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Abstract  
 

In 1960, Sir R E Kalman published his famous 

paper describing a solution to discrete data linear 

filtering problem. Since then there has been 

advances in digital computing and Kalman filter 

has been subjected to extensive research and 

application, particularly in the area of autonomous 

or assisted navigation. This paper gives a brief 

introduction on Kalman filter, the equations that 

can be used for discrete stochastic systems which 

has additive white Gaussian noise present that 

models ‘unpredictable disturbances’ of the system. 

We then have simulation results of a system 

considered. However in real time scenarios we 

might also encounter non-linear systems and 

Kalman filter is not a good choice for such systems. 

So we go in for extended Kalman filter that 

linearizes the non-linear parameters about its mean 

and covariance using Jacobian matrices, and then 

using the same algorithm as of Kalman Filter. This 

algorithm is implemented on a target moving with a 

known trajectory with Gaussian noise introduced in 

the measurements. With the help of this algorithm 

we have tried to minimize the error in the 

measurements which is shown in the simulation 

results. We have also explained about various 

tuning factors that affect the estimation part and 

showed how these values stabilise after few 

iterations. 
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1. Introduction 
 

Estimation is the process of inferring the value of a 

quantity of interest from indirect, inaccurate and 

uncertain observations. The main purpose of 

estimation can be [1]: 

 

 
*Author for correspondence 

 Determination of planet orbit parameters 

 Determination of the position and velocity 

of an aircraft in an air traffic control system 

 Determination of model parameters for 

predicting the state of a physical system or 

forecasting economic or other variables 

 

Estimation can be defined as ―The process of 

selecting a point from continuous space – the best 

estimate.‖  Filtering is the estimation of the state of a 

dynamic system. The word ‗filter‘ is used because the 

process of estimating or obtaining the best estimate 

from the noisy data involves the elimination of 

undesired signal, which in this case is noise. 

 

An optimal estimator is an algorithm that processes 

observations to yield an estimate of a variable of 

interest, which optimizes a certain criterion. So a 

proper estimate of the system parameters is needed to 

extract the right information and then enhance it. 

Kalman filter is ideal for linear stochastic systems 

that is of our interest in this paper. 

 

The Kalman filter is a set of mathematical equations 

that provides an efficient computational solution of 

the least-squares method. The main advantages of 

using Kalman filter are: 

 Provides running measure of accuracy of 

predicted parameters. 

 Permits optimum handling of measurements 

of accuracy. 

 Allows optimum use of a priori information 

if available. 

 Permits target dynamics to be used directly 

to optimize filter parameters. 

 Addition of random-velocity variable, which 

forces Kalman filter to be always stable. 

 

Kalman filter can also be used for non-linear systems 

though it is not the optimal algorithm for estimation. 

This is achieved by linearizing the non-linear 

parameters about its mean and covariance. This 

algorithm is called ‗Extended Kalman filter‘. 
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2. Kalman Filter 
 

Let us consider a linear stochastic system[3] whose 

state vector is given by X ∈ ℜn. X holds all the 

parameters of interest to us. Let us try to estimate its 

position in Cartesian coordinate system and so our 

parameters of interest will be x, vx, y, vy that 

represents its x-coordinates, velocity along x axis, y-

coordinates, velocity along y axis respectively. 

 

Also let us consider process noise and measurement 

noise to be independent, white Gaussian noise with 

normal probability distribution. As already 

mentioned Kalman filter is optimal estimator for 

linear systems. The difference equations of a linear 

stochastic systems without any control inputs is given 

by [4], 

 Xκ = A * Xκ-1 + Wκ-1                                        (2.1) 

 

With measurement vector Z ∈ ℜm that is 

  Zκ = H * Xκ + Vκ                                (2.2) 

 

In the above equations k is used as an index for time, 

Wκ and Vκ are process noise and measurement noise 

whose covariance matrix is given by Q and R 

respectively where, 

E [Vκ Vκ 
T
] = Qk                                 (2.3)   

E [Wκ Wκ
T
] = Rκ                                 (2.4) 

 

Although Q and R matrices change and needs to be 

updated we have kept it constant and to simplify it 

even further we have used a diagonal matrix that 

holds the square of the error.  The ‗Q‘ matrix can be 

designed such that there would be a plant noise 

coefficient ‗q‘ scaled out of the matrix, which can be 

used to tune the Kalman Filter. Xκ at K=0 is modelled 

as a random variable, with Gaussian distribution with 

known mean and covariance. We can also include the 

control input matrix say U, but for better 

understanding of the algorithm we neglect it.  

 

The algorithm has three steps that are run in a 

recursive loop fashion. The first step is the prediction 

or time update step. At this stage, the equations given 

by (2.5) and (2.6) are used to project the current state 

and error covariance estimate to obtain a priori 

estimate for the next time step. 

Xpredicted = A * Xκ-1                             (2.5) 

Ppredicted = A * Pκ-1 * A
T
 + Q               (2.6) 

Where ‗A‘ is a state transition matrix that relates the 

state at previous time step ‗K-1‘ to the current step 

‗K‘. 

 

The next stage of this algorithm involves calculation 

of innovation and Kalman gain. Innovation is a 

measure of discrepancy between the predicted 

measurement and actual measurements ‗Zκ‘ given by 

equation (2.7).Kalman gain is also referred to as 

blending factor that minimizes the posterior 

covariance and is given by equation (2.9). It can be 

inferred from equation (2.9), as the measurement 

error covariance ‗R‘ approaches zero the actual 

measurement ‗Zκ‘ is accurate while the predicted 

value is less accurate and if priori estimate error 

covariance ‗P‘ approaches zero, the actual 

measurement ‗Zκ‘ is less accurate while the predicted 

measurement ‗H*Xpredicted‘ is more accurate. 

 

Y = Zκ – H * Xpredicted                         (2.7) 

S = H * P * H
T
 + R                            (2.8) 

K = P * H
T
 * S                                   (2.9) 

 

Where H is a constant matrix that relates the state to 

the measurement vector. 

 

The last stage in this algorithm is to update the state 

vector using the predicted values, Kalman gain 

computed and innovation. Equation (2.10) and (2.11) 

gives the state update and covariance update 

equations respectively. 

 

Xupdated = Xpredicted + K * Y                    (2.10) 

Pupdated = ( I - K * H ) * Ppredicted            (2.11) 

 

As already mentioned, Q and R are assumed to be 

constant and so both error covariance P and Kalman 

gain K will stabilize quickly and then remain 

constant. Then these parameters can be pre-computed 

by running the filter off-line. It is frequently the case 

that the measurement error does not remain constant.  

For instance, when sighting beacons in an 

optoelectronic tracker ceiling panels, the noise in 

measurements of nearby beacons will be smaller than 

that in far-away beacons. Also, the process noise Q is 

sometimes changed dynamically during filter 

operation—becoming Qκ —in order to adjust to 

different dynamics. For instance, if we are tracking 

the position of a user of a 3D virtual environment, we 

might reduce the magnitude of Qκ if the user seems to 

be moving slowly, and increase the magnitude if the 

dynamics start changing rapidly. In such cases Qκ 
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might be chosen to account for both uncertainty 

about the user‘s intentions and uncertainty in the 

model. 

 

3. Algorithm Summary 
 

Table 1 summarizes all the equations from 2.1 to 2.11 

with each stage labelled.  

Blue = inputs; 

Orange = outputs; 

Black = constants; 

Grey = intermediary variables. 

 

Table 1: Summarizes Kalman filter algorithm for 

every stage 

 
State Prediction 

(Predict where we are 

going to be) 

Xpredicted = A*Xn-1 + B*Un 

Covariance Prediction 

(Predict how much error) 

Ppredicted = A*Pn-1*AT + Q 

Innovation 

(Comapre reality against 

prediction) 

ȳ = Zn – H* Xpredicted 

Innovation Covariance 

(Compare real error 

against prediction) 

S = H* Ppredicted*HT + R 

Kalman Gain 

(Moderate the prediction) 

K = Ppredicted* HT*S-1 

State Update 

(New estimate of where 

we are) 

Xn = Xpredicted + K*ȳ 

Covariance Update 

(New estimate of error) 

Pn = (I – K*H)* Ppredicted 

 

4. Extended Kalman Filter 
 

As described in section 2, Kalman Filter algorithm is 

used to solve linear stochastic systems with white 

Gaussian noise. When the same algorithm is applied 

to non-linear systems it may fail. Instead we can 

linearize the non-linear parameters about its 

estimated mean and covariance and then apply 

Kalman filter algorithm to it. Such a filtering 

technique is referred to as Extended Kalman Filter or 

EKF [6][7]. 

 

We can linearize the estimate around the current 

estimate using the partial derivatives of the process 

and measurement function to compute estimate even 

in non-linear situations. There are few changes that 

needs to be brought in Kalman filter algorithm before 

we can apply it to nonlinear systems. First and 

foremost we must define our state vector X ∈ ℜn 

whose equation is given by, 

Xκ = f (Xκ-1, Uκ, Wκ-1)                          (4.1) 

 

With measurement vector Z ∈ ℜm given by, 

Zκ = h (Xκ, Vκ)                                     (4.2) 

 

Where the variables used are same as in section 2.0. 

‗A‘ is a Jacobian matrix of partial derivatives of ‗f‘ 

with respect to ‗x‘ and is given by, 

 [ i, j ] = 𝜕       𝜕      

 

‗W‘ is a Jacobian matrix of partial derivatives of ‗f‘ 

with respect to ‗w‘ and is given by, 

 [ i, j ] = 𝜕       𝜕      

 

‗H‘ is a Jacobian matrix of partial derivatives of ‗h‘ 

with respect to ‗x‘ and is given by, 

 [ i, j ] = 𝜕       𝜕      

 

‗V‘ is a Jacobian matrix of partial derivatives of ‗h‘ 

with respect to ‗v‘ and is given by, 

 [ i, j ] = 𝜕       𝜕      

 

Here the Jacobian matrices A, W, H, V are not 

constant and are to be updated for every time step. 

Thus to sum up all the equations used in EKF, we 

have: 

EKF time update equations: 

Xpredicted = f (Xκ-1, Uκ, 0)                         (4.3) 

Ppredicted = Aκ * Pκ-1 * Aκ
T
 + Wκ * Qκ-1 * Wκ

T
  

                                                                  (4.4) 

EKF measurement update equations: 

Kκ = Pκ * Hκ
T
 / ( Hκ * Pκ * Hκ

T
 + Vκ * Rκ * Vκ

T
) 

                                                                  (4.5) 

Xupdated = Xκ = Xpredicted + Kκ * (Zκ – h (Xκ, 0))                               

                                                                  (4.6) 

Pupdated = Pκ = (I – K * H) * Ppredicted         (4.7) 

 

Note[8]: One important feature of EKF is that the 

Jacobian matrix ‗H‘ used in equation (4.5) serves to 

correctly propagate or magnify only the relevant 

component of the measurement information. The 

main disadvantage of EKF is that if measurement 

vector ‗Z‘ and measurement function ‗h‘ are not 

mapped one to one then we might find that filter will 

quickly diverge and our main aim to track any target 

will fail. So for such cases where the systems are 

nonlinear in nature and have non-Gaussian noise, we 

have advanced filtering techniques like particle filter. 
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5. Simulation Results 
 

Kalman filter: 

To begin with we start tuning the filter by taking 

plant noise ‗q = 1‘ and see the results. The best 

tuning of filter is achieved with ‗q = 0.1‘ and time 

step t = 0.5. The results shown here are for these 

values only. 

In figure 1 the blue ‗.-‗ graph gives the difference 

between the true measurement and the measurement 

with noise while the red ‗o-‗ graph gives the 

difference between the true measurement and the 

updated measurements we get from equation (2.10). 

As we can see the error has been reduced after the 

values have been processed using Kalman filter 

algorithm. In figure 2, we have the tuning factor ‗q‘ 

versus covariance in both the direction. This graph 

will help us tune the filter.  In figure 3 we have the 

tuning factor ‗q‘ versus Kalman gain ‗K‘ in both the 

directions [2].  

Extended Kalman filter (EKF): 

We have considered a target moving in a straight line 

and the measurement vector is in spherical 

coordinates, thus making the system non-linear in 

nature. We have estimated the position in spherical 

coordinates only. In figure 4 the blue ‗.-‗ graph gives 

the difference between the true measurement and the 

measurement with noise while the red ‗o-‗ graph gives 

the difference between the true measurement and the 

updated measurements all considered in spherical 

coordinates. 
 

 
 

Figure 1: Comparison between error in 

measurement vector and the error in the updated 

measurement vector for Kalman Filter Algorithm 

 
 

Figure 2: Plant noise ‘q’ versus covariance in both 

X amd Y axises 
 

 
 

Figure 3: Plant noise ‘q’ versus Kalman gain 
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Figure 4: Comparison between error in 

measurement vector and the error in the updated 

measurement vector (both are in spherical 

coordinates) for Extended Kalman Filter 

Algorithm 

 

6. Conclusion and Future Work 
 

In this paper we have presented a general 

Implementation of Kalman Filter for tracking objects 

that follow Gaussian distribution. We then extended it 

for a non-linear systems and understood that Kalman 

filter algorithm cannot be used if the system 

parameters and/or measurements are nonlinear. So for 

nonlinear systems we have few other algorithms like 

Particle filters[5][9] (which is beyond the scope of this 

paper) that will help in better estimation. The 

algorithms discussed in this paper can also be used in 

other applications such as Navigation, Guidance 

control, Robotics, Econometrics. 
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