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1.Introduction 
Recent years have been marked by a steady increase 

in the number of roads and demographic trends. 

Faced with this reality, many countries and national 

and international organizations have taken part in an 

international effort aimed at achieving several key 

objectives: providing accurate information on the 

scale of disasters, facilitating the intervention of 

rescue teams in the event of a major catastrophe, and 

coordinating international aid to help disaster-

stricken regions. 

 
*Author for correspondence 

Indeed, in major disaster situations, it becomes 

extremely difficult for human responders to assess 

and access the situation on the ground. This is where 

satellite images come in very handy, as they provide 

essential information for organizing a rapid and 

effective response. These images help to orientate 

rescue teams by providing detailed maps of the 

damage, and also facilitate the identification of 

communication routes that are still operational to 

deliver the necessary aid. 

  

Remote sensing plays an essential role in establishing 

a rapid and effective response chain to major hazards, 
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enabling authorities to quickly identify areas of 

interest and assess the situation after a disaster [1, 2]. 

This has prompted many countries to launch their 

own satellites and improve the spatial resolution of 

the sensors on board. However, this improvement has 

led to an exponential increase in the size of satellite 

images, from a few kilobytes to gigabytes, making 

the task of photo-interpreters increasingly difficult. 

Hence, the growing need for accurate and dependable 

maps is on the rise, presenting a challenging issue to 

address. 

 

In the lack of sufficient cartographic resources, those 

in positions of authority frequently find it difficult to 

accurately determine the boundaries of urban areas 

and the borders between neighborhoods [35]. This 

highlights the need to automate damage assessment 

of linear structures and the identification of passable 

roads, to save precious time in these critical 

situations. As a result, the demand and need for 

reliable maps continues to grow, posing a major 

challenge. 

 

The extraction of linear structures from very high-

resolution satellite imagery is a widely debated topic 

[38]. This can be explained by the radiometric and 

structural diversity of these sought-after objects in the 

image [913]. 

 

Indeed, linear structures present a variable 

radiometric response from one city or region to 

another, depending on the type of bituminous cover 

used in their construction. This variability makes 

radiometric characterization of these structures 

particularly complex. In the case of radar images, 

there are several objects with a similar radiometric 

response, and the presence of radar noise, known as 

speckle, makes radiometric characterization of linear 

structures difficult. 

 

From a geometric perspective, linear structures in 

satellite images exhibit irregular shapes with local 

curvatures and occlusions (e.g., bridges, trees, 

shadows), complicating interpretation. Extracting 

these structures is intricate due to specific object 

characteristics. Detecting changes between images 

taken before and after an event requires multiple 

processing operations to rectify errors related to 

varying shots, sensors, and conditions. Ensuring 

processed images correspond to the same scene is 

critical. During disasters, existing algorithms face 

challenges with unprocessed, noisy images, leading 

to errors in infrastructure damage detection and a 

high false alarm rate. In such situations, resorting to 

traditional visual interpretation becomes necessary, 

albeit time-consuming. This research aims to identify 

and extract linear structures, focusing on road 

networks, settlement boundaries, and wetlands. The 

method involves multiscale analysis using wavelet 

filtering and the mathematical watershed approach, 

followed by filtering based on the object's 

rectangularity measure and utilizing morphological 

operators to accentuate outlines and isolate road 

network axes. 

 

To achieve this objective, the literature on linear 

structure detection is reviewed in Section 2. Section 3 

outlines the methodologies, while Section 4 and 

covers the study's results and discussion. Section 5 

concludes with a brief discussion of the results and 

prospects. 

 

2.Literature review 
Remote sensing is both an advanced technology and 

a scientific discipline that plays an essential role in 

the observation and analysis of our environment. As a 

result, it plays a crucial role in defining, monitoring 

and evaluating natural resource management policies 

[14]. Thanks to the integration of ground-based 

measurements and the use of geographic information 

systems, remote sensing is now making a decisive 

contribution to solving a range of problems linked to 

the environment, health, land-use planning, the 

rational exploitation of natural resources and the 

prevention of natural disasters [15]. Its potential uses 

encompass a wide array of domains including 

agriculture, forestry, hydrology, water resource 

management, oceanography, geology, cartography, 

urban development, land surveying, and even 

business analytics. Nevertheless, the increasing need 

for accurate maps presents a formidable hurdle [16]. 

When adequate mapping resources are unavailable, 

decision-makers frequently encounter obstacles in 

precisely delineating geographical borders. 

Therefore, it becomes imperative to create efficient 

and suitable information technology (IT) solutions. 

The scrutiny and comprehension of remotely sensed 

images assume a significant, if not indispensable, role 

for photo interpreters and subject matter experts 

during the map production process. 

 

These analytical techniques enable the more 

straightforward identification of morphological 

features like road systems and waterway networks. 

Numerous studies, both contemporary and historical, 

have addressed the challenge of autonomously 

detecting road networks in aerial or satellite imagery. 

These investigations have notably concentrated on 
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methodologies for detection and road pattern 

modeling. When it comes to urban analysis, the 

determination of the urban perimeter is crucial, 

particularly for assessing the peripheral growth of 

large cities. Identifying and characterizing urban 

networks is a crucial step in the urban planning and 

management process [17]. Nevertheless, this 

procedure encounters a methodological challenge 

because urban infrastructures exhibit diversity and 

are frequently accessible to a limited extent. In 

developing nations, the identification and description 

of urban infrastructures (including transportation 

methods and road surfaces) holds significant 

relevance [17]. One of the difficulties lies in the fact 

that, within an urban area, it is not uncommon to 

change rapidly from a paved road to an unpaved one, 

which complicates their identification. 

 

In this research, the preference is for the use of 

mathematical morphology [1820] to detect urban 

features from satellite images. This method proves to 

be the most suitable, focusing on the study of form, 

particularly for identifying and retrieving linear and 

planar entities like road systems and off-road skiing 

paths [21]. 

 

The detection of road networks is of particular 

importance for many remote sensing applications, 

such as multisource image registration, map updating 

and automatic navigation [22]. In developing 

countries, identifying linear configurations holds 

significant significance. In producing reliable 

cartographic data [17]. However, the extent of the 

areas to be mapped and the frequency of updates 

require the development of efficient algorithmic tools 

for the detection of map features. we focus on the use 

of satellite and aerial imagery to detect linear objects, 

such as the diverse networks within the radar image 

of Douala (Cameroon), primarily the road and 

hydrographic systems. While many methods are now 

available when aiming to automatically or semi-

automatically extract road networks from high-

resolution images, radar images introduce a unique 

set of challenges. Traditional methods for detecting 

linear structures, based on differences in averages 

between zones, often fail in this case [23]. 

 

Multiple approaches have been suggested to extract 

linear structures from satellite imagery. For example, 

the Hough transform [24, 25] have been widely used 

to search for parametric curves (such as line 

segments or circles) in an image. However, this 

method can be limited by parametrization restricting 

the search to line segments. To overcome these 

challenges, a Markov field-based approach is used to 

exploit a priori information on continuity and 

neighborhood relationships between pixels, enabling 

the identification of disruptions in continuity within 

an interferogram [26]. Regrettably, when dealing 

with satellite images, this technique can only yield 

fragmented sections of roads. In their article, [27] 

proposed a method for extracting the road network of 

Douala city using mathematical morphology and 

neighborhood processing. However, this approach 

faced a drawback due to the discontinuity of the 

structures. Introduced a method based on marked 

point processes for structure extraction, but it 

encountered issues of over-detection and omission of 

linear structures [28]. Another approach by [7]; 

utilized texture analysis by leveraging spatial 

connections among pixels. Nonetheless, this 

technique demanded substantial processing duration 

and the linear configurations exhibited uneven 

textures. 

 

An alternative proposed in [12], involved an object-

based image classification method that exhibited 

resilience to noise but encountered difficulties in 

precisely specifying the desired level of detail [13], 

utilized the wavelet transform to partition the image 

into distinct levels of scale, filtering the resulting 

regions based on rectangularity measures derived 

from the relationship between the object's boundary 

length and its enclosed area. Ultimately, they applied 

morphological operations to sharpen edges and 

generate a skeleton representing the main axes of the 

road network. 

 

Given the remarkable achievements of deep learning 

models in various visual tasks, they have been 

extensively applied and refined to address road 

network extraction challenges using remote sensing 

images. Many of these models have approached road 

extraction as a semantic object segmentation 

problem, where roads are treated as distinct objects 

and separated from the background through semantic 

segmentation. Proposed a combined approach using a 

fully convolutional network (FCN) in an ensemble 

strategy to tackle the imbalance between road and 

background contents in images [29]. Combated label 

noise by combining deep neural networks (DNNs) 

with a noise probabilistic model [30]. In [31], a deep 

learning model that operates sequentially was utilized 

to rectify labeling inaccuracies using learned label 

probability sequences while [32] incorporated 

conditional dilated convolution modules in a 

convolutional neural network (CNN) for full-scale 

feature fusion. 
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To preserve road segment details, [33] proposed a 

network architecture that incorporates scale-sensitive 

modules and scale-fusion modules, designed to adapt 

to variations in scale. Introduced a network model 

with a global context-aware design, aimed at 

harnessing spatial context characteristics and 

associations to boost the semantic significance of 

road areas [34]. Delved into the examination of 

multiscale spatial contextual attributes through the 

utilization of global spatial feature pyramid pooling 

[35], while [36] emphasized edge and topology 

preservation for accurate road contour delineation. 

[37]; introduced a bidirectional high-resolution 

network (Bi-HRNet) for predicting node heatmaps 

and directional connectivity to enhance road 

segmentation integrity. 

 

To enhance feature representation and predictions, 

attention mechanisms were incorporated. Introduced 

position attention, leveraging contextual properties 

and modules for extracting foreground context 

information, favoring the inference of occluded areas 

[38]. Integrated regional attention to focus on 

foreground contents and suppress road distribution 

imbalance [39]. Adopted an attention mechanism that 

operates at a block-level across multiple dimensions, 

[40, 41] proposed a residual attention scheme for 

spatially heterogeneous road types. 

 

To address limited annotated samples, [42] used a 

generative adversarial network (GAN) with weakly 

supervised segmentation, incorporating image 

generation and binary image post-processing. [43] 

added a spatial penalty mechanism to the GAN to 

balance classes, and [44] employed edge-preserving 

filtering. Introduced a feature pyramid module and 

domain adaptation in the GAN, while [45, 46] 

proposed stage-wise unsupervised domain adaptation. 

Used a learning strategy that relies on scribbles for 

weak supervision, employing an encoder-decoder 

architecture for extracting road segments, which 

includes the propagation of road labels [47]. 

 

For more comprehensive feature encoding, attention 

mechanisms were combined. Channel and spatial 

attention modules were parallel or cascaded in certain 

architectures [48, 49]. Additionally, to address 

sensor-based property differences, some studies used 

crowdsourced, multisource, or multimodal data for 

road extraction [5052]. 

 

This research endeavors to showcase the 

practicability of retrieving such data from a synthetic 

aperture radar (SAR) image captured by the 

European Remote Sensing Satellite (ERS)-1 satellite 

over urban area of Douala in Cameroon. This locale 

frequently contends with dense cloudiness, rendering 

the procurement of images of high optical quality a 

substantial challenge for a significant portion of the 

year. In response, we present a detection technique 

that amalgamates morphological filters (namely, 

opening, erosion, closing, and dilation), watershed 

transformation extended predicate logic (EPL) 

following filtering, and the identification of the 

original image's contours. Detecting narrower roads 

(those narrower than the size of a single pixel) 

presents a significant challenge primarily due to their 

diminutive dimensions, making the processing 

application demanding. 

 

3.Methods 
3.1Data utilized and research location 

We employed a segment of the SAR image from the 

ERS-1, which was captured in 2010 at a frequency of 

5.3GHz using VV polarization, and had a spatial 

resolution of 12.5 meters by 12.5 meters.   

 

3.2Methods  

Currently, numerous studies enable the automatic or 

semi-automatic detection of road networks on high-

resolution optical satellite images. Our approach 

employs two primary methods: the 2D wavelet 

transform combined with statistical analysis, as well 

as the utilization of watersheds and mathematical 

morphology. 
3.2.1Filtering 

Median filter 

To diminish noise within an image, the median filter 

is a viable option. Noise in an image typically refers 

to irregular or outlier pixels, such as isolated bright 

pixels amidst a predominantly dark area, or sporadic 

pixels scattered throughout the image. The process of 

image smoothing seeks to alleviate noise by 

considering neighboring pixels for an average, 

although this can result in a reduction in image 

sharpness. The median filter method offers an 

advantageous alternative in this respect. It reduces 

noise without compromising image sharpness. This 

approach is particularly effective when noise is in the 

form of isolated dots or fine lines. However, it should 

be noted that this method is only applicable to 

grayscale images, unlike the smoothing process 

which can be used on color images. 

G(x,y)=median{f(n,m) | (n,m)  S(x,y) } where S is a 

neighborhood of (x,y) 

Figure 1(a) displays the European Space Agency 

(ESA), and (b) shows the initial SAR image of 

Douala.
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                               (a)                                                                                    (b) 

Figure 1(a) ESA, (b) Initial SAR image of Douala 

 
Wavelet filtering 

In general, linear methods are not efficient for signals 

with singularities. Wavelet methods have been 

developed for this purpose. A wavelet decomposition 

of the signal will provide coefficients that represent 

the signal at different scales and allow to isolate 

details (including noise). The 2D wavelet bases are 

usually constructed by tensor products of 1D wavelet 

bases. Let ϕ be the scale function and ψ the wavelet 

from a 1D multiresolution analysis (MRA) (Equation 

1 and 2). 

 

There are two possible constructions: 

Tensor wavelet bases or anisotropic: 

 
    
    (   )      ( )      ( )                 

     (1) 

Wavelet from the MRA of L
2
(IR

2
): we pose    

       The space of details(wavelets) is    given 

by 

          . We have 

                (     )  (     ) 

 

So 

  

     *    ( )      ( )     ( )      ( )     ( )      ( )  

          +    (2) 

 

For our work, we selected a wavelet from the multi-

resolution analysis with an orthogonal wavelet base, 

coupled with a level 3 Harr wavelet and a mirror 

filter. 

 

To denoise, we can keep only the wavelet 

coefficients that correspond to important scales. we 

threshold the coefficients with a cut-off function 

which cancels the coefficients inferior to a certain 

threshold ε, then we reconstruct the signal from the 

coefficients thus kept. Two types of thresholding can 

be used, corresponding to two cut-off functions: hard 

thresholding consists in applying to the coefficients 

the function (Equation 3). 

       ( )  {
           
              

  (3) 

 

This function is discontinuous which can cause side 

effects. We have considered a soft thresholding that 

uses a continuous function (Equation 4): 

       ( )  {
           
            

              
 (4) 

 

Soft thresholding has been employed to mitigate edge 

effects. 

3.2.2Analysis of texture using statistical methods 

of the first order 

Image analysis and manipulation of data rely on two 

fundamental concepts: texture and structure. Texture 

refers to a collection of textural elements, which are 

continuous and repetitive areas where changes are not 

easily detectable or are detected using available 

methods. In the context of satellite images, textural 

elements consist of resolution elements defined by 

sensor characteristics. These elements share similar 

luminance values or luminance-derived 

characteristics (object dimensions) and have spatial 

relationships. Hence, areas with the same textural 

value constitute a texture. Here, wavelets from the 

MRA of L
2
(IR

2
) associated with soft thresholding 

have been used. In Figure 2, the multistep image 

processing approach for urban feature recognition is 

illustrated, demonstrating the intricate steps involved 

in the analysis. Figure 3 provides insight into the 
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"hard" and "soft" thresholding functions, essential 

components in the processing pipeline. A detailed 

depiction of the 2D multi-resolution analysis is 

presented in Figure 4, showcasing the method's 

effectiveness in handling complex urban imagery. 

Figure 5 explores into the specifics of the multi-

resolution analysis using 2D Harr level wavelet 

transform, highlighting a key aspect of the 

methodology employed in the recognition process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Multistep image processing for urban 

feature recognition 

 
Figure 3 Hard" and "soft" thresholding functions 

 

 
Figure 4 2D multi-resolution analysis 

 

 
Figure 5 Multi-resolution analysis 2D Harr level 

wavelet transform 

 

Texture analysis involves considering the spatial 

distribution of gray levels around a pixel in an image. 

Various texture analysis methods have been 

developed, with the co-occurrence matrix being a 

Initial image capture 

Conversion to grayscale representation 

Utilizing a 3×3 Median filter for noise 

reduction (Filtering) 

Implementation of 2D wavelet transform 

Texture examination through first-order statistical analysis 

(Histogram) 

 

Contour detection through the gradient-based Canny filter 
(Segmentation) 

 

Segregation of distinct target classes using thresholding, aided by 

mathematical morphology via Watersheds (EPL) 

Identification of road networks, inhabited areas, and wetland 

features (Rivers, Lakes) 
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prominent one. This method computes the probability 

of gray level pairs (i, j) occurring, given a 

displacement vector v in a specific direction and 

orientation. However, it has limitations as it does not 

consider all pixel directions. An alternative approach 

proposed in [54] is the texture spectrum method, 

resembling the co-occurrence matrix approach. It 

characterizes stochastic properties of gray level 

distribution but considers all eight neighboring pixels 

around the target pixel, rather than a single 

displacement vector. To address these challenges, we 

adopt a first-order histogram-based analysis method 

described in [55] as a model for our approach. This 

method utilizes histograms to represent the frequency 

of gray levels within a defined neighborhood. From 

this histogram, various statistical parameters can be 

extracted at different levels of complexity. Figure 6 

shows the textural analysis using first-order statistical 

methods, showcasing the grayscale image and the 

corresponding histogram of first-order statistics. 

 

It is important to note that the original image must be 

converted to grayscale before applying median filters, 

as these filters are specifically designed for grayscale 

images. 

 

     
                                          (a)                                                                             (b) 

Figure 6 Textural analysis using first-order statistical methods. (a) Image in grayscale. (b) Histogram of first-order 

statistics 

 
3.2.3Local thresholding by extracting the gradient 

maxima in one direction (canny filter) 

The objective is to keep only the local maxima in one 

direction of the gradient. The principle is to compare 

the norm of the gradient at any point M(i,j) of the 

image with those of its two neighbors M1 and M2 

located in the direction of the gradient at a unit 

distance on either side of M. The moduli of the 

gradients at M1 and M2 are not known a priori and 

are interpolated from the gradients computed at two 

pixels of the image in the vicinity of M1 and M2. The 

algorithm thus highlights the local maxima in 

preferred directions (four directions in the proposed 

example). It then remains to select the maxima to 

keep using one of the thresholding techniques. 

 

In order to obtain the binary image showing the 

contours, it is necessary to threshold the image with 

the local maxima in the four preferred directions. 

Indeed, only the most significant local maxima, 

selected by thresholding, lead to the edge. 
3.2.4Mathematical morphology 

Mathematical morphology, deeply rooted in set 

theory, serves as an image analysis technique [21]. It 

finds its basis in the first law of vision, which posits 

that any object obscures what lies behind it. In 

essence, when object A is positioned in front of 

object B, our visual perception shifts from B to the 

set-based distinction of B-A. This fundamental 

concept underscores the inherent opacity of objects in 

contrast to their translucence, shaping our perspective 

of them. To articulate this, the mind employs 

fundamental notions such as inclusion, intersection, 

union, and more - the foundational principles of 

morphology - to describe and characterize shapes. 
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In this context, the objects under examination remain 

beyond the reach of direct measurement. 

Consequently, analysts must construct a framework 

from which measurements can be derived, a process 

accomplished incrementally through successive 

transformations that progressively highlight the 

desired set within the raw image [18]. Figure 7 

shows the Canny gradient filter. This accentuation is 

achieved through the application of the essential tools 

of mathematical morphology: Erosion, Dilation, 

Opening, and Closing. At its core, mathematical 

morphology hinges on the comparison of objects to 

be analyzed with a reference object possessing a 

known form, referred to as the structuring element, 

which often takes on basic geometrical shapes such 

as circles, squares, or hexagons (Figure 8). 

 

 
Figure 7 Canny gradient filter 

 

 
Figure 8 Visualization of a structuring element: (a) 

square and (b) hexagonal 

 

Transformation by erosion   

Consider a space IR
2
 partially occupied by a set X 

and a structuring element Bx. Bx is then moved so 

that its center occupies. 

The erosion principle applied to a 10×4 binary image 

(Figure 9) using a 3×3 unitary square structuring 

element (Figure 10) with 8th order connectedness is 

illustrated in Figure 11. This involves placing the 

central pixel of the structuring element on each pixel 

of the image. If the logical product of all points in the 

structuring element with those in the image results in 

1, we assign the value 1 to the centered pixel. If any 

logical product yields 0, we assign 0 to the 

corresponding centered pixel. The outcome is 

specific to replacing voids with 0s for managing the 

image edges, consistent throughout subsequent 

processing. Note that a symmetrical edge 

management approach would yield different results, 

although this aspect is not discussed here. For 

grayscale images, binarization is crucial, ensuring 

only two values, 0 and 1, representing dark and light 

parts, respectively [17]. Thresholding is employed, 

assigning 0 to levels between the minimum threshold 

(S1) and maximum threshold (S2), while levels 

below S1 and above S2 are assigned the value 1. The 

choice of thresholding levels depends on the 

information sought. 

 

Successively all the positions x of the space. For each 

position, we ask the following question: is Bx 

completely included in X? In other words: is Bx ⊂ 

X? The set of positions x corresponding to a positive 

answer forms a new set Y called eroded from X by 

Bx. This set satisfies the Equation 5. 

       ( )                ( ) (5) 

 

Transformation by Dilatation   

In the case of a Dilatation, for each position of the 

structuring element Bx in the set X, we ask the 

question: does Bx touch X? in other words: Bx ∩ X ≠ 

0? The set of points in IR2 corresponding to positive 

answers forms a new set Y called the Eroded of X. 

The dilation transformation is written as shown in 

Equation 6.  

    ( )    (6) 

 

The Erosion of the dilated image of Figure 10 gives 

the results presented in Figure 12. All the edges of 

the image become dark. 

 

The principle consists in positioning the central pixel 

of the structuring element on each pixel of the image. 

If the logical sum of all the pixels of the structuring 

element with those of the image is different from 0 at 

least at one point, we assign the value 1 to the 
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centered pixel. If the logical sum is 0 at all points, we 

assign the value 0 to the corresponding centered pixel 

(Figure 13). The result of the dilation of the image of 

Figure 9 is given in Figure 14. We thus obtain a 

unitary image. The Erosion and the Dilatation being 

iterative transformations, and to improve the results 

sought, one sometimes applies a transformation by 

Dilatation on an eroded or an Erosion on a dilated. 

These two types of transformations are called 

respectively, Closing and Opening, that is to say:  

Diltation + Erosion → Closing;  

Erosion + Dilatation → Opening;  
 

Opening   
If we expand by its transpose each point x of EB (X), 

it will be replaced by its structuring element Bx. The 

transformed set D
B
(E

B
(X)) will correspond to the 

union of all these elements Bx, such that xE
B
X . 

We can also say that, the closure is the space that is 

not swept when the structuring element is fully 

included in the complement of the set. The opening is 

expressed as O
B
 (X), or X

B
 and is defined as 

Equation 7.  

  (   (  ( ))                (7) 

The Dilatation of the eroded image in Figure 8 gives 

the results shown in Figure 11. We observe an 

enrichment in bright areas. 
Closing  
The process of dilating a set X with a structuring 

element Bx, followed by an Erosion by the same 

structuring element, corresponds to a closing 

operation. It is expressed by F
B 

(X) or X
B
. It is 

defeated by Equation 8.  

  (  )  (  ( ))                 (8) 

 

Figure 15 illustrates the opening of the image in 

Figure 6 using a 3×3 unitary structuring element, 

while Figure 16 depicts the closing of the image in 

Figure 6 with a unitary 3×3 structuring element. 
Figure 17 shows the opening-closing of the 

thresholded reconstruction barrier 

 

 
Figure 9 Initial shape of a 10×4 binary image 

 

 
Figure 10 Square 3×3 structural element 

 

 
Figure 11 Example illustrating the Erosion 

transformation for three positions of the 3×3 square 

structuring element 

 

 
Figure 12 Eroded shape of the 10×4 binary image in 

Figure 10 

 

 
Figure 13 Example illustrating the expansion 

transformation for three positions of the 3×3 square 

structuring element 
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Figure 14 Dilatation of the image of figure 5 by a 

unitary 3×3 structuring element 

 

 
Figure 15 Opening of the image in figure 6 by a 3×3 

unitary structuring element 

 

 
Figure 16 Closing of the image of figure 6 by a 

unitary 3×3 structuring element 

 

 
Figure 17 Opening-closing of the thresholded 

reconstruction barrier 

 

 

3.3Extraction of linear structure 

The procedure for extracting linear structures is 

outlined in Figure 2, encompassing both aerial 

photographs and radar images. When dealing with 

aerial photographs, a critical step involves the 

conversion of the image into grayscale to facilitate 

subsequent filtering operations. The integration of the 

wavelet transforms guides the determination of an 

appropriate scale, thereby mitigating the risks of 

excessive or inadequate segmentation. A refinement 

stage follows, employing a Median filter to enhance 

the quality of the grayscale image. 

Subsequently, the filtered image undergoes an in-

depth analysis through first-order statistical 

techniques, contributing to a comprehensive 

understanding of its texture. Concomitantly, the 

application of the Canny filter engages in edge 

detection. The synergy between morphological 

operators and segmentation through the Watershed 

method, executed in accordance with a specified 

threshold, effectively demarcates distinct classes 

necessitated for detection purposes. 

 
3.3.1Methodology 

Our methodological approach encompasses a multi-

step extraction process, wherein pivotal stages 

encompass textural analysis and filtering. The 

employment of morphological operators, including 

Erosion, Dilation, Closing, and Opening, serves to 

accentuate the distinct land use patterns. A 

subsequent refinement is achieved through the 

application of Watershed segmentation EPL, further 

enhancing the precision of the targeted outcome, 

which in this case is the layout of road networks. 

 

This complementary strategy effectively tackles 

challenges such as discontinuities, over-detection, 

and omissions that are commonly encountered when 

utilizing automatic methods relying on textural 

analysis through mathematical morphology for the 

extraction of linear structures. The images utilized in 

our study were obtained from SAR images captured 

by the ERS1 satellite of the ESA. Due to the 

unavailability of more recent image data, our 

theoretical framework was applied to an image 

depicting the Douala region in Cameroon, which was 

captured on August 23, 2010. To streamline 

computations and underscore the relevance of our 

chosen methodology, we concentrated on a specific 

section of the image measuring 640×400 pixels. Only 

on-the-fly parameters were employed. For reference, 

the characteristics of the image are summarized in 

Table 1. 
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In a second application, we focused our efforts on an 

aerial photograph depicting the topography of Douala 

city in Cameroon. Utilizing a dedicated algorithm 

within the MATLAB software environment, we 

successfully extracted linear structures from these 

images.                  
3.3.2 Watersheds 

The Watershed method, as outlined in references [56] 

and [57], stands as a fundamental approach in 

mathematical morphology for image segmentation. 

This technique utilizes a geographical representation 

to depict images, where an image is described by a 

numerical function. This conceptualization envisions 

the image as a topographic relief, where the gray 

level of each point is analogous to an altitude value. 

 

Central to the Watershed method is the concept of 

EPL, closely intertwined with the notion of regional 

minima. The process often involves a flooding 

operation, also known as immersion. In this 

visualization, the image is likened to a topographical 

landscape, where clear structures represent peaks and 

dark structures depict valleys. Envision this 

metaphorical terrain being punctured at the sites of 

minima. Subsequently, the topographic surface 

gradually becomes immersed in a vast body of water, 

often considered infinitely expansive for 

experimental ease. As the water flows through these 

perforations (local minima), the water level rises at a 

constant pace, creating a uniform water level across 

all catchment areas. It's crucial to emphasize that 

water can only enter valleys through their respective 

minima. 

 

Upon the convergence of waters originating from 

different minima, barriers or dams naturally form to 

prevent their intermingling. As the complete 

topographic surface becomes submerged, only the 

raised barriers or embankments remain visible, 

effectively delineating watershed areas. The count of 

these emergent dikes is determined by the number of 

local minima in the function. At the culmination of 

the immersion process, the collective set of 

embankments forms closed contours, referred to as 

Watershed Lines, as depicted in Figure 18 [58].

 

 
Figure 18 Construction process of EPL or LPE: (a) Immersion of the relief from its minima. (b) Creation of a 

barrier when two watersheds intersect (c) Completed watershed map [58] 

 

Unfortunately, due to prevalent noise in real-world 

images, the EPL algorithm is applied within the 

context of the gradient image of the intended 

segmentation image. This strategic choice is 

motivated by the gradient's ability to distinguish 

between areas of homogeneity and heterogeneity. 

Pixels in heterogeneous regions exhibit more 

pronounced gradients, indicating significant changes 

in elevation. 

 

As a result, homogeneous image areas correspond to 

regional minima within the gradient image. In this 

context, the EPL essentially corresponds to the peaks 

within the gradient image, mirroring the contours of 

the original image. However, this approach leads to a 

significant problem of over-segmentation, as 

illustrated in Figure 3. 

 

To address this issue, a crucial measure involves 

ensuring that only one gradient minimum is present 

within each region earmarked for segmentation. This 

requirement aligns with the concept of flooding the 

topographic surface formed by the image's gradient, 

not from its native minima but from designated 

markers known as 'M markers' [59]. This variant of 

EPL is commonly referred to as marker-controlled 

EPL. 

 

The fundamental idea behind homotopy modification 

of the gradient is to establish markers for intended 

segmentation regions as the minima of the gradient, 
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while systematically eliminating all other undesirable 

minima. Following this process, the modified 

gradient is inundated with the designated markers. As 

a result, a singular and distinct EPL emerges between 

every pair of markers, naturally aligning itself with 

the contours of the objects already pre-detected 

through gradient analysis. Figure 19 presents the 

Watershed segmentation image and the extracted 

road network from the original 640×400 image of 

Douala city. 

 

To derive the gradient image, a morphological 

gradient is computed for each individual spectral 

band present in the image [6062]. The 

morphological gradient's definition is encapsulated 

by the relationship Equation 9. 

 ( )      ( )      ( )    (9) 
Here, δB and εB signify dilation and erosion 

operators respectively, both applied using a 3×3 

square-shaped structuring elements denoted as 'B', 

while 'A' denotes the image itself. The ultimate 

elevation image is synthesized by amalgamating 

elevation values from distinct spectral bands through 

the utilization of the Euclidean norm. 

 

If the gradient associated with the 'i' the spectral band 

is represented by Gi, and 'NB' signifies the total 

number of bands, the final gradient is defined through 

the subsequent Equation 10. 

G=√∑   
   

       (10) 

 

 
                    (a)                                                                       (b) 

Figure 19 a) Watershed segmentation image of the original 640×400 image of Douala city b) Road network 

extracted from the original 640×400 image of Douala city 

 

4.Results 
4.1Image processing and detection of road 

networks 

Figures 20(a), 21(a), 22(a), and 23(a) depict four 

median-filtered grayscale images, extracted from 

various sources— the first from a satellite image of 

Douala city in Cameroon, the second from an aerial 

photograph of Cross's Douala field, and the third and 

fourth from aerial photographs of Libreville city in 

Gabon. These images represent densely populated 

urban areas with some minor artifacts, including 

noise, cars on road surfaces, buildings, and tree 

shadows. 

 

In Figures 20(b), 21(b), 22(b), and 23(b), the results 

of applying the wavelet transform (2D Harr level 3) 

for image segmentation at different scale levels are 

illustrated. Subsequently, the segmented regions are 

filtered based on their rectangularity measure, 

determined by the ratio of an object's perimeter to its 

surface. 

 

Figures 20(c), 21(c), 22(c), and 23(c) display the 

first-order histograms of the images obtained after the 

wavelet transform. Following this, the Canny contour 

detector is applied. 

 

Figures 20(d), 21(d), 22(d), and 23(d) demonstrate 

the results obtained by applying morphological open-

closed operators through thresholded reconstruction. 

Figures 20(e), 21(e), 22(e), and 23(e) showcase the 

results obtained following the application of the 

watershed method. 
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In Figures 20(f), 21(f), 22(f), and 23(f), it is evident 

that the main road axes in the test images were 

accurately detected. The multiscale analysis 

facilitated the distinction between road contours and 

those belonging to other objects such as buildings, 

while also eliminating contours that describe small 

objects. These results highlight the accuracy and 

efficiency of our algorithm in road identification 

across urban, rural, and peri-urban contexts. 

 

 

4.2Detection of inhabited area and wetlands 

The same algorithm was applied with a few 

adjustments, incorporating considerations for the 

detection of populated areas characterized by 

significantly higher gray levels due to the presence of 

rooftops made of highly reflective materials. This 

aspect was integrated into the histogram analysis. 

Furthermore, the identification of wetland areas, 

distinguished by their extremely low gray levels 

representing water bodies, was addressed.

      
a)                                                                                  b) 

 

            
                                              c)                                                                                     d) 
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e) 

 
            1           2               3          4                            5                      6              7         8 

 

 

 
                                                                        f) 

Figure 20 a) Grayscale image filtered by the median filter, b) wavelet transform, c) histogram d) thresholded 

reconstruction after opening-closing, e) LPE, f) road system (1, 2, 3, 4, 5) 
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                     (a)                                                                             (b) 

    
                                             (c)                                                                                  (d) 

 
(d) 

 

 
                      1                   2                                      3                     4             5 

 

 
f) 

Figure 21 a) Grayscale image filtered by the median filter, b) wavelet transform, c) histogram d) thresholded 

reconstruction after opening-closing, e) LPE, f) road system 
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                           (a)                                                                          (b) 

           
                           (c)                                                                               (d) 

 
                                           (e) 

 
                                              1       2           3 

 

 
                                                                                  (f) 

Figure 22 a) Grayscale image filtered by the median filter, b) wavelet transform, c) histogram d) thresholded 

reconstruction after opening-closing, e) LPE, f) road system 
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                      (a)                                                                  (b)                               

 
                                (c)                                                          (d) 

 
                                                           (e) 

 
 

                                                            1 

  
                                                         (f) 

Figure 23 a) grayscale image filtered by the median filter, b) wavelet transform, c) histogram d) thresholded 

reconstruction after opening-closing, e) LPE, f) road system 
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(a)                                                            (b)

 
   (c) 

 
 

 

              X        W           L              D           k                P 

 

 
Figure 24 a) Histogram Analysis b) thresholded reconstruction using opening-closing c) Watershed transformation 

(EPL), d) populated area 
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a)                                                                                         b) 

 

 
c) 

 

  

 

           R                     S                       V                            W 

 

 

 
Figure 25: a) Histogram analysis, b) Application of opening-closing thresholded reconstruction, c) Watershed transformation 

(LPE), d) swampy area 
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5.Discussion 
5.1Interpretation of the finding 

The landscape of linear structure detection methods 

was broadly categorized into two main approaches: 

local and global extraction methodologies. These 

strategies encompassed a wide range of techniques 

aimed at identifying linear structures, often treating 

them as invariant entities regardless of the scale of 

observation. However, within the realm of signal and 

image processing, scale held paramount significance, 

governing the perception and characterization of 

features, particularly in image analysis. 

 

The linear structure detection algorithm commenced 

with the conversion of the input image to grayscale. 

This preliminary step was pivotal to striking a 

balance between over-segmentation and under-

segmentation tendencies. Subsequently, the 

application of the Median filter performed noise 

reduction, entailing a simple smoothing of the image 

and effectively mitigating the influence of outlier 

pixels through their averaging with neighboring 

pixels. However, while noise reduction was achieved, 

the trade-off was a reduction in image sharpness. 

 

The utility of the Median filter became pronounced 

when noise was manifested as isolated points or fine 

lines. Yet, it's important to note its limitation: it's 

only applicable to grayscale images. To address a 

broader range of noise patterns, the wavelet 

transform was employed. Subsequently, the Canny 

filter calculated the intensity gradient of each pixel, 

revealing the direction of the most pronounced 

change in intensity, from light to dark, and the 

corresponding rate of change. 

 

This enabled the delineation of object edges across 

the study area. A subsequent assessment of edge 

detection was executed through the Watershed 

method. Here, the gradient image of the image to be 

segmented underwent scrutiny. Homogeneous 

regions of the original image emerged as regional 

minima within the gradient image. The resultant EPL 

aligned itself with the peaks in the gradient image, 

essentially tracing the contours of the initial image. 

 

To avert the issue of over-segmentation, the 

condition was established that only a single gradient 

minimum should emerge within each segmentable 

region. This equated to flooding the image's gradient-

defined topographic surface not from its native 

minima, but rather from designated markers. The 

application of morphological operators, specifically 

Opening and Closing, contributed to the elimination 

of peninsulas and the identification of regional 

maxima within the image. 

 

This iterative process superimposed regional maxima 

on the original image, followed by a repeated 

sequence of Opening and Closing operations. This 

dynamic iteration facilitated the detection of distinct 

regions within the image, separated using the EPL. 

The utilization of thresholded reconstruction 

opening-Closing aided in discarding extraneous 

features while preserving vital contours. 

 

The outcomes of this linear structure detection 

process, as depicted in Figures 19f and 20f, 

showcased the influence of various thresholds. A 

comparison with the road network map of Douala 

city (Figure 19f) revealed that not all roads were 

successfully detected. This could be attributed to 

several factors, including roads narrower than a 

single pixel and road segments obscured by the roofs 

of metal-sheeted houses, which exhibited high 

radiometric levels. 

 

The algorithm employed for road network detection 

was then extended to a SAR image of the Douala 

region in Cameroon. This expanded application 

involved the detection of specific features like 

settlements and wetlands, taking into account the 

intensity variations following diverse filtering. The 

resulting images are presented in Figures 24(d) and 

25(d). 

 

Comparison to other studies 

Numerous researchers have endeavored to categorize 

linear structure extraction methods, often opting for a 

classification into two main groups: automatic and 

semi-automatic methods. The former encompasses 

route extraction approaches, including unsupervised 

segmentation and classification, Markov fields on 

graphs, and interpretation systems. The latter consists 

of tracking and filtering methods, active edge, and 

dynamic programming. 

 

In our analysis of linear structure extraction 

techniques, we adopted the classification of local 

methods and global methods, considering them to be 

the most suitable. These approaches follow a logic 

commonly employed in image processing, analyzing 

information at both pixel and object levels. 

Additionally, we introduced a third category 

comprising multiscale techniques that connect local 

information to global information, aiming to identify 

the optimal scale for analyzing the object of interest. 
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The watershed method is also included in this third category. 

 

Table 1 Comparison of different algorithms 
Reference   Category method Satellite resolution Advantages  Disadvantages 

Mohammadzadeh 

et al. [3] 

local mathematical 

morphology 

IKONOS high ✓Rectangular or 

square-shaped 

structures are 

suitable for the 

enhancement of 

linear elements 

✓Requires user 

intervention 

✓Linear features 

lack consistent 

textures 

Chaudhuri et al. 

[4] 

local Mathematical 

morphology 

IKONOS high 

Jinxin et al [5] 

Sun and Mao 

[6] 

local edge Quickbird 

RADARSAT- 

high ✓ The parallel 

edges of linear 

structures provide 

vital information 

✓Confusion 

between road 

contours and 

those of other 

objects 

(buildings, 

rivers) 

Mena and 

Malpica 

[7] 

local texture - high ✓ Exploits 

spatial 

relationships 

between pixels) 

✓Considerable 

time calculation 

✓ Linear 

features lack 

consistent 

textures 

Zhang and Lin 

[8] 

Zhu et al. [9] 

local Classification pixels Aérienne 

RADARSAT-

2 

very high ✓ Easy to apply 

 

 

✓ Noise-

sensitive 

Herumurti et al. 

[10] 

Wei and Feng 

[11] 

global Hough transform - high ✓ Easy to apply 

✓ Noise-

resistant 

 

✓ High error 

rate errors 

✓Unable to 

extract curves 

Shackelford and 

Davis [12] 

global Object classification IKONOS high ✓ Noise-

resistant 

✓Difficult to 

define the level 

of detail desired 

Naouai et al. [13] multiscale 

analysis 

Wavelets transform 

 

Quickbird 

 

high ✓ Determines 

the correct scale 

for route 

identification 

✓Difficult to 

implement 

Zhang et al. [29] Global Ensemble Spatial 

Consistency Fully 

Convolutional 

Network (ESC-FCN) 

for Imbalanced Aerial 

Road Extraction 

 high Imbalance 

Handling 

Ensemble 

Strategy 

Effective 

Semantic 

Segmentation 

✓Computational 

Complexity 

✓Dataset 

Dependency 

Li et al. [30] local Robust Deep Neural 

Network (RDNN) for 

Road Extraction from 

Remote Sensing 

Images with Noisy 

Labels 

 high ✓Noise 

Probabilistic 

Model 

✓True Label 

Predictor (TLP) 

✓Noise Label 

Estimator (NLE) 

✓Regularization 

✓Experimental 

Validation 

✓Complexity 

✓Model 

Complexity 

✓
Hyperparameter 

Tuning 

✓Applicability 

Li et al. [31] Local Sequence Deep 

Learning (SDL) 

Framework for 

Robust Road 

 high -Label Noise 

Correction 

-Utilization of 

Label Probability 

✓Complexity 

✓Computational 

Resources 
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Reference   Category method Satellite resolution Advantages  Disadvantages 

Extraction Sequence 

-Adaptive Label 

Correction 

-Noise Correction 

Loss Function 

Yang et al. [32] local ConDinet++ - 

Conditional Dilated 

Convolution Network 

for Road Extraction 

from Aerial Images. 

 high ✓Feature Fusion 

Mechanism 

✓Conditional 

Dilated 

Convolution 

Blocks (CDBs) 

✓Adaptive 

Architecture 

✓Joint Loss 

Function 

✓Experimental 

Validation 

✓Complexity 

✓
Hyperparameter 

Tuning 

✓Training Data 

Requirement 

✓Computation 

and Resource 

Requirements 

✓Applicability 

Tan et al. [33] local ScaleFusionNet - 

Enhancing Road 

Segmentation with 

Multi-Scale Fusion 

and Sensitivity 

 high ✓Multi-Scale 

Fusion 

✓End-to-End 

Architecture 

✓Scale Fusion 

Module 

✓Semantic 

Segmentation 

Performance 

✓Experimental 

Validation 

✓Computational 

Complexity 

✓ 

Hyperparameter 

Tuning 

✓Training Data 

Dependence 

✓Resource 

Requirements 

✓Model 

Interpretability 

✓Applicability 

to Other Tasks 

Zhu et al. [34] Global  Global Context-aware 

and Batch-

independent Network 

(GCB-Net) for VHR 

Satellite Imagery 

Road Extraction 

 high ✓Global Context 

Integration 

✓Encoder-

Decoder 

Architecture 

✓Batch-

Independence 

Enhancemen 

✓Multi-Scale 

Contextual 

Information 

✓Addressing 

Bias and Transfer 

Learning 

✓Quantitative 

and Qualitative 

Performance 

✓Computational 

Complexity 

✓
Hyperparameter 

Tuning 

✓Resource 

Requirements 

✓Interpretability 

Challenges 

✓Dataset 

Generalization 

✓Model 

Complexity vs. 

Performance 

Trade-off 

Wu et al. [35] local Dense-Global-

Residual Network for 

Road Extraction from 

Remote Sensing 

Images 

 high ✓Spatial 

Information 

Preservation 

✓Context 

Awareness 

Enhancement 

✓Performance 

Improvement 

✓Robustness to 

✓Computational 

Complexity 

✓
Hyperparameter 

Tuning 

✓Interpretability 

Challenge 

✓Resource 

Constraints 
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Reference   Category method Satellite resolution Advantages  Disadvantages 

Occlusions 

✓Universal 

Applicability 

✓High-

Resolution 

ZRemote Sensing 

Imagery 

✓Generalization 

to Extreme 

Scenarios 

✓Training Data 

Dependency 

Zhou et al. [36] local Boundary and 

Topological-aware 

Road extraction 

Network (BT-

RoadNet) 

 high ✓Boundary and 

Topological-

aware Approach 

✓Coarse-to-Fine 

Architecture 

✓Spatial Context 

Module (SCM) 

✓Generalization 

and Applicability

✓Semantic and 

Topological 

Integration 

✓Computational 

Complexity 

✓
Hyperparameter 

Tuning 

✓Data 

Dependency 

✓Interpretability 

Challenge 

✓Generalization 

to Extreme 

Scenarios 

✓Resource 

Constraints 

Wu et al. [37] local Topology-Based 

Multi-Task 

Convolution Network 

(Bi-HRNet) 

 high ✓Topology-

Aware Approach 

✓Node Heatmap 

Learning 

✓Bidirectional 

Connectivity 

Prediction 

✓Non-Maximum 

Suppression 

(NMS) 

✓Enhanced 

Accuracy and 

Completeness 

✓State-of-the-

Art Performance 

✓Complexity 

and Resource 

Demands 

✓
Hyperparameter 

Tuning 

✓ 

Interpretability 

Challenges 

✓Training Data 

Requirements 

Yang et al. [38] local CNN-based Road 

Extraction with 

Contextual 

Information 

 high ✓Enhanced 

Accuracy 

✓Incorporation 

of Contextual 

Information 

✓Foreground 

Contextual 

Information 

(FCI) 

✓Position 

Attention 

Mechanism 

✓
Comprehensive 

Evaluation 

✓Semantic and 

Contextual 

Features 

✓Efficiency 

✓Model 

Complexity 

✓ 

Hyperparameter 

Tuning 

✓Contextual 

Information 

Quality 

✓ 

Generalization 

✓ 

Interpretability 

✓ 

Computational 

Resources 

Chen et al. [39] local Dual-Branch 

Encoder-Decoder 

 high ✓Enhanced 

Feature Fusion 

✓Model 

Complexity 
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Reference   Category method Satellite resolution Advantages  Disadvantages 

Road Extraction 

Network (DBRANet) 
✓Effective 

Feature 

Extraction 

✓Regional 

Attention 

Mechanism 

✓State-of-the-

Art Performance 

✓Complex 

Background 

Handling 

✓
Comprehensive 

Evaluation 

-Scalability 

✓
Hyperparameter 

Tuning 

✓Interpretability 

✓Training Data 

✓Computational 

Resources: 

Dong and Chen 

[40] 

local Block Multi-

Dimensional 

Attention Network 

(BMDANet) 

 high ✓Slender Object 

Handling 

✓Cross-Layer 

Information 

Exchange 

✓Block Multi-

Dimensional 

Attention 

(BMDA) Module 

✓Global 

Attention 

Mechanism 

✓State-of-the-

Art Performance 

✓General 

Applicability 

✓Effectiveness 

Validation 

✓Complexity 

Considerations 

✓
Hyperparameter 

Tuning 

✓Training Data 

✓Model 

Interpretability 

✓Computational 

Resources 

Liu et al. [41] Hybrid Residual Attention 

and Local Context-

aware Network 

(RALC-Net) 

 high ✓Addressing 

Spatial 

Heterogeneity 

✓Dual-Encoder 

Structure 

✓Residual 

Attention Module 

✓Multi-Scale 

Dilated 

Convolution 

✓Performance 

Verification 

✓Feature 

Representation 

and 

Generalizability 

✓Complex 

Architecture 

✓
Hyperparameter 

Tuning 

✓Dataset 

Dependency 

✓Model 

Interpretability 

✓Resource 

Requirements 

✓Ablation Study 

Scope 

Hu et al. [42] global WSGAN 

(Wasserstein GAN) 

 

 high ✓Multi-Step 

Approach 

✓Clear Outline 

✓Salt-and-

Pepper Noise 

Removal 

✓Patch GAN 

✓Incomplete 

Road Network  

✓Manual Binary 

✓Image 

Creation 

✓Parameter 

Tuning 
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Reference   Category method Satellite resolution Advantages  Disadvantages 

Strategy 

✓Weakly 

Supervised 

Training: 

✓Addressing 

Shadows 

✓Training the 

model requires 

substantial 

computational 

resources 

✓Post-

Processing 

Complexity 

Yang and Wang 

[43] 

local Ensemble 

Wasserstein GAN 

with Gradient Penalty 

(E-WGAN-GP) 

 

 high ✓Highly 

Challenging Task 

Addressed 

✓Ensemble 

Strategy 

✓Class 

Imbalance 

Handling 

✓Wasserstein 

GAN 

✓Parameter 

Optimization 

✓Performance 

Metrics 

✓Evaluation on 

Multiple Datasets 

✓Complexity 

and Resource 

Requirements 

✓Model 

Interpretability 

✓Dependency 

on Training Data 

✓Potential 

Overfitting 

✓Ensemble 

Complexity 

✓Generalization 

to Other 

Scenarios 

Abdollahi et al. 

[44] 

local Deep Learning 

Approach for Road 

Extraction from 

High-Resolution 

Images with Modified 

U-Net (MUNet) and 

Generative 

Adversarial Neural 

Network (GAN) 

 high ✓Use of a 

Complete 

Database 

✓Use of Data 

Augmentation 

Techniques  

✓Innovative 

Network 

Architecture 

✓Use of a GAN 

Framework 

✓Limitations in 

the Recognition 

of Complex 

Zones 

✓Dependence 

on Lighting 

Conditions 

✓Road 

Continuity 

Problems 

✓Computational 

Complexity 

✓Spatial and 

Spectral 

Limitations 

Shamsolmoali et 

al.  [45] 

Hybrid Structured Domain 

Adaptation with 

Feature Pyramid 

Network (SDA-FPN) 

for Road Extraction 

 high ✓Addressing 

Complex 

Backgrounds 

✓Structured 

Domain 

Adaptation 

✓Incorporation 

of Feature 

Pyramid Network 

✓Scale-Wise 

Architecture 

✓Joint 

Reconstruction 

Loss 

✓Superior 

Performance 

✓State-of-the-

Art Results 

✓Domain 

Adaptation 

Complexity 

✓Data 

Dependence 

✓
Hyperparameter 

Tuning 

✓Interpretability 

✓Resource 

Intensity 

✓Transferability 

to Other 

Scenarios 
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Reference   Category method Satellite resolution Advantages  Disadvantages 

✓Efficient 

Parameters 

Zhang et al. [46] Local Stagewise Domain 

Adaptation for Road 

Segmentation 

(RoadDA) 

 high ✓Domain 

Adaptation Focus 

✓Stagewise 

Approach 

✓Feature 

Pyramid Fusion 

✓Adversarial 

Self-Training 

✓Efficient 

Domain Gap 

Reduction 

✓State-of-the-

Art Performance 

✓Code 

Availability 

✓Complexity 

✓
Hyperparameter 

Tuning 

✓Data 

Dependency 

✓Computational 

Resources 

✓Interpretability 

Applicability to 

Other Domains 

Wei and Ji [47] 

 

Local Scribble-Based 

Weakly Supervised 

Road Surface 

Extraction Method 

(ScRoadExtractor) 

 high ✓Weakly 

Supervised 

Approach 

✓Scribble Label 

Propagation 

✓Dual-Branch 

Encoder-Decoder 

Network 

✓High 

Performance 

✓Reduced 

Annotation Effort 

✓
Generalizability 

✓Precise Road 

Surface 

Segmentation 

✓Scribble 

Quality 

✓Dependency 

on Super-Pixels 

✓
Hyperparameter 

Tuning 

✓Limited to 

Road Surface 

Extraction 

✓Computational 

Resources 

Ren and al., [48] Global Dual-Attention 

Capsule U-Net (DA-

CapsUNet) 

 high ✓Highly 

Accurate Road 

Extraction 

✓Dual-Attention 

Mechanism 

✓Capsule U-Net 

Architecture 

✓Multiscale 

Context-

Augmentation 

✓Competitive 

Performance 

✓Complex 

Architecture 

✓Model 

Interpretability 

✓Resource 

Intensiveness 

✓Potential 

Overfitting 

✓Applicability 

to 

Unconventional 

Scenarios 

Shao and al., [49] hybrid RENA - Road 

Extraction Network 

with Attention 

Mechanism 

 high ✓Utilizing 

Attention 

✓Characteristic 

enhancement 

✓Residual 

Dilated 

Convolution 

Module 

✓Improved 

overall 

✓Limitation in 

the face of 

Missing 

Information 

✓Dependence 

on Training Data 

✓Dependence 

on Training Data 

✓Challenges of 

Very Dense 
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Reference   Category method Satellite resolution Advantages  Disadvantages 

performance 

✓Adaptability to 

Vegetation and 

Missing 

Information. 

Areas 

Li and al., [50] Local Multi-Map 

Integration Model 

(MMIM) for Road 

Extraction from 

High-Resolution 

Remote Sensing 

Images (HRSIs) 

 high ✓Crowdsourced 

Data Integration 

✓Noise 

Robustness 

Enhancement 

✓High-Quality 

Refined Labels 

✓Avoiding 

Overfitting 

✓Smoother and 

More Complete 

Results 

✓Reduced Data 

Collection Efforts 

✓Data 

Integration 

Challenges 

✓Complex 

Model 

✓Label 

Generation 

Complexity 

✓Dependency 

on Crowdsourced 

Data 

✓Generalization 

to Other 

Scenarios 

✓Resource 

Intensive 

Lin and al., [51] Hybrid United U-Net (UU-

Net) for Large-Scale 

Road Extraction from 

Optical and SAR 

Data 

 high ✓Incorporation 

of Multiple Data 

Sources 

✓Improved 

Accuracy 

✓Enhanced 

Generalization 

✓Spatial 

Distribution 

Insights 

✓Promising 

Applications 

✓Multisource 

Data Synergy 

✓Data 

Compatibility 

✓Computational 

Complexity 

✓Feature 

Extraction 

Challenges 

✓Data 

Acquisition and 

Availability 

✓Training Data 

Quantity 

✓Model 

Interpretability 

Zhang and al., 

[52] 

Local GPS Trajectories-

based CNN for 

Multilevel Urban 

Road Extraction from 

High-Resolution 

Remote Sensing 

Imagery 

 high ✓Automated 

Sample 

Generation 

✓Efficiency 

-Multilevel 

Urban Road 

Extraction 

✓CNN 

Utilization 

✓Accuracy 

✓Elimination of 

Manual Labeling 

✓Data Quality 

and Availability 

✓Generalization 

✓Dependency 

on GPS Data 

✓Rasterization 

and Labeling 

Challenges 

✓CNN 

Complexity 

✓Trade-off 

between 

Accuracy and 

Data Quality 

 

5.2Limitations 

An approach for the detection of linear structures has 

been introduced, relying on a combination of wavelet 

filtering, morphological techniques, and the 

Watershed algorithm. While this algorithm is 

effective in highlighting linear structures, there are 

some limitations associated with this approach. The 

limitations are as follows: 

 Complexity of features: Road networks and urban 

areas can present a great variability of shapes and 

textures in images, making it difficult to 

characterize them accurately using wavelet 
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filtering and morphological approach techniques. 

Some linear patterns may be similar to 

surrounding features, leading to detection 

confusion. 

 Image resolution: The spatial resolution of satellite 

images or aerial photographs may limit the ability 

to detect small linear structures or fine details in 

urban areas. This can lead to a loss of important 

information and incomplete detection of road 

networks and urban areas. 

 Presence of noise: Satellite images and aerial 

photographs can be subject to noise and artifact 

problems, which can alter information and affect 

the accuracy of linear structure extraction. Noise 

can lead to detection errors and false alarms. 

 Sensitivity to radiometric variations: Radiometric 

variations in images can be due to differences in 

lighting conditions, season, vegetation, etc. These 

variations can complicate the detection of linear 

structures. These variations can complicate the 

detection of linear structures, particularly in urban 

areas where materials and constructions can be 

very heterogeneous. 

 Difficulty with wetlands: Wetlands can have 

similar visual characteristics to other natural 

features, making it difficult to distinguish them 

from satellite or aerial images. Accurate detection 

of wetlands can be compromised by their complex 

nature and variability. 

 Need for calibration: methods based on wavelet 

filtering and the morphological approach may 

require careful calibration of parameters to obtain 

the best results. This process can be tedious and 

requires in-depth expertise to achieve optimal 

results. 

 Processing time: Wavelet filtering and the 

morphological approach can be relatively slow in 

terms of processing time, particularly for large 

images or complex scenes. This may limit the 

applicability of these techniques in real-time or in 

contexts where rapid analysis is required. 

 

The extraction of road networks and urban fabric 

(populated areas and wetlands) from satellite images 

or aerial photographs using wavelet filtering and the 

morphological approach presents certain limitations 

and challenges. Although these methods can provide 

satisfactory results in many cases, it is essential to 

take these weaknesses into account when interpreting 

the results and to consider other approaches or 

combinations of methods to obtain more accurate and 

complete results. 

 

 

5.3Implication to society 

The detection of linear structures such as road 

networks, urban areas and wetlands in Cameroon has 

significant implications for society. Here are some of 

the main implications: 

 Improved urban planning: Accurate detection of 

urban areas enables authorities to better plan land 

use, identify areas of urban expansion and make 

informed decisions on infrastructure and public 

services. 

 Road infrastructure management: Detecting Road 

networks enables the condition of existing roads to 

be assessed, areas in need of repair or 

improvement to be identified, and the construction 

of new roads to be planned to improve 

connectivity and facilitate economic development. 

 Disaster prevention: Detecting swampy areas can 

play a vital role in preventing natural disasters 

such as flooding. By mapping these areas, 

authorities can better assess potential risks and 

implement appropriate prevention measures. 

 Humanitarian aid and emergency relief: In the 

event of a natural disaster or emergency, the rapid 

detection of damaged infrastructures and 

practicable communication routes facilitates the 

mobilization of rescue teams and the rapid 

delivery of humanitarian aid to affected areas. 

 Economic development: Accurate mapping of road 

networks and urban areas promotes economic 

development by facilitating trade, the movement 

of goods and people, and stimulating investment in 

infrastructure. 

 Environmental protection: Detecting wetlands 

helps to preserve the environment by identifying 

sensitive areas and enabling their conservation or 

restoration. 

 Monitoring environmental change: Regular 

mapping of linear structures enables us to track 

changes in the landscape over time, which is 

essential for monitoring urbanization, the 

evolution of road networks and environmental 

change. 

The detection of linear structures in Cameroon has 

cross-cutting implications for society, contributing to 

urban planning, infrastructure management, disaster 

prevention, humanitarian aid, economic development, 

environmental protection, and the monitoring of 

environmental change. This information provides 

decision-makers and stakeholders with crucial data to 

make informed decisions and foster the country's 

sustainable, resilient development. A complete list of 

abbreviations is shown in Appendix I. 
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6.Conclusion and future work 
The extraction of road networks and urban fabric 

(including populated areas and wetlands) from 

satellite images or aerial photographs using wavelet 

filtering and the morphological approach poses 

significant challenges due to feature complexity, 

limitations in image resolution, the presence of noise, 

and sensitivity to radiometric variations. Despite 

these challenges, the importance of this research has 

been recognized for infrastructure management, 

disaster prevention, and the economic and 

environmental development of Cameroon. 

 

To address these issues and enhance the accuracy of 

linear structure extraction, future work envisions 

integrating classification using fuzzy logic, machine 

learning, or deep learning. These approaches could 

allow for a more comprehensive characterization of 

linear structures, considering their radiometric and 

morphological variability in images. Advanced 

classification techniques may also aid in 

distinguishing road networks and urban areas from 

other surrounding features, thereby improving overall 

extraction accuracy. 

 

Machine learning, particularly deep learning, can 

play a crucial role in extracting intricate and subtle 

information from images by learning patterns from 

training data. These approaches hold potential for 

adapting to the specific context of Cameroon, 

considering local peculiarities and regional 

variations, for the detection of linear structures. 

 

Future efforts could explore the integration of multi-

source data to enhance the robustness of linear 

structure extraction. Combining satellite, aerial, and 

terrestrial data may offer a more comprehensive and 

detailed perspective of road networks and urban 

areas, contributing to improved decision-making in 

areas such as land-use planning, infrastructure 

management, and disaster prevention. 

 

Despite existing limitations, we maintain confidence 

in the potential of linear structure extraction using 

wavelet filtering and the morphological approach. 

We believe that incorporating classification through 

fuzzy logic, machine learning, or deep learning will 

open new possibilities for more accurate and efficient 

applications in the Cameroon context. Subsequent 

research in this domain will further empower our 

ability to manage infrastructure, prevent disasters, 

and foster the sustainable and balanced development 

of the country. 
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Appendix I 
S. No. Abbreviation Description 

1 CNN Convolutional Neural Network 

2 DNNs Deep Neural Networks 

3 EPL Extended Predicate Logic 

4 ERS European Remote Sensing 

Satellite 

5 ESA European Space Agency 

6 FCN Fully Convolutional Network 

7 GAN Generative Adversarial Neural 

Network 

8 HRSIs High-Resolution Remote Sensing 

Images 

9 IT Information Technology  

10 MRA Multiresolution Analysis 

11 RALC-Net Residual Attention and Local 

Context-aware Network 

12 SAR Synthetic Aperture Radar 

13 SDA-FPN Structured Domain Adaptation 
with Feature Pyramid Network 

14 WSGAN Wasserstein Generative 

Adversarial Network 

 

 

 

 

 

 

 

 

 


