split size

used in the conducted experiments.

Table 1 Overview of datasets and split size
Item HTTPClient JACKRabbit Lucene

#Reports 745 2402 2443

#Bugs 305 938 697

#Non bugs 440 1464 1746

#Training 596 1922 1954
#Tesing 149 480 489

4.2Overview of the proposed approach

This section details the steps used in the proposed

approach. In general, it consists of two main phases:

topic modelling phase which is used to convert textual

data of bug reports to numeric features in a form of

topics, the classification phase which is based on fuzzy

logic concepts.

4.3Topic modelling phase

In this phase, topics are automatically extracted from

a corpus of bug reports. A topic is a group of

semantically related terms that co-occur in a report.

Hence, it would be possible to discover latent semantic

relationships and provide effective analysis on report

contents. In addition, inputs of this phase are the

textual data of bug reports. Whereas., the output is

topic membership vectors, one vector for each bug

report.

This phase can be divided into the following steps:

1. Data parsing: in this step, the collected bug reports

were parsed. Particularly, fields containing textual

information were determined besides to the linkage

column with corrective data sets.

2. Applying topic modelling: given a textual bug

report, Latent Dirichlet Allocation (LDA) extracts a

predefined number of topics that represent the

overall idea this report is talking about.

Fundamentally, implementation of LDA algorithm

requires identifying the number of topics (k) to be

extracted from the textual contents. To be bias -free,

this approach experimentally tuned the value of (k)

on every 10 successive number of topics from 50

topics. This is an important experimental

hyperparameter to be tuned because the higher

value of (k), the more general topics are trained.

Oppositely, the lower value of (k), the more specific

topics are probably to be extracted [3, 17].

Moreover, this approach has applied Stanford topic

modelling toolbox [20] that implemented LDA

algorithm. Before that, many common

preprocessing steps were performed such as data

cleaning operations, tokenization, stemming, stop

words removing, and data filtering.

3. As a result, each topic membership vector consists

of report id and (k) number of topics with 0 or 1

value for each topic indicating the existence of that

topic in the given report. Specifically, this

mechanism was used by Pingclasai et el. [3] to

convert probability values produced by LDA into

0’s, and 1’s.

4.4Fuzzy logic phase

In fact, this phase operates on two data sets. The first

one is the dataset resulted from the topic modelling

phase in a form of topic membership vector for each

bug report. The second data set is the corrective dataset

that contains the actual and manual classified type for

each bug report that will later be compared with the

predicted type to evaluate the performance of the

classification model.

Importantly, this phase is replicated from [5] that

employed the terms occurred in bug reports. Instead,

the proposed approach has employed the topics

occurred in bug reports. Key aspects of this phase are

listed below:

1. The idea of fuzzy logic for bug reports

classification:

Given a newly submitted bug report to a bug tracking

system. This report will be automatically given the

category (bug, non-bug) that includes the larger

Mohammed D. Ali and Ahmed A. Abusnaina

108

number of historical reports that are similar to this new

report. Hence, fuzzy similarity is proposed.

2. Bug report representation in fuzzy logic:

The concept of membership and fuzzy sets was

utilized. Bug and Non-bug categories can be

represented by two fuzzy sets. Membership of a topic

expresses the belongingness of that topic in the

corresponding fuzzy set. Membership value is

symbolized using µ(t). It is contained within the closed

interval [0-1].

3. Definition:

The topic frequency is how many times does the

topic occur in the category (Bug, Non-bug) of each

bug report.

4. On training data, calculate the membership score

for topics:

Given a topic topici, and cbug, cnon categories. the

membership score µtopici(cbug) for a topic (topici)

toward a category (cbug) can be calculated by dividing

topic frequency in the reports of category (cbug) on

topic frequency in the reports of both categories (cbug,

cnon). And vice versa with regarding to the membership

score µtopici(cnon) for a topic (topici) toward a category

(cnon).

Memberships in each category have been calculated

using the equations (1) and (2).

𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑐𝑏𝑢𝑔) =
∑ 𝑇𝐹𝑏𝑢 𝑔 (𝑡𝑜𝑝𝑖𝑐𝑖)

∑ 𝑇𝐹𝑏𝑢𝑔 (𝑡𝑜𝑝𝑖𝑐𝑖)+ ∑ 𝑇𝐹𝑛𝑜𝑛 (𝑡𝑜𝑝𝑖𝑐𝑖)
 (1)

𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑐𝑛𝑜𝑛) =
∑ 𝑇𝐹𝑛𝑜𝑛 (𝑡𝑜𝑝𝑖𝑐𝑖)

∑ 𝑇𝐹𝑏𝑢𝑔 (𝑡𝑜𝑝𝑖𝑐𝑖)+ ∑ 𝑇𝐹𝑛𝑜𝑛 (𝑡𝑜𝑝𝑖𝑐𝑖)
 (2)

where TF donates the topic frequency in the given

category.

5. The output of training phase are membership scores

for the given topic into the both fuzzy sets (bug and

non-bug categories). Hence, zero membership score

means that the topic does not belong to the given

category. Also, one membership score means that

the topic belongs to the given category only.

whereas, a membership score in the open interval

(0,1) means that the topic partially belongs to the

given category.

6. On test data, the fuzzy similarity is obtained by

calculating the membership score for the given bug

report:

 Given a bug report rep i, and cbug, cnon categories. the

membership scores µrep i(cbug) for a report (repi)

toward a category (cbug) can be calculated by

multiplying the membership scores of topics

occurring in the report according to (3) and (4)

formulas. And vice versa with regarding to the

membership score µrepi(cnon) for a report (rep i)

toward a category (cnon).

Here, equations (3) and (4) have been used:

𝜇𝑅𝑒𝑝(𝑏𝑢𝑔𝑖) = 1 − 𝛱 (1 − 𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑏𝑢𝑔𝑖)) (3)

𝜇𝑅𝑒𝑝(𝑛𝑜𝑛𝑖) = 1 − 𝛱 (1 − 𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑛𝑜𝑛𝑖)) (4)

7. Ranking and Classification:

In this step, the new bug report is given a membership

score for both categories: bug and non-bug. In

particular, it is assigned to the category that obtains the

highest membership score calculated according to (3)

and (4).

8. Importantly, fuzzy logic operates differently from

the probability theory. Thus, the membership score

of a bug report towards a category needs not to

equal 100%. For example, if a topic has 60%

membership score in one category, then probability

theory expects 40% score in the other category.

Whereas, fuzzy logic allows to have any score

because the membership score is obtained

independently for each category [5].

9. Finally, as the actual bug report type is given from

the corrective datasets and the tested bug report is

predicted by the proposed approach. Then, many

suitable evaluation metrics have been utilized to

assess how performant is the proposed approach in

ranking and classifying bug reports. Figure 2

illustrates those two phases.

International Journal of Advanced Computer Research, Vol 11(56)

109

Figure 2 The main steps of the proposed approach

4.5 Motivating example

Table 2 shows a motivating example illustrating the

fuzzy logic implementation for bug report ranking and

classification according to the equations (1), (2), (3),

and (4).

Assume that a training dataset contains five topics, and

only the three topics asterisked occur in the test report.

For each report in the five bug reports, the topic

frequency in the both fuzzy sets (bugs and not bugs)

were calculated using the topic-based datasets. Then,

the membership value for each report in the bug fuzzy

set is computed using equation (1) and it is shown in

the second column in the bellow table, i.e.,

3/ (3+7) = 0.30, 6/ (6+5) = 0.55, 4/ (4+4) = 0.50, 5/

(5+9) = 0.36, and 4/ (4+1) = 0.80.

Similarly, the membership value for each report in the

not-bug fuzzy set is computed using equation (2) and

it is shown in the third column in the bellow table, i.e.,

7/ (7+3) = 0.70, 5/ (5+6) = 0.45, 4/ (4+4) = 0.50, 9/

(9+5) = 0.64, and 1/ (1+4) = 0.20.

According to equation (3) and assuming that the newly

coming bug report has the three topics asterisked in the

bellow table; the membership value for the new

coming bug report in the bug fuzzy set is calculated as

follows:

1 - [(1 - 0.30) * (1 - 0.50) * (1 - 0.36)] = 0.78.

Similarly, according to (3) and assuming that the new

coming bug report has the three topics asterisked in the

bellow table; the membership value for the new

coming bug report in the non-bug fuzzy set is

calculated as follows:

1 - [(1 - 0.70) * (1 - 0.50) * (1 - 0.64)] = 0.95.

Consequently, the new bug report is classified to (not-

bug) as it has the higher membership value in the not

bug fuzzy set.

Another important point, the membership value of a

report toward any of bug or not-bug fuzzy sets is

insensitive to noises. For example, noise resulted from

those topics that are irrelevant to the reported issue. To

illustrate that, assume that a bug report consists of two

topics; the first is relevant with 0.6 membership value,

the second is irrelevant and rarely exists with 0.1

membership value. Then the membership value of the

report containing both topics toward the bug fuzzy set

equals 1- [(1-0.6) * (1-0.1)] = 0.64. whereas the

membership value of the report containing only the

relevant topic toward the bug fuzzy set equals 1- [(1-

0.6)] = 0.60, which it is not much smaller than 0.64.

Table 2 Motivating example
Topics TFbug TFnon µbug µnon

T1* 3 7 0.30 0.70

T2 6 5 0.55 0.45

T3* 4 4 0.50 0.50

T4* 5 9 0.36 0.64

T5 4 1 0.80 0.20

Mohammed D. Ali and Ahmed A. Abusnaina

110

5.Experimental design
This section presents the implementation of the main

two phases in this approach besides to the data

preprocessing operations that have been applied.

5.1Data preparation

This paper has applied Stanford topic modelling

toolbox [20] that was written by Stanford natural

language processing research group. This toolbox

implements LDA algorithm through several types of

scripting steps that have been written in Scala

programming language. In particular, it enables

importing and preparing spreadsheets data; training

several LDA models such as LDA and LDA labeled;

configuring several parameters; and producing usable

and accurate results.

Data preparation is a pipeline process that extracts the

textual content and converts it into a usable form by

LDA algorithm, besides it guarantees having a model

with improved performance. In this work, data

preparation pipeline included the following steps:

 Identifying the columns including the bug-id, and

the textual content to be analyzed.

 Remove punctuation symbols.

 Change texts into lower case to decrease the number

of unique words.

 Remove words that are shorter that three characters

in order to having a meaningful word.

 Removing words that appear in less than four bug

reports because these words are considered rare and

do not contribute much in measuring the similarity.

 The words appearing more than 30 times were

removed because they are also unimportant for

measuring similarity.

 Bug reports that have missing textual contents were

discarded.

 Importantly, as seen in some literature, the

implemented approach did not apply stemming

technique because it may remove the negative

phrases that they could have a special meaning in

bug reporting process.

5.2Topic modelling

There are many parameters to configure LDA topic

modelling algorithm. Mainly, there are four

configurable parameters to be set. First, number of

topics. Second, number of iterations required to train

the model. Third, the association factor α; higher value

of α means that a bug report is likely to be associated

by many topics. Fourth, the association factor β;

higher value of β means that a topic is likely to be

associated by many terms. Table 3 shows values for

LDA hyperparameters.

Table 3 LDA parameters
Parameter Value Notes

maxTopics 10-50 Tuned experimentally

maxIterations 1500 [17]

topicSmoothing(α) 0.01 [17]

termSmoothing(β) 0.01 [17]

Furthermore, there are two types of learning

techniques to train topic models. The first one is called

collapsed variational Bayes approximation

(CVB0LDA). It uses all the available CPU cores in the

machine, so that it can reach the convergence state

faster. The second type is called collapsed Gibbs

sampler (GibbsLDA) which requires less memory for

training. Therefore, this research used Gibbs sampler

for training and inference [20].

Finally, the main output of the topic modelling phase

is topic distribution probabilities (p) for each report.

Then, these probabilities were converted into 0 or 1

indicating whether a topic appears in a report or not.

In particular, a one value was given when p>0;

otherwise, zero was given.

5.3Classification

As a result of the previous phase, 15 experiments were

conducted in this phase; each experiment was

implemented against one dataset out of the three

projects with each value for number of topics (10, 20,

30, 40, and 50).

Data of each experiment is divided to training and

testing. Then, a special programming module was built

implementing the formulas (1), (2), (3), and (4)

introduced in the previous section to develop a fuzzy

similarity-based classifier. Importantly, 10 runs for

each experiment were executed and the average of

performance values was recorded for each run.

More important, from machine learning perspective,

imbalanced data is a challenging problem [26]. It

occurs when the distribution of bug reports across

classes is imbalanced. However, the resulted topic-

based data sets were statistically checked by finding

number of instances in both positive and negative

classes. Consequently, it was confirmed that they were

balanced and they could be used to train classification

models. Importantly, according to the logic used in the

proposed approach which is built based on relative

weighting for both positive and negative classes ; there

will be no influence to the imbalanced data (if existed).

As well as, topic modelling is considered as a kind of

feature selection technique.

International Journal of Advanced Computer Research, Vol 11(56)

111

5.4Validation and evaluation methods

• Resampling technique

From machine learning perspective, there are many

evaluation methods that could estimate how well the

classifier model does on unseen data. Specifically,

these methods are train and test splits, k-fold cross

validation, leave one out cross validation, and repeated

random test-train splits [26]. In this paper, random

test-train splits method was used. For each dataset out

of 15 datasets, it was divided into training and testing

parts using size ratio of 80:20. The training data was

used to train the fuzzy logic algorithm. The test data

was used make predictions and evaluate results against

the actual results. This process was repeated 10 times

and the average performance was recorded.

 Confusion matrix

It is a tool that provides useful information about the

behavior of the models in terms of the following [27]:

Ture Positives (TP): the number of bug reports that are

actually bugs. True Negative (TN): the number of non-

bug reports that are actually non-bugs. False Negative

(FN): the number of non-bug reports that are actually

bugs. False Positive (FP): the number of bug reports

that are actually non bugs.

 Performance metrics

This work used three metrics in order to measure the

performance of the proposed classifier. They are

precision, recall, and F-measure. They measure the

performance by focusing on the positive class (bugs in

this case) [27, 28].

- Precision computes the ratio of the total number of

correctly classified reports as bugs divided by the

total number of all reports that are actually bugs.

Precision = TP / (TP + FP).

- Recall finds the ratio of the total number of

correctly classified reports as bugs divided by the

total number of reports that are correctly classified

into bug and non-bug. Recall = TP / (TP + TN).

- F-measure is used to summarize both the Precision

and the Recall in one metric. The higher F-measure

is, the higher both Precision and Recall are at the

same time. F-measure = (2 * Precision * Recall) /

(Precision + Recall).

6.Results
This section presents the research results in four main

points: Newly submitted Jira bug reports can be

automatically classified into either bug or non-bug and

indicating to which extent they belong to both classes.

This research manages to classify bug reports to bugs

and other requests in two ways. The first way is crisp

classification which means that a bug report is

classified completely as a bug or completely as a non-

bug. The second way is soft classification which

indicates to which degree a bug report belongs to the

both categories bug and non-bug.

To the best of our knowledge, this is the first approach

among other fuzzy logic approaches that raises this

feature. This new feature offers many advantages with

regard to the software maintenance activities in terms

of efforts and costs, as compared with the classical first

methods. Table 4 shows two sample test reports that

were classified using both hard and soft methods by

the proposed approach.

Table 4 Two sample classified bug reports using

proposed approach
Membership LUCENE

REP-1003

LUCENE

REP-2526

Membership in

Bug fuzzy set

0.69 0.81

Membership in

Not-bug fuzzy set

0.80 0.69

Classified Not bug Bug

2. Lucene project shows the best performance out of

the other two projects.

Table 5 shows the evaluation results of the three

projects HTTPclient, Jackrabbit, and Lucene using the

proposed approach in terms of precision, recall, and F-

measure metrics. In particular, the F-measure metric

varies between 0.63 – 0.81 for HTTPclient, 0.70 – 0.78

for Jackrabbit, and 0.78 – 0.84 for Lucene. Moreover,

the results illustrate that the improved performance is

recorded for Lucene project.

3. Regarding Jira projects, number of topics equals 20

is the optimal tuned value that showed the best

predictive performance.

Table 5 shows number of topics that was used in model

training and fitting. It is seen that the best performance

score is gained when using 20 topics to train the

model. However, increasing or decreasing number of

topics parameter does not imply any trend or pattern

between number of topics and the overall

performance. Finally, this work also proves that LDA

topic modelling algorithm was correctly configured.

Mohammed D. Ali and Ahmed A. Abusnaina

112

Table 5 Performance of topic-based fuzzy logic

classifier (P: Precision, R: Recall, F: F-measure)
#Topics Dataset P R F

10

HTTPClient 0.59 100 0.74

Jackrabbit 0.57 0.94 0.71
Lucene 0.65 0.98 0.78

 20 HTTPClient 0.77 0.85 0.81

 Jackrabbit 0.70 0.88 0.78

 Lucene 0.73 0.98 0.84

30 HTTPClient 0.68 0.83 0.75
 Jackrabbit 0.70 0.86 0.77

 Lucene 0.70 0.94 0.80

40 HTTPClient 0.75 0.77 0.76

 Jackrabbit 0.62 0.80 0.70

 Lucene 0.69 0.95 0.80
50 HTTPClient 0.51 0.80 0.63

 Jackrabbit 0.61 0.88 0.72

 Lucene 0.68 0.99 0.81

Figure 3 shows a chart of performance curve for each

of the three research subjects’ models. In x-axis

appears the number of topics used to train each model.

In y-axis appears the F-measure score that is achieved

by the proposed model. Actually, it indicates that each

software project may have its own optimal value for

the number of topics that could achieve the maximum

possible performance in classification, i.e., 20 topics

in this case.

Finally, according to the shown evaluation results, it is

concluded that hybrid classification models that

combine topic-based data and fuzzy logic are able to

classify bug reports to two categories with significant

score of performance. In particular, the software

projects that can be benefited from this approach are

projects managed by JIRA bug tracking system.

4. The proposed approach outperforms the baseline

approaches in terms of performance metrics.

Generally, fuzzy logic approaches outperform

machine learning approaches.

The proposed approach used topic-based data to train

a classification model by leveraging the fuzzy set

theory. The first baseline approach used word-based

data to train a classification model using the fuzzy set

theory [5]. The second baseline used topic-based data

to train three models using several machine learning

techniques [3]. The last baseline used word-based data

to train classification models using the same machine

learning algorithms utilized by the second approach

[11]. More importantly, all of the models are

compared by using the same datasets. Table 6 shows a

comparison summary among the four approaches in

terms of F-measure performance metric. The asterisk

(*) indicates the models that have been outperformed

by the proposed approach in this paper.

Figure 3 Model performance with number of topics

International Journal of Advanced Computer Research, Vol 11(56)

113

Table 6 Comparison between proposed approach and

other three ones in terms of F-measure
 Model HTTP JACK LUCENE

Topic-based Fuzzy

logic

0.81 0.78 0.84

Word-based Fuzzy

logic [5]

0.82 0.78 0.83*

Topic-based Machine

learning [3]

0.73* 0.74* 0.80*

Word-based Machine
learning [15]

0.71* 0.70* 0.67*

Significantly, the two fuzzy logic-based approaches,

including the proposed one, have outperformed

machine learning based approaches in terms of F-

measure performance metric in all of the three

datasets.

regarding the two fuzzy logic-based approaches,

including the proposed one. It is seen that topic-based

proposed approach has outperformed word-based one

in Lucene project, and it has a similar performance

score in Jackrabbit project, and it has achieved a

slightly lower performance in HTTPclient project.

7.Discussion
The topic-based models, either fuzzy logic or machine

learning, have outperformed other models that mainly

used feature selection techniques. This can be due the

nature of the process itself. Actually, topic models

extract topics from textual contents. Each topic

contains several terms which appear in the text.

Importantly, the terms appearing in a topic are

semantically related [16]. However, feature selection

techniques loss this advantage. Accordingly, this

clearly explains why measuring the similarly of textual

contents using topic modelling is more efficient than

using feature selection. In addition, it also explains

why there is no trending regarding increasing or

decreasing the number of topics.

Furthermore, word-based fuzzy logic model has

outperformed topic-based fuzzy logic (proposed

approach) in HTTPclient project, and it shows slightly

similar performance in Jackrabbit and Lucene

projects. In fact, LDA algorithm configurations could

be the reasons. Specially, increasing the value of the

association factor β will make the topic more generic.

Thus, decreasing value of β will produces one-term

topics which is similar to word-based approaches.

Finally, another justification would explain this result;

it is the quality of HTTPclient dataset and to which

extent it is rich in useful terms.

The proposed approach is able to indicate how much a

report is faulty or non-faulty. This can be determined

by comparing the membership value of the report in

the both categories bug and not-bug. Importantly,

summation of both membership values need not to

equal 100%. This is because our research problem has

a vagueness nature and not uncertainty problem. This

makes fuzzy logic the appropriate technique to model

such this problem. Whereas, probability theory is the

suitable technique to model uncertainty problems

which essentially requires 100% for all events.

Limitations

The proposed approach was validated using three

datasets. Each dataset was accompanied by a

corrective data set that was manually classified.

Hence, any errors in this manual process may produce

misleading and unrealistic results. Moreover, the

utilized datasets were open source written in java and

they were managed by Jira bug tracking system.

Accordingly, any change in the used datasets,

programming language, or bug tracking systems will

affect the generalizability of the proposed approach.

8.Conclusion and future work
This research employed the textual information

available in the reported bug reports in bug tracking

systems to conduct an automatic approach for

classifying bug reports into either bug or other request.

As a result, this proposed approach eliminates the need

of manual classification process and its accompanied

drawbacks.

First, Stanford topic modelling toolbox implementing

LDA algorithm was adopted to structure the content of

bug reports in form of topics with their probabilities of

appearing in the report. These resulted topics were

assumed to distinguish bug reports from other type of

reports. Second, a model was developed using the

fuzzy logic to measure the bug reports similarity as a

technique for classification. Several experiments were

conducted using three open-source systems with

careful configuration. Evaluation of the obtained

results leads to two main conclusions. It is concluded

that modelling of bug reports in the form of topics is

able to classify bug reports. Also, the optimal number

of extracted topics that achieved the most improved

performance is 20 topics.

With this number of topics, and in terms of

performance metrics, the classification model

produces F-measure score varies within 0.78 to 0.84

across the three projects. Finally, this approach

outperformed two baseline approaches that used

machine learning. Moreover, this approach achieves a

Mohammed D. Ali and Ahmed A. Abusnaina

114

relatively similar performance as compared with

another baseline approach that used fuzzy logic based

on word-based data.

In future work, recommendations are going toward

exploring new directions as follows:

 Using cross-project datasets to experiment whether

a data of one project can be used to classify data of

another project.

 Employing new datasets for new projects and

related to bug tracking systems other than JIRA,

besides experimenting more richer datasets in

textual contents.

 Experimenting several types of LDA algorithms for

topic modelling with careful setting for their

parameters.

 In terms of machine learning, the proposed

approach is called supervised modelling as the

actual data labels were given. But these labels are

often not available. So that, unsupervised

techniques with fuzzy logic are also considered

targets for future research.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Pandey N, Sanyal DK, Hudait A, Sen A. Automated

classification of software issue reports using machine

learning techniques: an empirical study. Innovations in

Systems and Software Engineering. 2017; 13(4):279-
97.

[2] Xia X, Lo D, Ding Y, Al-Kofahi JM, Nguyen TN,

Wang X. Improving automated bug triaging with

specialized topic model. IEEE Transactions on

Software Engineering. 2016; 43(3):272-97.
[3] Pingclasai N, Hata H, Matsumoto KI. Classifying bug

reports to bugs and other requests using topic modeling.

In Asia-pacific software engineering conference 2013

Dec 2 (pp. 13-8). IEEE.

[4] Otoom AF, Al-jdaeh S, Hammad M. Automated
classification of software bug reports. In proceedings of

the 9th international conference on information

communication and management 2019 (pp. 17-21).

[5] Chawla I, Singh SK. An automated approach for bug

categorization using fuzzy logic. In proceedings of the
8th india software engineering conference 2015 (pp.

90-9).

[6] Zhou Y, Tong Y, Gu R, Gall H. Combining text mining

and data mining for bug report classification. Journal of

Software: Evolution and Process. 2016; 28(3):150-76.
[7] Chawla I, Singh SK. Automated labeling of issue

reports using semi supervised approach. Journal of

Computational Methods in Sciences and Engineering.

2018; 18(1):177-91.

[8] Jangra M, Singh SK. Evaluating topic modeling as pre-
processing for component prediction in bug reports. In

advanced computing and communication technologies

2016 (pp. 465-73). Springer, Singapore.

[9] Terdchanakul P, Hata H, Phannachitta P, Matsumoto K.

Bug or not? bug report classification using n-gram idf.
In international conference on software maintenance

and evolution 2017 (pp. 534-8). IEEE.

[10] Qin H, Sun X. Classifying bug reports into bugs and

non-bugs using lstm. In proceedings of the tenth Asia-

Pacific symposium on internetware 2018 (pp. 1-4).
[11] Kukkar A, Mohana R. A supervised bug report

classification with incorporate and textual field

knowledge. Procedia Computer Science. 2018;

132:352-61.

[12] Herzig K, Just S, Zeller A. It's not a bug, it's a feature:
how misclassification impacts bug prediction. In 2013

international conference on software engineering

2013(pp. 392-401). IEEE.

[13] Hammad M, Alzyoudi R, Otoom AF. Automatic

clustering of bug reports. International Journal of
Advanced Computer Research. 2018; 8(39):313-23.

[14] Behl D, Handa S, Arora A. A bug mining tool to

identify and analyze security bugs using naive bayes

and tf-idf. In international conference on reliability

optimization and information technology 2014 (pp.
294-9). IEEE.

[15] Antoniol G, Ayari K, Di Penta M, Khomh F,

Guéhéneuc YG. Is it a bug or an enhancement? a text-

based approach to classify change requests. In

proceedings of the conference of the center for
advanced studies on collaborative research: meeting of

minds 2008 (pp. 304-18).

[16] Chen TH, Thomas SW, Hassan AE. A survey on the use

of topic models when mining software repositories.

Empirical Software Engineering. 2016; 21(5):1843-
919.

[17] Zhang T, Chen J, Yang G, Lee B, Luo X. Towards more

accurate severity prediction and fixer recommendation

of software bugs. Journal of Systems and Software.

2016; 17:166-84.
[18] Zolkeply MS, Shao J. Classifying software issue

reports through association mining. In proceedings of

the 34th ACM/SIGAPP symposium on applied

computing 2019 (pp. 1860-3).

[19] Panda RR, Nagwani NK. Software bug categorization
technique based on fuzzy similarity. In 9th international

conference on advanced computing 2019 (pp. 1-6).

IEEE.

[20] http://nlp.stanford.edu/software/tmt/tmt- 0.4/.

Accessed: 10-September-2021.
[21] Zadeh LA. Fuzzy sets. In fuzzy sets, fuzzy logic, and

fuzzy systems: selected papers by Lotfi A Zadeh 1996

(pp. 394-432).

[22] http://jackrabbit.apache.org/. Accessed: 10-September-

2021.
[23] http://lucene.apache.org/. Accessed: 10-September-

2021.

International Journal of Advanced Computer Research, Vol 11(56)

115

[24] http://hc.apache.org/. Accessed: 10-September-2021.

[25] https://www.st.cs.uni-saarland.de//softevo/. Accessed:

10-September-2021.
[26] Brownlee J. Machine learning mastery with python.

Machine Learning Mastery Pty Ltd. 2016; 527:100-20.

[27] Han J, Pei J, Kamber M. Data mining: concepts and

techniques. Elsevier; 2011.

[28] Brownlee J. Imbalanced classification with Python:
better metrics, balance skewed classes, cost-sensitive

learning. Machine Learning Mastery; 2020.

Mohammed Dahesh Ali is the head of

system analysis unit in the Information
& Communication Technology Center

at Al-Quds Open university, Palestine.

He received his Master Degree in

Software Engineering from Birzeit

university, Palestine, in 2021. He
received her B.S in Computer

Information Systems, from Al-Quds Open University -

Palestine in 2006. He is interested in software engineering

research with focus on Software Evolution and Maintenance,

Mining Software Repositories, and Machine Learning.
Email: modsh.ali@gmail.com

Ahmed A. Abusnaina received his

B.Eng. degree in Computer Systems

Engineering from Palestine Polytechnic
University (PPU) in 2007, and MSc and

PhD degrees in Computer Science from

Universiti Sains Malaysia (USM). His

academic qualifications are in

engineering and sciences. However, his
work experience is blended in nature with strong ties to

education, engineering, neuroscience, as well as the

industry. His recent research focuses on utilizing the

Computational Intelligence and Neural Networks for wide

applications in medicine, biology, physics, engineering and
many other research fields. In addition, Brain-inspired

Computing by developing more realistic and accurate

neurons to the brain neurons is one of the main open research

areas.

Email: aabusnaina@birzeit.edu

Author Photo

Author s Photo

mailto:modsh.ali@gmail.com
mailto:aabusnaina@birzeit.edu

