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Abstract 
  

Quantum Gate is a Unitary operator or a Unitary 

Gate for evolution of a quantum operation which 

satisfies condition U
-1

=U*. Quantum gates are 

different from classical gates. Quantum gates are 

always reversible therefore energy loss does not 

occur between input and output states. Hadamard 

gate, Phase Gate, CNOT (Controlled NOT) Gate etc 

are quantum gates. Scattering technique is used to 

obtain information on the particles therefore 

applied for evolution. Several algorithms have been 

developed for quantum computers like Shor’s 

algorithm, Searching algorithms, Fourier transform 

algorithm. There are various hardware mechanisms  

are developing through which these gates are tried 

to be  implemented  like Ion traps, Quantum Dots, 

Impurity Atoms, Superconductors etc. In this paper 

an effort has been done to present a mathematical 

approach of quantum computer gate design using 

MATLAB. In this paper, a unitary gate Ud is 

realized using an atomic system under evolution 

having Hamiltonian H0. After time t, U0(t)=exp(-

itH0). H0 is designed in a way so that U0(t) Ud. 

Then Ud got perturbed slightly to U’d=Ud+δUd and 

extensive efforts have been done to correct the 

atomic evolution operator U0(t) so that U’d is well 

approximated. For the purpose the atomic evolution 

theory has been followed by a time independent 

scattering process with a weak potential εV. 

Unitarity of evolution is defined by Quantum 

Fourier Transform algorithm which performs 

Fourier transform of quantum mechanical 

amplitudes. 
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1. Introduction 
 

In quantum theory, information is encoded on spin, 

polarization etc states of particles like ions, electrons 

or photons. A physical state is represented by a state 

vector called „ket‟ denoted by   in a complex vector 

space[2,8]. It contains the complete information 

about the physical state. Bra space is a vector space 

“dual to” ket space. To every ket   there exists a 

bra, denoted by  [2,8]. A Quantum System is 

considered as finite dimensional Hilbert space and 

has a countable orthonormal basis [7].  

 

There is a set of vectors in Hilbert space such that 

'' | n nn n   where 1 , 2 ...n  [1]. Hamiltonian is 

the operator corresponding to the total energy of the 

system which is the sum of the kinetic energy and the 

potential energy. It is a function of the position and 

momentum operators. The Position, Momentum, 

Hamiltonian etc characteristics of a particle are 

recognized as Observables. These Observables of 

Hilbert space are Hermitian Operators and can be 

expressed as
n

n

n 
[1].    The state is 

described by a state vector ψ, which is a complex 

linear superposition of all binary states of the 

bits[12].  Qubit is the quantum mechanical bit. 
 0 , 1  is computational basis of Qubit.An arbitrary 

state in this computational basis is:                                                            
0 1   

 , where, α, β are complex numbers, 

with 
2 2

1   [6].                                                   

http://searchcio-midmarket.techtarget.com/definition/quantum-theory
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Quantum Unitary Gate: Quantum Gate is an 

Unitary Operator representing a quantum operation 

or evolution. Unitary linear transformation operator 

U takes as input state 


 and outputs a different state 

U


. The adjoint of U, denoted 
†U , is defined by

†, ,U v w v U w
      

   
    . In a basis, 

†U  is the conjugate 

transpose of U.  U is unitary if  
† 1U U 

[1,2,4,6,12]. The quantum evolution is always 

unitary. Incident wave state vector satisfies the time 

dependent Schrodinger equation [1] 

 

 
t t

d
i H

dt
 

    (1)                                                                           

Hamiltonian H is independent of t, so the general 

solution of the Schrodinger equation has the 

form[1,13]                                                   

( ) iHt

t U t e   
           (2)                                  

Here the evolution operator maps the state vector for 

time zero onto corresponding vector for time t. Since 

H is self adjoint, the evolution operator U(t) is 

unitary[1].  

 

2. Modelling of system under study 
 

A particle with mass m and momentum p=ħk, at time 

t0 is in the state i
 is scattered by the potential V to 

scattered state s
. Motion of a particle of mass m in 

a force field V is given by Schrodinger 

equation[9,10] 
2

2 ( , )
2

i V r t
t m


 


  

     (3)                                               

Since scattering process is Time independent, hence 

 H= H0 + V where    

2

0
2

p
H

m


. (4) 

 

 Incident plane wave can be represented as[11] 

.
0 0| i k rr r e 

   
  

            (5) 

For localized potential [11] 
V r

 
 
  ,  

lim 0
r

V r




 
 

               

The incident state i
  is an eigenstate of the free 

particle Hamiltonian H0 with eigenvalue E. Hence the 

energy-eigenstate will be [11] 

        
 0 0E H V   

       (6)                  

Incident particles are weakly interacting with their 

target, hence multiple scattering is not been 

considered. Scattering amplitude is calculated using a 

first order Born approximation[3,9] 

3 ' '

2

1 2
' ( ') (r')

4

ikr
ik x

s i

m e
d x e V x

r
 



  
       (7)   

The Born Approximation of the scattering amplitude 

is the Fourier Transform of the scattering potential 

[3,15]. Final wave is a summation of incident and 

scattered wave [3,9] 
f i s   

                        

(8) 

3 ' '

2

1 2
' ( ') (r')

4

ikr
ik x

f i i

m e
d x e V x

r
  



  
   (9) 

 

 
 

 

 

 

 

Fig 1: Incident plane waves, scattered waves and 

final wave [14] 

 

Potential V is the Yukawa potential which is a 

Coulomb potential with an exponential drop-off as 

 r → ∞ [15].     

0( )
rV e

V r
r









            (10)                        

Here r is the position vector of a point from potential. 

The scattering potential is assumed to be generated 

by a distribution of charge over a small region of 

space.  

3

0

( ')
( ) '

4 'B

r
V r d r

r r









 






               (11)                          

For r>>r‟, above can be approximated by [15] 

1
0

(cos )
( )

N
l l

l
l

C P
V r

r







                   (12)                  

Where Pl are Legendre polynomials. These 

polynomials can be represented using Rodrigues‟ 

formula [5]:  
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21
( ) ( 1)

2 !

l
l

l l l

d
P x x

l dx
 

(13)   

These polynomials generate spherical harmonics.   

                                                        

 
 

Fig 2: Spherical Harmonics  

 

3. Designing Gate  
 

When the scattering potential is small, the outstate is 

a small perturbation of the input state. 

                           

       (14) 

Where Tv is a skew Hermitian operator determined 

by the potential V. Given a unitary gate Ud which is 

like the Fourier Transform  

 

   (15) 

We design V so that 

               

1/k

v dI T U 
                              (16) 

 

Where k is a large integer. V is selected so that 

 ||I+εTv-Ud|| is a minimum. V is taken as a multipole 

potential of the form 

                   (17) 

Then Tv is of the form  

    

       
0 0

,
N N

l l

l l

Tv c l V r c l V r


 

  
(18) 

 

Where Vl(r,θ) is completely determined by the 

projectile moment 
ki k ni






. The finite 

dimensional approximation is chosen by taking the 

initial state 
  expi ir C jk n r



 

 
   

  . 

Using Born scattering, the final state is given by 

     
 

 
'

' ' 3 '0

2 '

exp

2

f

i i i

jk r r
m C

r V r r d r r
r r


  



 

   

 




 




   

     ' ' 3 ',f ir k r r r d r 
   


  
the kernel of this transformation is 

 

 
      

 
0

N

l

l

k I C l T


  

   (19)                          

We choose {C(l)} so that 

 
2

0

0

{C(l)} ( )
N

N

d l

l

E I U C l T


   

is a minimum. 

 
  

0
( )

E

C l





 

 
0

* ( ) Re( (( ) *))
N

l m d l

m

Tr T T C m Tr I U T


 
*

0 ,

*

0

(( ( )))

((Re (( ) )))

l m l m N

d l l N

R Tr T T

and

E Tr I U T

 

 


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Gives                 

1

1 1

RC E

or

C R E







 

 

 





  (20) 

C(l)‟s are chosen so that the average error energy 

between the desired set of final states and the actual 

set of final states is a minimum. 

 

Scattering process parameters are listed in table 1. 

 

Table 1: Scattering process parameters 

 

Parameters Value 
„λ‟ Wavelength of incident wave 1 Armstrong 

„m‟ Mass of particle 9.1*10^-31 kg 

„r‟ position vector of source 15 micron 

„r‟‟ position vector of Detector 1 micron 

 

4. Result  
 

Incident wave, Scattered wave and Final wave 

patterns in fig 3 are plotted using MATLAB code. 

The perturbed wave after scattering showing decay in 

amplitude for various „θ‟ and „ϕ‟ values. 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Incident coordinates θ=90º, ϕ=180º, 

iteration=20. 

These wave patterns are obtained for various number 

of incident particles for fixed „r‟ but different θ and 

φ. Since source is considered at larger distance, 

therefore the incident waves are forming plane 

waves. This is a time independent scattering process 

which is required for the atomic evolution. Scattered 

waves can be represented as a hankle function which 

is a multipole expansion. The harmonics are visible at 

corners and are spherical in nature. Scattering 

amplitude is obtained using First order Born 

approximation which is a Fourier Transform 

representation and its kernel is of unit magnitude. 

The superposition of incident and scattered wave is 

forming a final wave pattern in such a manner that is 

similar to the incident plane wave.  

 

5. Conclusion and Future Work 
 

Decoherence, Noise and Hardware Design are main 

limitations of a quantum computational system. 

Quantum state of a particle can be easily changed due 

to interaction with its environment. In our study, only 

momentum of particle is taken into consideration. 

Scattering potential is static potential and chosen very 

weak and multiple scattering is not considered. First 

order born approximation is taken for calculation to 

approximate amplitude of scattered wave. Enormous 

scope of study is present in this field in future. 

Multiple scattering and different potentials can be 

taken further and more precise Gates can be designed 

for realistic targets. 
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