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1.Introduction 
1.1Overview 

Bug Tracking Systems like Bugzilla, Gnats and Jira [1, 

2] are a type of systems that are used to support the 

maintenance activities during the lifecycle of software 

systems [3]. They are a communication mean between 

users and developers to report and fix issues [4]. In 

particular, these systems commonly manage the 

following two types of reported requests: corrective 

requests (bugs), and perfective requests (non-bugs) 

such as new feature request, improvement request, 

documentation, and so on [3–7]. Software bugs are 

unavoidable. Therefore, more and more bug reports 

are continually submitted to bug tracking systems. 

Specifically, statistical information in [8] states that 

more than 30 maintenance requests are reported daily.  
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Hence, bug tracking systems are considered a rich 

source of historical information that could be crucial 

to support several software engineering tasks such as 

bug priority assignment, bug severity identification, 

developer recommendation for bug resolution [9], bug 

localization [10], defect prediction, duplicate bug 

report identification [7], and bug categorization [4]. 

 

The perfect support for these software engineering 

tasks reduces the costs of maintenance activities [6]; 

decreases developer time and effort; and generally, 

achieves better overall reliability [2, 11]. Thus, to 

perfectly enrich such these tasks, bug tracking systems 

need to be enhanced with an automatic classification 

feature to correctly and accurately classify reported 

issues to bugs and other requests. 

 

1.2Research Motivation 

Misclassification of the reported bug reports is a 

common problem that threatens the quality of software 

engineering tasks and activities that are carried out 

during software system life cycle. Simply, it happens 

because bug tracking systems lack the feature of 

automatic classification of bug reports. Instead, the 
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process itself is accomplished manually. 

Consequently, its quality completely depends on 

human understanding [3, 9], and the number of issue 

reports submitted during a specific time window. On 

the other hand, manual classification of issue reports 

is a time-consuming and error-prone process [5, 6, 8]. 

According to [12], researchers manually examined 

more than 7000 issue reports during 90 days and they 

found that 30.8% of inspected reports were really 

misclassified. As well as, bug reports may be 

originally submitted to bug tracking systems with 

missing labels which also leads to the same problem 

[5]. As a result, high maintenance costs are incurred 

[13], uncertainty is increased, and project planning is 

negatively affected [4]. As well, the costs of manual 

categorization of bug reports increase dramatically 

according to the size and complexity of the software 

system being supported [8]. 

 

Accordingly, this work will address the following 

research problem: Given a new bug report and 

historical bug reports, predict the type of the new bug 

report with respect to either Bugs or Other Requests. 

 

1.3Research questions 

In order to resolve the research problem mentioned 

above, the following two research questions are going 

to be answered by this study: 

 RQ1: In terms of performance metrics, how 

effective is the proposed approach to classify bug 

reports as compared with baseline approaches? 

 RQ2: How much performance could be achieved by 

tuning the number of topics  hyperparameter that 

model a bug report? 

 

1.4Main contributions  

In this paper, a new approach is proposed to classify 

Jira bug reports into bugs and non-bugs, and to 

validate the type of already submitted report. 

Exclusively, this approach was built using a hybrid 

method that combined topic modelling as a natural 

language processing technique with fuzzy logic as a 

classification mechanism. Considering the conducted 

experiments, it is concluded that the highest F-

measure ranges between 78-84% which is considered 

a significant improvement to the baseline works. 

Moreover, this paper concludes that topic modelling 

using a number of topics equals 20 topics is the 

optimal hyperparameter setting that could be used to 

model Jira bug reports. 

 

2.Literature review 
This section sheds lights on the most related works. 

Then, it analyses related works by focusing on two 

factors; the technique used to extract useful features 

from textual data of bug reports, and the main 

classifier technique used to classify bug reports to 

either bugs or other requests.   

 

In Pingclasai et al. [3]. proposed a two-phase approach 

to automatically classify bug reports to either bugs or 

other requests. First, topic modelling was used to 

convert textual data into numeric membership vectors. 

Then, ADTree, Naive Bayes classifier, and Logistic 

Regression were utilized to classify reported bug 

reports. As a result, F-measure metric score was 

ranging between 0.66-0.76, 0.65-0.77, and 0.71 0.82 

for HTTPClient, Jackrabbit, and Lucene datasets 

respectively. 

 

In Chawla and Singh [5] proposed an automatic 

classification of bug reports using a fuzzy logic-based 

approach. In particular, the proposed approach used 

the concept of membership in fuzzy logic. First, they 

extracted the terms form bug reports for the both 

categories. Then, the membership value for a term in 

a specific category was calculated by dividing term 

frequency in that category with the term frequency of 

both categories. After that, a bug report was classified 

to the category that gets the higher overall membership 

value from summing the membership values of all 

terms contained in that bug report. The results showed 

that the fuzzy logic-based approach achieved better 

results than the machine learning based approach. 

 

In Zhou et al. [6] proposed a three-phase approach for 

automatic bug report classification. The first phase 

used Multinomial Naive Bayes Classifier that 

analysed the textual fields of bug reports to extract 

three features defining three levels of possibilities: 

high, middle, and low. The second phase used Data 

grafting technique to link between structured and 

unstructured features. The third phase applied 

Bayesian Net Classifier as a machine learning 

technique to finally achieve competitive results.  

 

In Terdchanakul et al. [9], conducted a study aiming at 

comparing performance of N-gram IDF based 

classification models with topic-based models. First, 

they applied N-gram IDF to create features vector, 

then it was pre-processed using correlation-based 

methods for feature selection purposes. After that, 

Logistic Regression and Random Forest models were 

trained. The results showed that proposed approach 

had a higher performance than the topic-based models. 

In Qin and Sun [10] built a model for bug classification 

using Long Short-Term Memory (LSTM). The 

followed approach included three general steps; data 
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preparation aimed to eliminate the noise from the 

textual fields of the bug document; representing words 

as vectors; and applying RNN. Cleary, results showed 

that LSTM-based technique outperformed both topic-

based and N-gram IDF-based techniques as shown in 

terms of f-measure performance metric. 

 

In Hammad et al. [13] proposed a new automatic and 

unsupervised approach to identify the feature or topic 

that handled by a given bug report based on finding 

and analysing the similar previous bug reports using a 

technique called agglomerative hierarchical clustering 

(AHC) which produces a set of clusters of bug reports 

and also labels each cluster with tags the represent the 

topic existing in that cluster. 

 

All the reviewed papers have made several textual data 

preparation steps that aimed to reduce the effects of 

noise and increase the performance of the main 

classifier models used. For example, tokenization and 

stemming were employed in [2, 3, 6, 7, 8, 10, 13, 14]. 

However, some papers [11, 15] intentionally did not 

apply stop words removals because this action may 

influence the meaning of the reported bug report. 

 

With regard to feature extraction techniques, the 

majority of the reviewed papers have used term-based 

methods to convert textual data to numeric useful 

features [1, 5, 7, 10, 13]. However, the literature has 

stated that topic modelling techniques are the most 

appropriate techniques to extract features from textual 

content in form of topic distributions for each bug 

report because topic modelling is very similar to the 

manual methodology followed by human to classify 

textual data. Basically, this method is based on 

linguistic classification rules [3, 14]. Despite of this 

fact, it has been found that only one paper [3] has used 

it. The reasons for limited usage of topic modelling in 

this context are the complex configuration to apply 

topic modelling algorithms and poor scientific 

documentation on how to use them [16, 17]. Besides, 

there is no silver bullet to determine the optimal 

number of topics that do well for a given data set [3, 

5]. 

 

On the other hand, regarding the main classification 

technique used to classify bug reports, it is found that 

supervised machine learning was the dominant field 

for this problem since it was used by many works [1, 

3, 4, 6, 7, 9, 11, 15]. Whereas, two of the surveyed 

papers have used unsupervised machine learning 

techniques: clustering [13], and association rule 

mining [18]. Only three papers [5, 14, 19] have used 

fuzzy logic-based approaches to support the current 

research problem.  

 

More importantly, although machine learning did well 

in supporting the current research problem, fuzzy 

logic-based classification techniques still have a 

strong motivation to be used. This is because bug 

reports naturally have some vagueness in its content 

that came out from the lack of information and the 

syntax errors as well [5]. Moreover, according to 

literature, it is unfair to hardly classifying a bug report 

into just two categories. Conversely, it is likely that 

bug report may have a certain degree of membership 

to both categories [19]. 

 

In conclusion, To the best of our knowledge, this study 

proposes a newly approach to tackle the 

misclassification problem of reported bug reports. 

This approach will be based on topic modelling and 

the fuzzy logic. Moreover, to overcome the limitation 

of using topic modelling algorithms identified by 

literature, the proposed approach will utilize Stanford 

LDA Topic Modelling Toolbox [20].  

 

3.Background 
This section presents some background information 

with regard to the main ideas employed through 

proposed approach such as the process of bug 

reporting, topic modelling, and fuzzy logic. 

 

3.1Bug reports 

Software bug reports are artifacts that manage the 

faults of software systems. Because they contain 

useful information about the submitted bugs, 

developers depend on the description of these defects 

in resolving the corresponding bugs [17]. Many papers 

have described the bug reporting process [17, 18]. 

Initially, the newly incoming bug report is given the 

state “Unconfirmed”. When a developer verifies 

severity of the bug report, its status is updated to 

“New”. Then, the bug report is assigned to an 

appropriate developer or fixer. After that, when the 

developer resolves the bug, “Resolved” state is given. 

Otherwise, “New” state is given a gain to start a new 

cycle. Finally, Once the bug is resolved successfully, 

the cycle is finished and the state is changed to 

“Closed”. Figure 1 shows a sample issue report taken 

from Lucene project. Surprising, the assigned type for 

this report is bug. However, the manual classification 

process for this report proved that this report is a 

request for new feature. In fact, it is misclassified. 
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Figure 1 A sample misclassified bug report from Lucene project 

 

3.2Topic modelling  

Classically, topic modelling was originally used as a 

method of clustering and changing large unstructured 

documents into structured ones [16]. In particular, 

Topic Modelling is a statistical model that can extract 

the “topics” from a corpus of textual documents. Each 

discovered topic is actually consisting of a certain 

number of terms that existed or occurred in the textual 

document. As well as, each document may be related 

to one or more topics in form of membership values. 

In the terminology of topic modelling, it could be said, 

for example, document (d) contains the topic (t) with 

probability 30% [16, 17]. In the same way, if two bug 

reports belong to the same topic or topics; they 

absolutely have some similarity. Therefore, topics are 

considered a kind of features that could be used as 

inputs for several data mining techniques [16, 17] to 

train models that are capable to offer certain solutions.  

 

As it was mentioned earlier, this work utilized Latent 

Dirichlet Allocation (LDA) to find the topics and their 

terms from a group of historical bug reports. So that, it 

can be possible to know the bug reports that are similar 

to the newly submitted one. 

 

Moreover, application of LDA algorithm requires to 

set and configure four hyperparameters. N refers to the 

number of topics; R symbolizes the number of 

iterations; α and β are association factors. Higher value 

of α means that a bug report will associate with many 

topics in a higher probability. As well, higher value of 

β means that a topic will associate with many terms in 

a higher probability [17]. 

 

3.3Fuzzy set theory 

Classical or crisp set is a group of distinct values that 

have specific and precise membership value to that set. 

For example, given a set A. An element x, in the 

universe X, has either 0% or 100% of membership in 

the set A [21]. Fuzzy logic is a type of multi-valued 

logic. It deals with approximate reasoning rather than 

exact one. It resembles the way followed by humans 

to make decisions based on if-then rules.  

 

Importantly, it is used to model the Vagueness 

associated with a specific problem. Moreover, fuzzy 

logic deals with fuzzy sets which were proposed by 

Lotfi Zadeh in 1965 [21].  

 

Fuzzy sets are considered as extension of crisp or 

classical sets. In this context, elements of a fuzzy set 

have a multi-valued membership relation toward that 

set, on the contrary of the elements of classical sets 

which have only a binary membership value, 0, or 1. 

The membership function µÃ(x) of an element x in the 

fuzzy set Ã produces degree of membership for that 

element in the given fuzzy set. It is given in the range 

[0,1], where 1 indicates that the element is completely 

in the set, 0 indicates that the element is completely 

not in the set, whereas values between 0 and 1 indicate 

that the element has a partial membership in the set. 

 

Another essential point, fuzzy logic does not function 

similar to probability theory. In fuzzy logic, the sum 

of memberships of an element towards a set is not 

essentially equals one. Oppositely, in probability 

theory it needs to equal one [5].  

 

4.Methods 
4.1Data collection 

Proposed approach was validated using datasets from 

three open-source projects: Jackrabbit [22], Lucene 

[23], and HttpClient [24]. These datasets have been 
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used by the majority of the surveyed papers and 

especially in baseline papers. Each dataset contains 

two fields bug id and summary.  

 

In addition, each dataset has corresponding corrective 

dataset that contains the actual data type. Actually, 

these corrective datasets were manually classified by 

Herzig et al. [12] and they were downloaded from 

[25]. 

 

The following lines introduce a brief information of 

these three projects: 

 Apache HTTPClient: it implements HTTP protocol 

from client side. It streamlines HTTP requests and 

used in testing HTTP-based applications. It is also 

helps in client-side authentication, state 

management [5, 24]. 

 Apache Jackrabbit: it is a content repository for java 

used to store structured and unstructured data, text 

search, version management, and others [5, 22]. 

 Apache Lucene: it is an open-source Java library for 

full text search that could be used by any application 

[5, 23]. 

 

Table 1 shows dataset sizes and modelling split size 

used in the conducted experiments. 

 

Table 1 Overview of datasets and split size 
Item HTTPClient JACKRabbit Lucene 

#Reports 745 2402 2443 

#Bugs 305 938 697 

#Non bugs 440 1464 1746 

#Training 596 1922 1954 
#Tesing 149 480 489 

 

4.2Overview of the proposed approach 

This section details the steps used in the proposed 

approach. In general, it consists of two main phases: 

topic modelling phase which is used to convert textual 

data of bug reports to numeric features in a form of 

topics, the classification phase which is based on fuzzy 

logic concepts. 

 

4.3Topic modelling phase 

In this phase, topics are automatically extracted from 

a corpus of bug reports. A topic is a group of 

semantically related terms that co-occur in a report. 

Hence, it would be possible to discover latent semantic 

relationships and provide effective analysis on report 

contents. In addition, inputs of this phase are the 

textual data of bug reports. Whereas., the output is 

topic membership vectors, one vector for each bug 

report. 

 

This phase can be divided into the following steps: 

1. Data parsing: in this step, the collected bug reports 

were parsed. Particularly, fields containing textual 

information were determined besides to the linkage 

column with corrective data sets.   

2. Applying topic modelling: given a textual bug 

report, Latent Dirichlet Allocation (LDA) extracts a 

predefined number of topics that represent the 

overall idea this report is talking about. 

Fundamentally, implementation of LDA algorithm 

requires identifying the number of topics (k) to be 

extracted from the textual contents. To be bias -free, 

this approach experimentally tuned the value of (k) 

on every 10 successive number of topics  from 50 

topics. This is an important experimental 

hyperparameter to be tuned because the higher 

value of (k), the more general topics are trained. 

Oppositely, the lower value of (k), the more specific 

topics are probably to be extracted [3, 17]. 

Moreover, this approach has applied Stanford topic 

modelling toolbox [20] that implemented LDA 

algorithm. Before that, many common 

preprocessing steps were performed such as data 

cleaning operations, tokenization, stemming, stop 

words removing, and data filtering.  

3. As a result, each topic membership vector consists 

of report id and (k) number of topics with 0 or 1 

value for each topic indicating the existence of that 

topic in the given report. Specifically, this 

mechanism was used by Pingclasai et el. [3] to 

convert probability values produced by LDA into 

0’s, and 1’s.  

 

4.4Fuzzy logic phase 

In fact, this phase operates on two data sets. The first 

one is the dataset resulted from the topic modelling 

phase in a form of topic membership vector for each 

bug report. The second data set is the corrective dataset 

that contains the actual and manual classified type for 

each bug report that will later be compared with the 

predicted type to evaluate the performance of the 

classification model. 

Importantly, this phase is replicated from [5] that 

employed the terms occurred in bug reports. Instead, 

the proposed approach has employed the topics 

occurred in bug reports. Key aspects  of this phase are 

listed below: 

 

1. The idea of fuzzy logic for bug reports 

classification: 

Given a newly submitted bug report to a bug tracking 

system. This report will be automatically given the 

category (bug, non-bug) that includes the larger 
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number of historical reports that are similar to this new 

report. Hence, fuzzy similarity is proposed. 

 

2. Bug report representation in fuzzy logic: 

The concept of membership and fuzzy sets  was 

utilized. Bug and Non-bug categories can be 

represented by two fuzzy sets. Membership of a topic 

expresses the belongingness of that topic in the 

corresponding fuzzy set. Membership value is 

symbolized using µ(t). It is contained within the closed 

interval [0-1]. 

 

3. Definition: 

The topic frequency is how many times does the 

topic occur in the category (Bug, Non-bug) of each 

bug report. 

 

4. On training data, calculate the membership score 

for topics: 

Given a topic topici, and cbug, cnon categories. the 

membership score µtopici(cbug) for a topic (topici) 

toward a category (cbug) can be calculated by dividing 

topic frequency in the reports of category (cbug) on 

topic frequency in the reports of both categories (cbug, 

cnon). And vice versa with regarding to the membership 

score µtopici(cnon) for a topic (topici) toward a category 

(cnon).  

 

Memberships in each category have been calculated 

using the equations (1) and (2). 

 

𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑐𝑏𝑢𝑔) =
∑ 𝑇𝐹𝑏𝑢 𝑔 (𝑡𝑜𝑝𝑖𝑐𝑖 )

∑ 𝑇𝐹𝑏𝑢𝑔 (𝑡𝑜𝑝𝑖𝑐𝑖 )+  ∑ 𝑇𝐹𝑛𝑜𝑛 (𝑡𝑜𝑝𝑖𝑐𝑖 )
 (1) 

 

𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑐𝑛𝑜𝑛) =
∑ 𝑇𝐹𝑛𝑜𝑛 (𝑡𝑜𝑝𝑖𝑐𝑖 )

∑ 𝑇𝐹𝑏𝑢𝑔 ( 𝑡𝑜𝑝𝑖𝑐𝑖 )+ ∑ 𝑇𝐹𝑛𝑜𝑛 (𝑡𝑜𝑝𝑖𝑐𝑖 )
 (2) 

 

where TF donates the topic frequency in the given 

category. 

 

5. The output of training phase are membership scores 

for the given topic into the both fuzzy sets (bug and 

non-bug categories). Hence, zero membership score 

means that the topic does not belong to the given 

category. Also, one membership score means that 

the topic belongs to the given category only. 

whereas, a membership score in the open interval 

(0,1) means that the topic partially belongs to the 

given category. 

 

6. On test data, the fuzzy similarity is obtained by 

calculating the membership score for the given bug 

report: 

    Given a bug report rep i, and cbug, cnon categories. the 

membership scores µrep i(cbug) for a report (repi) 

toward a category (cbug) can be calculated by 

multiplying the membership scores of topics 

occurring in the report according to (3) and (4) 

formulas. And vice versa with regarding to the 

membership score µrepi(cnon) for a report (rep i) 

toward a category (cnon).  

 

Here, equations (3) and (4) have been used: 

 

𝜇𝑅𝑒𝑝(𝑏𝑢𝑔𝑖) = 1 −  𝛱 (1 −  𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑏𝑢𝑔𝑖)) (3) 
 

𝜇𝑅𝑒𝑝(𝑛𝑜𝑛𝑖) = 1 −  𝛱 (1 −  𝜇𝑇𝑜𝑝𝑖𝑐𝑖(𝑛𝑜𝑛𝑖)) (4) 

 

7. Ranking and Classification: 

In this step, the new bug report is given a membership 

score for both categories: bug and non-bug. In 

particular, it is assigned to the category that obtains the 

highest membership score calculated according to (3) 

and (4). 

 

8. Importantly, fuzzy logic operates differently from 

the probability theory. Thus, the membership score 

of a bug report towards a category needs not to 

equal 100%. For example, if a topic has 60% 

membership score in one category, then probability 

theory expects 40% score in the other category. 

Whereas, fuzzy logic allows to have any score 

because the membership score is obtained 

independently for each category [5]. 

9. Finally, as the actual bug report type is given from 

the corrective datasets and the tested bug report is 

predicted by the proposed approach. Then, many 

suitable evaluation metrics have been utilized to 

assess how performant is the proposed approach in 

ranking and classifying bug reports. Figure 2 

illustrates those two phases.  
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Figure 2 The main steps of the proposed approach 

 

4.5 Motivating example 

Table 2 shows a motivating example illustrating the 

fuzzy logic implementation for bug report ranking and 

classification according to the equations (1), (2), (3), 

and (4).  

 

Assume that a training dataset contains five topics, and 

only the three topics asterisked occur in the test report. 

 

For each report in the five bug reports, the topic 

frequency in the both fuzzy sets (bugs and not bugs) 

were calculated using the topic-based datasets. Then, 

the membership value for each report in the bug fuzzy 

set is computed using equation (1) and it is shown in 

the second column in the bellow table, i.e.,  

3/ (3+7) = 0.30, 6/ (6+5) = 0.55, 4/ (4+4) = 0.50, 5/ 

(5+9) = 0.36, and 4/ (4+1) = 0.80. 

 

Similarly, the membership value for each report in the 

not-bug fuzzy set is computed using equation (2) and 

it is shown in the third column in the bellow table, i.e., 

7/ (7+3) = 0.70, 5/ (5+6) = 0.45, 4/ (4+4) = 0.50, 9/ 

(9+5) = 0.64, and 1/ (1+4) = 0.20. 

 

According to equation (3) and assuming that the newly 

coming bug report has the three topics asterisked in the 

bellow table; the membership value for the new 

coming bug report in the bug fuzzy set is calculated as 

follows: 

1 - [ (1 - 0.30) * (1 - 0.50) * (1 - 0.36)] = 0.78. 

 

 

Similarly, according to (3) and assuming that the new 

coming bug report has the three topics asterisked in the 

bellow table; the membership value for the new 

coming bug report in the non-bug fuzzy set is 

calculated as follows:  

 

1 - [ (1 - 0.70) * (1 - 0.50) * (1 - 0.64)] = 0.95.  

Consequently, the new bug report is classified to (not-

bug) as it has the higher membership value in the not 

bug fuzzy set. 

 

Another important point, the membership value of a 

report toward any of bug or not-bug fuzzy sets is 

insensitive to noises. For example, noise resulted from 

those topics that are irrelevant to the reported issue. To 

illustrate that, assume that a bug report consists of two 

topics; the first is relevant with 0.6 membership value, 

the second is irrelevant and rarely exists with 0.1 

membership value. Then the membership value of the 

report containing both topics toward the bug fuzzy set 

equals 1- [(1-0.6) * (1-0.1)] = 0.64. whereas the 

membership value of the report containing only the 

relevant topic toward the bug fuzzy set equals 1- [(1-

0.6)] = 0.60, which it is not much smaller than 0.64. 

 

Table 2 Motivating example 
Topics TFbug TFnon µbug µnon 

T1* 3 7 0.30 0.70 

T2 6 5 0.55 0.45 

T3* 4 4 0.50 0.50 

T4* 5 9 0.36 0.64 

T5 4 1 0.80 0.20 
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5.Experimental design 
This section presents the implementation of the main 

two phases in this approach besides to the data 

preprocessing operations that have been applied. 

 

5.1Data preparation 

This paper has applied Stanford topic modelling 

toolbox [20] that was written by Stanford natural 

language processing research group. This toolbox 

implements LDA algorithm through several types of 

scripting steps that have been written in Scala 

programming language. In particular, it enables 

importing and preparing spreadsheets data; training 

several LDA models such as LDA and LDA labeled; 

configuring several parameters; and producing usable 

and accurate results. 

Data preparation is a pipeline process that extracts the 

textual content and converts it into a usable form by 

LDA algorithm, besides it guarantees having a model 

with improved performance. In this work, data 

preparation pipeline included the following steps: 

 Identifying the columns including the bug-id, and 

the textual content to be analyzed. 

 Remove punctuation symbols. 

 Change texts into lower case to decrease the number 

of unique words. 

 Remove words that are shorter that three characters 

in order to having a meaningful word. 

 Removing words that appear in less than four bug 

reports because these words are considered rare and 

do not contribute much in measuring the similarity. 

 The words appearing more than 30 times were 

removed because they are also unimportant for 

measuring similarity. 

 Bug reports that have missing textual contents were 

discarded. 

 Importantly, as seen in some literature, the 

implemented approach did not apply stemming 

technique because it may remove the negative 

phrases that they could have a special meaning in 

bug reporting process.  

 

5.2Topic modelling 

There are many parameters to configure LDA topic 

modelling algorithm. Mainly, there are four 

configurable parameters to be set. First, number of 

topics. Second, number of iterations required to train 

the model. Third, the association factor α; higher value 

of α means that a bug report is likely to be associated 

by many topics. Fourth, the association factor β; 

higher value of β means that a topic is likely to be 

associated by many terms. Table 3 shows values for 

LDA hyperparameters. 

Table 3 LDA parameters  
Parameter Value Notes 

maxTopics 10-50 Tuned experimentally 

maxIterations 1500 [17] 

topicSmoothing(α) 0.01 [17] 

termSmoothing(β) 0.01 [17] 

 

Furthermore, there are two types of learning 

techniques to train topic models. The first one is called 

collapsed variational Bayes approximation 

(CVB0LDA). It uses all the available CPU cores in the 

machine, so that it can reach the convergence state 

faster. The second type is called collapsed Gibbs 

sampler (GibbsLDA) which requires less memory for 

training. Therefore, this research used Gibbs sampler 

for training and inference [20]. 

 

Finally, the main output of the topic modelling phase 

is topic distribution probabilities (p) for each report. 

Then, these probabilities were converted into 0 or 1 

indicating whether a topic appears in a report or not. 

In particular, a one value was given when p>0; 

otherwise, zero was given.  

 

5.3Classification 

As a result of the previous phase, 15 experiments were 

conducted in this phase; each experiment was 

implemented against one dataset out of the three 

projects with each value for number of topics (10, 20, 

30, 40, and 50). 

 

Data of each experiment is divided to training and 

testing. Then, a special programming module was built 

implementing the formulas (1), (2), (3), and (4) 

introduced in the previous section to develop a fuzzy 

similarity-based classifier. Importantly, 10 runs for 

each experiment were executed and the average of 

performance values was recorded for each run. 

 

More important, from machine learning perspective, 

imbalanced data is a challenging problem [26]. It 

occurs when the distribution of bug reports across 

classes is imbalanced. However, the resulted topic-

based data sets were statistically checked by finding 

number of instances in both positive and negative 

classes. Consequently, it was confirmed that they were 

balanced and they could be used to train classification 

models. Importantly, according to the logic used in the 

proposed approach which is built based on relative 

weighting for both positive and negative classes ; there 

will be no influence to the imbalanced data (if existed). 

As well as, topic modelling is considered as a kind of 

feature selection technique.  
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5.4Validation and evaluation methods 

• Resampling technique 

From machine learning perspective, there are many 

evaluation methods that could estimate how well the 

classifier model does on unseen data. Specifically, 

these methods are train and test splits, k-fold cross 

validation, leave one out cross validation, and repeated 

random test-train splits [26]. In this paper, random 

test-train splits method was used. For each dataset out 

of 15 datasets, it was divided into training and testing 

parts using size ratio of 80:20. The training data was 

used to train the fuzzy logic algorithm. The test data 

was used make predictions and evaluate results against 

the actual results. This process was repeated 10 times 

and the average performance was recorded. 

 

 Confusion matrix 

It is a tool that provides useful information about the 

behavior of the models in terms of the following [27]: 

Ture Positives (TP): the number of bug reports that are 

actually bugs. True Negative (TN): the number of non-

bug reports that are actually non-bugs. False Negative 

(FN): the number of non-bug reports that are actually 

bugs. False Positive (FP): the number of bug reports 

that are actually non bugs. 

 

 Performance metrics 

This work used three metrics in order to measure the 

performance of the proposed classifier. They are 

precision, recall, and F-measure. They measure the 

performance by focusing on the positive class (bugs in 

this case) [27, 28]. 

- Precision computes the ratio of the total number of 

correctly classified reports as bugs divided by the 

total number of all reports that are actually bugs. 

Precision = TP / (TP + FP). 

- Recall finds the ratio of the total number of 

correctly classified reports as bugs divided by the 

total number of reports that are correctly classified 

into bug and non-bug. Recall = TP / (TP + TN). 

- F-measure is used to summarize both the Precision 

and the Recall in one metric. The higher F-measure 

is, the higher both Precision and Recall are at the 

same time. F-measure = (2 * Precision * Recall) / 

(Precision + Recall). 

 

6.Results 
This section presents the research results in four main 

points: Newly submitted Jira bug reports can be 

automatically classified into either bug or non-bug and 

indicating to which extent they belong to both classes. 

 

 

This research manages to classify bug reports to bugs 

and other requests in two ways. The first way is crisp 

classification which means that a bug report is 

classified completely as a bug or completely as a non-

bug. The second way is soft classification which 

indicates to which degree a bug report belongs to the 

both categories bug and non-bug. 

 

To the best of our knowledge, this is the first approach 

among other fuzzy logic approaches that raises this 

feature. This new feature offers many advantages with 

regard to the software maintenance activities in terms 

of efforts and costs, as compared with the classical first 

methods. Table 4 shows two sample test reports that 

were classified using both hard and soft methods by 

the proposed approach. 

 

Table 4 Two sample classified bug reports using 

proposed approach 
Membership  LUCENE 

REP-1003 

LUCENE 

REP-2526 

Membership in 

Bug fuzzy set 

0.69 0.81  

Membership in 

Not-bug fuzzy set 

0.80 0.69 

Classified Not bug Bug 

 

2. Lucene project shows the best performance out of 

the other two projects. 

  

Table 5 shows the evaluation results of the three 

projects HTTPclient, Jackrabbit, and Lucene using the 

proposed approach in terms of precision, recall, and F-

measure metrics. In particular, the F-measure metric 

varies between 0.63 – 0.81 for HTTPclient, 0.70 – 0.78 

for Jackrabbit, and 0.78 – 0.84 for Lucene. Moreover, 

the results illustrate that the improved performance is 

recorded for Lucene project. 

 

3. Regarding Jira projects, number of topics equals 20 

is the optimal tuned value that showed the best 

predictive performance. 

 

Table 5 shows number of topics that was used in model 

training and fitting. It is seen that the best performance 

score is gained when using 20 topics to train the 

model. However, increasing or decreasing number of 

topics parameter does not imply any trend or pattern 

between number of topics and the overall 

performance. Finally, this work also proves that LDA 

topic modelling algorithm was correctly configured. 
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Table 5 Performance of topic-based fuzzy logic 

classifier (P: Precision, R: Recall, F: F-measure) 
#Topics Dataset P R F 

10 

 
 

HTTPClient 0.59 100 0.74 

Jackrabbit 0.57 0.94 0.71 
Lucene 0.65 0.98 0.78 

 20 HTTPClient 0.77 0.85 0.81 

 Jackrabbit 0.70 0.88 0.78 

 Lucene 0.73 0.98 0.84 

30 HTTPClient 0.68 0.83 0.75 
 Jackrabbit 0.70 0.86 0.77 

 Lucene 0.70 0.94 0.80 

40 HTTPClient 0.75 0.77 0.76 

 Jackrabbit 0.62 0.80 0.70 

 Lucene 0.69 0.95 0.80 
50 HTTPClient 0.51 0.80 0.63 

 Jackrabbit 0.61 0.88 0.72 

 Lucene 0.68 0.99 0.81 

 

Figure 3 shows a chart of performance curve for each 

of the three research subjects’ models. In x-axis 

appears the number of topics used to train each model. 

In y-axis appears the F-measure score that is achieved 

by the proposed model. Actually, it indicates that each 

software project may have its own optimal value for 

the number of topics that could achieve the maximum 

possible performance in classification, i.e., 20 topics 

in this case. 

 

Finally, according to the shown evaluation results, it is 

concluded that hybrid classification models that 

combine topic-based data and fuzzy logic are able to 

classify bug reports to two categories with significant 

score of performance. In particular, the software 

projects that can be benefited from this approach are 

projects managed by JIRA bug tracking system. 

 

4. The proposed approach outperforms the baseline 

approaches in terms of performance metrics. 

Generally, fuzzy logic approaches outperform 

machine learning approaches. 

  

The proposed approach used topic-based data to train 

a classification model by leveraging the fuzzy set 

theory. The first baseline approach used word-based 

data to train a classification model using the fuzzy set 

theory [5]. The second baseline used topic-based data 

to train three models using several machine learning 

techniques [3]. The last baseline used word-based data 

to train classification models using the same machine 

learning algorithms utilized by the second approach 

[11]. More importantly, all of the models are 

compared by using the same datasets. Table 6 shows a 

comparison summary among the four approaches in 

terms of F-measure performance metric. The asterisk 

(*) indicates the models that have been outperformed 

by the proposed approach in this paper. 

 

 
Figure 3 Model performance with number of topics  
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Table 6 Comparison between proposed approach and 

other three ones in terms of F-measure 
 Model HTTP JACK LUCENE 

Topic-based Fuzzy 

logic 

0.81 0.78 0.84 

Word-based Fuzzy 

logic [5] 

0.82 0.78 0.83* 

Topic-based Machine 

learning [3] 

0.73* 0.74* 0.80* 

Word-based Machine 
learning [15] 

0.71* 0.70* 0.67* 

 

Significantly, the two fuzzy logic-based approaches, 

including the proposed one, have outperformed 

machine learning based approaches in terms of F-

measure performance metric in all of the three 

datasets. 

 

regarding the two fuzzy logic-based approaches, 

including the proposed one. It is seen that topic-based 

proposed approach has outperformed word-based one 

in Lucene project, and it has a similar performance 

score in Jackrabbit project, and it has achieved a 

slightly lower performance in HTTPclient project. 

 

7.Discussion 
The topic-based models, either fuzzy logic or machine 

learning, have outperformed other models that mainly 

used feature selection techniques. This can be due the 

nature of the process itself. Actually, topic models 

extract topics from textual contents. Each topic 

contains several terms which appear in the text. 

Importantly, the terms appearing in a topic are 

semantically related [16]. However, feature selection 

techniques loss this advantage. Accordingly, this 

clearly explains why measuring the similarly of textual 

contents using topic modelling is more efficient than 

using feature selection. In addition, it also explains 

why there is no trending regarding increasing or 

decreasing the number of topics.  

 

Furthermore, word-based fuzzy logic model has 

outperformed topic-based fuzzy logic (proposed 

approach) in HTTPclient project, and it shows slightly 

similar performance in Jackrabbit and Lucene 

projects. In fact, LDA algorithm configurations could 

be the reasons. Specially, increasing the value of the 

association factor β will make the topic more generic. 

Thus, decreasing value of β will produces one-term 

topics which is similar to word-based approaches. 

Finally, another justification would explain this result; 

it is the quality of HTTPclient dataset and to which 

extent it is rich in useful terms. 

 

The proposed approach is able to indicate how much a 

report is faulty or non-faulty. This can be determined 

by comparing the membership value of the report in 

the both categories bug and not-bug. Importantly, 

summation of both membership values need not to 

equal 100%. This is because our research problem has 

a vagueness nature and not uncertainty problem. This 

makes fuzzy logic the appropriate technique to model 

such this problem. Whereas, probability theory is the 

suitable technique to model uncertainty problems 

which essentially requires 100% for all events.     

 

Limitations 

The proposed approach was validated using three 

datasets. Each dataset was accompanied by a 

corrective data set that was manually classified. 

Hence, any errors in this manual process may produce 

misleading and unrealistic results. Moreover, the 

utilized datasets were open source written in java and 

they were managed by Jira bug tracking system. 

Accordingly, any change in the used datasets, 

programming language, or bug tracking systems will 

affect the generalizability of the proposed approach. 

 

8.Conclusion and future work 
This research employed the textual information 

available in the reported bug reports in bug tracking 

systems to conduct an automatic approach for 

classifying bug reports into either bug or other request. 

As a result, this proposed approach eliminates the need 

of manual classification process and its accompanied 

drawbacks. 

  

First, Stanford topic modelling toolbox implementing 

LDA algorithm was adopted to structure the content of 

bug reports in form of topics with their probabilities of 

appearing in the report. These resulted topics were 

assumed to distinguish bug reports from other type of 

reports. Second, a model was developed using the 

fuzzy logic to measure the bug reports similarity as a 

technique for classification. Several experiments were 

conducted using three open-source systems with 

careful configuration. Evaluation of the obtained 

results leads to two main conclusions. It is concluded 

that modelling of bug reports in the form of topics is 

able to classify bug reports. Also, the optimal number 

of extracted topics that achieved the most improved 

performance is 20 topics. 

  

With this number of topics, and in terms of 

performance metrics, the classification model 

produces F-measure score varies within 0.78 to 0.84 

across the three projects. Finally, this approach 

outperformed two baseline approaches that used 

machine learning. Moreover, this approach achieves a 
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relatively similar performance as compared with 

another baseline approach that used fuzzy logic based 

on word-based data. 

 

In future work, recommendations are going toward 

exploring new directions as follows: 

 Using cross-project datasets to experiment whether 

a data of one project can be used to classify data of 

another project. 

 Employing new datasets for new projects and 

related to bug tracking systems other than JIRA, 

besides experimenting more richer datasets in 

textual contents. 

 Experimenting several types of LDA algorithms for 

topic modelling with careful setting for their 

parameters. 

 In terms of machine learning, the proposed 

approach is called supervised modelling as the 

actual data labels were given. But these labels are 

often not available. So that, unsupervised 

techniques with fuzzy logic are also considered 

targets for future research. 
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