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1.Introduction 
Water plays a crucial role in supporting the survival 

of all species on the globe. Access to clean, pristine 

water is essential for both humans and the 

environment [1, 2]. Identifying potential sources of 

pollution is of great significance in predicting water 

contamination, as human activities have placed the 

quality of water at risk [3]. Over time, there has been 

a growing variety of water quality analyses. This has 

led to an increasing reliance on computational 

algorithms for predicting water quality and 

contamination. 

 

 

 
*Author for correspondence 

Often, these computational models and their 

applications need to address the challenges posed by 

unbalanced sensor data [4]. Dealing with such sensor 

data is known to involve several difficulties, 

including issues related to clutter and extreme 

asymmetry [5]. Classifying asymmetric data presents 

a challenging task that has attracted interest across 

various scientific disciplines [6]. Models constructed 

with bias from asymmetric datasets yield unreliable 

predictions and unsatisfactory classification results 

[7].  

 

Prediction can be approached through various 

methods, each with its unique effectiveness [8]. A 

literature review reveals that most prediction studies 

have research gaps in the pursuit of more accurate 
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and applicable models for forecasting asymmetric 

data [9, 10]. Asymmetric data used for prediction 

often hampers classifier performance and leads to 

various issues, including misclassification, under 

fitting, and exaggerated results. This is due to the 

presence of anomalies, missing values, and infinite 

values [11–16]. Consequently, for asymmetric data 

classification tasks, samples are typically categorized 

into two groups: the majority and minority classes 

[17]. In general, the minority class samples and 

interests hold greater significance and importance 

than those of the majority class. However, the 

majority class encompasses a larger number of 

samples than the minority class, and in some cases, 

this scenario can be quite challenging. Therefore, 

effectively addressing these challenges has emerged 

as a critical and essential subject within the realms of 

machine learning (ML) and deep learning (DL). 

 

ML is well-suited for developing algorithms that can 

adapt and enhance their forecasting abilities by 

utilizing symmetric datasets [18, 19]. The 

performance of any ML method that excels depends 

on the data and the specific application. Asymmetric 

data poses a significant challenge in the field of ML, 

as it can negatively impact the performance of 

classification models [20]. Irrespective of the data or 

application, there are instances where models can 

yield favorable results with minimal loss. In such 

cases, it is crucial to identify and address over fitting 

issues [21]. Before applying ML approaches to 

develop classifiers, it is necessary to reduce the 

dimensionality of these asymmetric datasets [22]. 

During the preprocessing phase, various techniques, 

such as anomalous data mining, sampling techniques, 

and calibrated classifiers, are employed to rectify this 

issue [2025]. 

 

Previous research has introduced two types of 

predictions for asymmetric data: predicting class 

labels and predicting probabilities. Samplers are used 

to predict class labels, while calibrators are employed 

to predict probabilities. Class labels provide a concise 

description of a data point, accurately representing 

the actual result of the target variable. Precise 

labeling of data enhances quality control in ML 

algorithms, facilitating the training of the model to 

achieve the desired results. As an alternative to 

providing a clear class designation, it may be possible 

to forecast class membership likelihood. This allows 

users to assess the outcomes within the context of the 

problem, enabling a forecasting model to distribute 

the ambiguity of its prediction across various 

possibilities [26]. 

Previous studies have highlighted the occurrence of 

exaggerated and unsatisfactory outputs generated by 

various ML models. Furthermore, when working 

with asymmetric data, it has been observed that 

model outputs tend to vary based on the specific 

dataset and application. In addition to the existing 

ML models, new models have been proposed. 

However, it is noteworthy that none of these studies 

employed appropriate metrics to evaluate their 

results. Accuracy was the primary criterion used in 

all publications, which may not be suitable for 

dealing with data asymmetries. Interestingly, no 

articles utilizing hydrological data have been 

published in this particular research area. 

Consequently, determining the techniques and 

metrics that can effectively transform the data based 

on each model's performance remains a challenge in 

the context of asymmetric data classification. 

 

This research seeks to rectify these research gaps by 

leveraging the water potability dataset from the 

Kaggle repository. Two calibration techniques for 

probabilistic prediction, five sampling models for 

label prediction, and six discrete classifiers have been 

selected to detect and rectify overestimated 

predictions. The experimental setup consists of three 

phases. In the initial phase, six traditional ML 

methods are applied for classification without any 

sampling to observe the extent of misclassification 

results when using the water potability dataset. 

 

The experiment is extended in the second phase to 

assess whether sampling strategies can alleviate the 

overfitting issues associated with standalone ML 

classifiers for this specific dataset. In the third phase, 

this experiment is further extended to examine 

whether ML classifiers can minimize the loss when 

combined with calibration techniques across various 

iterations. Ultimately, various algorithms are 

analyzed, and the most suitable one is chosen based 

on the dataset, sampling methods, and effective 

performance metrics. 

 

The remaining sections of this paper are structured as 

follows: Section 2 provides a summary of recent 

research on classifying asymmetric data. Section 3 

includes a comprehensive dataset description as well 

as details on pre-processing procedures. In section 4, 

traditional ML models, sampling models, and 

calibration techniques were discussed. Section 5 

presents the outcomes and offers metrics-based 

comparisons with other approaches. The paper 

concludes in section 6 with discussions on the 

conclusions and future directions. 
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2.Literature review 
Research papers that focused on the keywords 

"unbalanced data classification" [27], ―class 

imbalance‖ [27, 28], "imbalanced classification" [29], 

―highly imbalanced‖ [30, 31] were reviewed based 

on sources from the web. Additionally, research 

papers that dealt with technical keywords such as 

"Calibration Techniques," " ML [32]," "DL [33]," 

and "Sampling Techniques [34, 35]" were also 

examined. This approach enabled researchers to gain 

insights into recent strategies established to address 

this issue. The aforementioned documents served as 

references (Materials). 

 

Wang et al. [15] presented a personality prediction 

model that combined particle swarm optimization 

(PSO) features, synthetic minority oversampling 

technique (SMOTE), and T-link (Tomek). According 

to the proposed technique, the mean accuracy for 

both the unprocessed and processed textual datasets 

was 75.34% and 78.78%, respectively. Moreover, the 

mean accuracy for the extended textual dataset was 

64.25%, while the shortened textual dataset achieved 

75.34% accuracy. It's important to note that this 

method is most effective for small datasets, which 

represents the primary limitation of this research. 

 

Joloudari et al. [17] employed various resampling 

techniques, including random under sampling (RUS), 

Tomek, one-sided selection, near miss, random over 

sampling (ROS), and SMOTE. They then utilized DL 

models for binary data classification. In comparison 

to the applied sampling strategies, the DL model 

combined with SMOTE outperformed them, 

achieving 99.08% accuracy, 99.09% precision, 

99.08% sensitivity, 99.09% F1-score, 99.08% G-

mean, 99.03% specificity, 99.08% area under the 

curve(AUC) , and 98.92% kappa. However, one 

drawback of this research is that it requires a more 

significant amount of time and computational 

resources compared to conventional ML techniques. 

 

Zheng et al. [18] introduced an innovative semi-

supervised learning-based data pre-processing 

technique called "near pseudo" (NP). To validate 

their proposed strategy, experiments were conducted 

using a state-of-the-art hyper spectral image dataset. 

The results regarding accuracy rates indicate that NP 

outperforms other commonly used pre-processing 

algorithms. When integrated with NP, the 

classification accuracy of random forest (RF), k-

nearest neighbour (KNN), and logistic regression 

(LR) increased by 1.8%, 4.0%, 6.4%, and 3.7%, 

respectively. The authors emphasized the importance 

of carefully selecting the right techniques for 

transforming data into different feature spaces, 

stating, "Several methods are capable of converting 

data into different feature spaces, so selecting the 

right techniques should be carefully considered. 

 

Werner et al. [21] conducted an evaluation of 9927 

papers related to sampling approaches for ML in 

asymmetrical data scenarios. They conducted this 

systematic mapping across seven digital libraries. 

The findings suggest that solutions involving 

artificial neural networks (ANN) and ensemble ML 

models tend to have the best performance. According 

to the authors, using hybrid-sampling strategies in 

conjunction with ANN and ensemble ML models can 

yield even better results. Interestingly, none of the 35 

studies reviewed utilized synthetic oversampling, 

which points toward the potential for new pre-

processing techniques in this domain. 

 

Swana et al. [23] employed naive bayes (NB), 

support vector machine (SVM), and KNN to assess 

classification ability when dealing with asymmetric 

data. Furthermore, they applied three oversampling 

techniques, namely SMOTE, Tomek, and 

SMOTETomek, in conjunction with the 

aforementioned classifiers to normalize the data and 

reduce misclassification. Among these samplers, 

SMOTETomek proved to be the most effective. For 

both simulated and actual data, NB and KNN 

outperformed SVM in classification. In particular, 

KNN combined with SMOTETomek demonstrated 

superior performance compared to other models. 

 

Bennin et al. [24] evaluated the efficacy of eight data 

augmentation models for cross-project defect 

prediction. They employed 34 datasets to test the 

prognostic capabilities of their model. The authors 

noted that the selection of source and target data 

could potentially affect the validity of their research 

findings. They also acknowledged that it remains 

uncertain whether their results can be generalized to 

other datasets that were not utilized as source data. 

Additionally, the authors reported that the choice of 

the number of neighboring nations selected for the 

nearest neighbour (NN) filter influenced the study 

results. 

 

Devagdorj et al. [28] conducted a comparison of ML 

models to address class imbalance using smoking 

cessation data among the Korean population. 

Initially, they performed feature selection with the 

assistance of the lasso method and a multicollinearity 

method. They then employed SMOTE and adaptive 
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synthetic sampling (ADASYN) resampling 

techniques to balance the data. Subsequently, 

gradient boosting tree (GBT), RF, and multi-layer 

perceptron (MLP) models were utilized for 

forecasting. The authors emphasized that their 

forecasting results can vary depending on the data 

and application. 

 

Johnson and Khoshgoftaar [30] utilized basic 

methods, namely ROS, RUS, and a hybrid ROS-RUS 

model, to balance asymmetric network safety data. In 

their comparison, ROS outperformed RUS and the 

baseline methods, and ROS-RUS achieved better 

results than the other two methods. To reduce the risk 

of misrepresenting the majority class, the authors 

recommended exploring and integrating techniques 

for forecasting optimal sample proportions into RUS 

procedures. 

 

Liang et al. [36] developed the logistic regression-

SMOTE (LR-SMOTE) model to resolve data 

imbalance without generating anomalous data for 

classification. The authors reported that the newly 

designed LR-SMOTE outperforms the SMOTE 

model. It's important to note that the authors' datasets, 

combined with conventional datasets, had a relatively 

modest sample size. Therefore, they suggest applying 

the model to standard high-dimensional data. Hussein 

et al. [37] proposed a hybrid strategy using an 

enhanced simulated annealing (SA)-based SVM 

algorithm and a data preprocessing technique, 

achieving 89.65% accuracy. Their research focused 

solely on binary classification, without addressing 

multi-class classification issues. 

 

Zhao et al. [38] employed cervical cell generation 

(CCG) - taming transformers to extract a quality 

dataset from the original unbalanced data. They used 

the SMOTE-Tomek oversampler to equalize the 

dataset. The authors acknowledged that this approach 

introduces technical challenges, making the 

classification model more complex and potentially 

increasing the likelihood of classification errors. 

Although the model demonstrated high accuracy, 

data imbalance issues persisted. Consequently, they 

recommended expanding the dataset models and 

refining the categorization model. Christianto and 

Rusli [39] developed a student feedback system using 

recurrent neural networks (RNN) with simple-RNN, 

long short term memory (LSTM), and gated recurrent 

unit (GRU) topologies. They applied ROS and 

SMOTE to address data imbalance. The authors 

reported that ROS outperformed SMOTE in 

classification performance. However, they also noted 

that ROS had a negative impact on LSTM 

classification performance. 

 

From the review, it is evident that only a few studies 

have been published on the subject of class 

asymmetry in hydrological fields. The imbalance 

between classes poses challenges in obtaining precise 

probabilities for calibration procedures. Additionally, 

determining the most effective method for sampling 

operations is a complex task that has received limited 

attention from researchers. Moreover, selecting an 

appropriate metric for the classification of 

asymmetric data can be quite challenging. Previous 

studies primarily relied on classification accuracy, 

which is not well-suited for handling asymmetrical 

datasets. As a result, our research aims to utilize more 

suitable measures to identify the superior model for 

classifying asymmetric data. This research 

contributes new insights into calibration techniques 

and sampling methods for datasets with class 

imbalances, serving as a valuable reference for future 

research in the field of class imbalance techniques.  

 

3.Materials and methods 
3.1Experimental dataset 

A publicly available asymmetric hydrological dataset 

has been 6+- gathered and applied. The water 

potability dataset is available in a .csv file from 

Kaggle repository [40]. It comprises 3,277 

observations and includes 10 parameters: potential 

hydrogen (pH), hardness, solids or total dissolved 

solids (TDS), chloramines, sulphate, conductivity, 

organic carbon, trihalomethanes (THMs), turbidity, 

and potability [4042]. This section delves into the 

dataset's characteristics. In accordance with the 

recommendations of the World Health Organisation 

(WHO) [43], the parameters and their desirable limits 

are outlined in Table 1: 

 

Table 1 Dataset parameters and its desirable limits 

S. No. Parameter Desirable Limit 

1 pH 6.5 – 8.5 

2 Hardness 200 mg/L 

3 Solids 500 mg/L  

4 Chloramines up to 4 mg/L 
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S. No. Parameter Desirable Limit 

5 Sulphate 250-500 mg/L 

6 Conductivity 400 μS/cm 

7 Organic Carbon < 2 mg/L 

8 THMs 0.06 – 0.2 mg/L 

9 Turbidity 1 NTU 

10 Potability 0 – Not Potable, 1-Potable 

 

pH is a crucial factor for assessing the acid ratio of 

water. It indicates whether the water is alkaline or 

acidic. The primary sources of water hardness are 

salts composed of calcium and magnesium, 

originating from geological formations. Water can 

dissolve various inorganic and organic minerals or 

salts, including potassium, calcium, sodium, and 

bicarbonates. These minerals can give the water an 

undesirable taste and affect its color. Water with a 

high TDS rating typically has a high mineral content. 

The two primary chemicals used for water 

purification purposes in potable water are chlorine 

and chloramine. Chloramines are commonly 

produced when ammonia is mixed with chlorine for 

water purification.  

 

Sulfates are organic compounds naturally present in 

rocks, soil, and minerals. They find extensive use in 

the chemical industry for commercial purposes. The 

electrical conductivity (EC) of water is usually 

determined by the concentration of dissolved 

particles. An increase in ion concentration enhances 

the EC of water. Total organic carbon (TOC) 

measures the overall quantity of carbon in organic 

molecules in pure water. Natural organic matter 

(NOM) from both natural and artificial sources 

decomposes to form TOC in source waters. Chlorine-

treated water may contain chemicals known as 

THMs. The concentration of THMs in drinking water 

is influenced by the amount of organic matter in the 

water, the quantity of chlorine required for 

purification, and the water's ambient temperature. 

The turbidity of water is determined by the quantity 

of suspended solid matter, and it reflects water's 

ability to transmit light. Water potability, typically 

expressed on a scale from 0 to 1, indicates its 

suitability for human consumption [40]. 

 

3.2Methodology 

In this study, six traditional ML models were 

employed for both label prediction and probability 

prediction. These ML models were subjected to three 

individual and two hybrid re-sampling techniques for 

label prediction. Subsequently, probability prediction 

was carried out by combining all classifiers and two 

calibrators. The performance of the employed models 

was assessed using a range of evaluation measures, 

including balanced random accuracy (BRA), 

sensitivity, specificity, AUC, geometric mean (G-

mean), brier score (BS), expected calibration error 

(ECE), and maximum calibration error (MCE). The 

results obtained from these evaluation measures, 

following the sampling and calibration processes, 

were deemed sufficient to select the top-performing 

model. 

 

In both prediction stages, nine out of the ten available 

parameters were utilized as features. The "potability" 

column (target variable) was employed to predict 

whether the water is potable or not based on the 

values of these nine characteristics in the dataset. The 

feature selection process was conducted using feature 

statistics as the basis. 

 

The data processing workflow is shown in Figure 1. 

This diagram portrays two types of prediction stages, 

which are label prediction and probability prediction. 

The obtained dataset was not in a suitable format and 

presented difficulties in its usability for constructing 

ML models. Additionally, it contained missing values 

and anomalies, rendering it unsuitable for classifier 

processes. Pre-processing and cleaning of the data are 

essential steps before utilizing it in ML algorithms. 

These procedures, such as data cleansing, outlier 

removal, resampling the data, and formatting, are 

necessary to transform such data into an appropriate 

format. Missing values were identified using feature 

statistics during this phase [44, 45]. 

 

Figure 2 depicts the 15% missing data for pH, 24% 

missing data for sulfate, and 5% missing data for 

THMs. This issue is resolved by the basic pre-

processing techniques through the utilization of 

simple imputer and feature scaling methods. 

Secondly, the identification and removal of 

anomalies within the dataset is a crucial step. To 

achieve this, the isolation forest (IF) [46] method was 

utilized to determine the anomaly scores of the 

experimental data. It is an unsupervised learning 

technique that builds on the foundation of the DT 

algorithm [47]. It effectively isolates outliers in the 

data to identify anomalies. This algorithm scrutinized 
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the anomaly index of each column in the dataset. 

Figure 3 displays the anomaly scores detected for the 

nine parameters in the dataset.  This diagram clearly 

implies the outlier region and anomaly score for all 

the parameters employed in the dataset [48].  Further 

details regarding the six ML techniques, two 

calibration techniques, and five sampling techniques 

employed in this study will be provided in the 

following sections. 

 

 
Figure 1 Data processing workflow 

 

 
Figure 2 Feature statistics 
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Figure 3 Anomaly score calculation by IF mechanism 

 

3.3ML models 

Numerous methods were developed using ML to deal 

the challenges posed by asymmetric data. These 

approaches typically categorized into two groups: 

algorithmic or internal-level approaches and data-

level approaches for handling asymmetric data. In 

this research, we focused on resolving the issue of 

data asymmetry through an algorithm-level approach. 

We employed various ML techniques in the current 

study, including support vector classifier (SVC), 

KNN, gaussian naive bayes (GNB), RF, LR, and DT 

[8, 13]. 
3.3.1SVC 

SVC effectively solved both linear and nonlinear 

issues [20]. It operated as a rapid 2-class group 

classification algorithm in supervised learning [44]. 

When provided with two coordinates as input, it 

produced an outcome in the form of a hyperplane 

model. The concept behind utilizing the SVC 

algorithm for classification involved locating the 

optimum hyperplane and the absolute optimum 

division space in distinct classes within the input 

space. However, our research findings revealed that it 

did not provide suitable results for cases like 

probability prediction and binary classification. This 

algorithm excelled primarily in multi-class 

classification. 

3.3.2KNN 
KNN served as a nonlinear regression approach in 

ML and was also utilized for classification. It 

generated columns with features obtained from the 

target values of the dataset and used these values to 

determine similarities between the validation data 

and the prediction data. The target value's role was to 

forecast performance based on these similarities [37]. 

Since all processing occurred concurrently during 

testing and involved an iterative process of training 

samples, it calculated comparable values each time to 

form the clustering results [47]. However, it was 

impractical for large datasets and was characterized 

as a time-consuming, or "slothful," learner algorithm. 
3.3.3GNB 

GNB was a likelihood-based algorithm utilized to 

classify binary and multiclass data. It was a quickand 

traditional ML technique that relied on the Bayes 

theorem and probability theory as its foundation for 

predicting likelihood. One advantage of this approach 

was its swift evaluation for time-consuming 

calculations [46, 48]. The term "naïve" referred to the 

assumption that the model's components were 

independent. GNB's concept of using a logarithmic 

transformation of probabilities [49] to prevent 

underflow was another advantage of employing this 

method. It provided an excellent solution for 
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classification issues that required likelihood 

estimations [50]. 

3.3.4RF 
RF was predominantly used to address classification 

and regression problems. As the name suggests, a 

forest comprises trees, and a healthier forest contains 

more trees. Similarly, the RF method constructed 

decision tree (DTs) from data samples, extracted 

predictions from each tree, and then voted on the best 

option. This ensemble method outperformed a single 

DT by averaging the results to reduce over fitting 

[51, 52]. Owing to the randomized and decorrelated 

nature of RF, it had the capacity to establish 

associations or links between input and output 

parameters even when their relationship was complex 

and nonlinear [53]. 

3.3.5LR 
LR, recognized for its sigmoid function, was used to 

compute or predict the probability of a binary 

outcome. The result of this technique was binary, 

making decisions based on 'true' or 'false,' 'yes' or 'no' 

[52]. It exhibited remarkable effectiveness depending 

on the data or application [53]. Rapid learning 

instances combined with low computational resource 

requirements allowed it to easily scale, even with 

large datasets. 
3.3.6DT 

The DT was the most effective method in ML and a 

knowledge representation technique for data. It 

offered technologies for analysing vast, intricate 

amounts of data to discover insightful patterns [54]. 

Data scientists found DTs to be a valuable data 

extraction technique for anticipating asymmetric data 

based on water quality factors, aiding in determining 

which data should progress to the next prediction 

stage. 

 

3.4Sampling models 

To mitigate the adverse effects of an asymmetrical 

dataset, sampling approaches are commonly 

employed within the realm of ML models. The 

sampling process is typically distinguished into three 

main categories [23], encompassing under-sampling, 

over-sampling, and threshold moving [24]. In this 

study, two over-sampling methods, one under-

sampling method, and two hybrid sampling 

techniques were utilized. The various data sampling 

techniques employed in the current investigation are 

as follows: SMOTE, ADASYN, Tomek, 

SMOTETomek, and SMOTE with edited nearest 

neighbour (SMOTEENN) [2329]. 
3.4.1SMOTE 

This method was devised to mitigate the impact of 

class asymmetry on prediction accuracy [23]. It has 

gained recognition and is widely employed in 

published literature for various predictive research 

endeavours. SMOTE leverages each minority class 

data point to create "synthetic" minority samples 

[24]. It employs KNN algorithm to locate 

neighbouring points for each minority class sample, 

subsequently selecting the kth neighbor at random to 

generate a new synthetic sample. 
3.4.2ADASYN 

The ADASYN learning algorithm primarily focuses 

on the challenging-to-learn instances within the 

minority class data [20]. It produces a variable for the 

sample count based on an examination of the internal 

dispensation of the oversampled class. Its key 

advantage lies in preventing the duplication of 

minority data [24]. Unlike the SMOTE method, it 

produces non-identical synthetic data for each 

minority class instance, emphasizing the challenging 

cases within the minority class instances [28]. 
3.4.3Tomek 

Tomek is an under-sampling technique aimed at the 

elimination of redundancies. One such under-

sampling technique is an adaptation of the condensed 

nearest neighbour (CNN) rule, referred to as the 

Tomek links approach [17]. This technique is used to 

identify whether a Tomek link can be established 

between different sets of samples. Such links have 

the significant feature of exclusively removing 

undesirable samples [23, 35]. A selection of class 

labels [55, 56] identified as Tomek links can be 

eliminated, which is highly useful for identifying 

samples from different classes. 
3.4.4SMOTEENN 

SMOTEENN was created by combining the over-

sampling method SMOTE [14] and the under-

sampling method edited nearest neighbour (ENN) 

rule [29]. This algorithm significantly improved 

sensitivity and specificity [36]. It serves as an 

effective solution to address the shortcomings of both 

the SMOTE and ENN techniques [5759]. 
3.4.5SMOTETomek 

SMOTETomek, a hybrid approach, was developed 

by merging the over-sampling SMOTE and under-

sampling Tomek methods [34], hence the name 

SMOTETomek [35, 38]. The algorithmic workflow 

of the SMOTETomek method combines SMOTE 

with the Tomek link approach, effectively creating a 

pipeline [23]. This approach offers a compelling 

solution to mitigate the drawbacks associated with 

both the SMOTE and Tomek link techniques [24]. 

 

3.5Calibration models 

Calibration is a method employed to acquire precise 

probability estimates for practical applications of 

classification issues [16]. In practical settings, the 



C. Kaleeswari et al. 

1324 

 

number of training samples per class often varies, 

making it crucial to address data asymmetry. The use 

of calibration techniques is an effective strategy for 

mitigating the impact of asymmetric data. This study 

utilized two calibration methods, isotonic regression 

(IR) and platt scaling (PS), to predict probabilities 

[25]. The two calibration procedures mentioned 

above consist of one non-parametric approach and 

one parametric approach. 
3.5.1IR calibration 

IR calibration is a non-parametric regression method 

[49]. Non-parametric implies that no inferences are 

made about variables such as constant interpolation, 

variance, or shape. When addressing a calibration 

issue, this method seeks to perform regression on the 

initial calibration curve. It allows for arbitrary 

shaping without presuming the form of the target 

value to address the asymmetric nature of the ML 

model. This method particularly excels with large 

datasets. 
3.5.2PS calibration 

PS calibration is a parametric approach [49]. Initially 

designed for calibrating SVM model, it is now 

applied to other classifications as well. SVMs can 

only produce results on the samples based on the 

predicted edges because they are optimized using 

hinge loss. To address this limitation, John Platt 

proposed the use of PS in combination with LR to 

convert results into probability estimates [50, 60]. 

The sigmoid function assigns probability values to 

discrete classes (0 and 1) [50, 61]. Its probabilistic 

nature makes it suitable for the current water quality 

prediction. 

 

4.Results 
The outcomes of the proposed methodology are 

presented in this section, which is divided into two 

parts: label prediction and probability prediction. In 

the first phase, standalone ML classifiers were used 

to identify classification results that might be 

overvalued. The second phase aimed to identify an 

appropriate sampling model using multiple sampling 

procedures. Finally, through various iterations, an 

adaptive calibration mechanism for probabilistic 

prediction was discovered. The entire experimental 

investigation was conducted using the Anaconda3 

2020.11 (Python 3.8.5 64-bit) platform and the 

imbalanced learning (imblearn) Package. 

 

4.1Performance evaluation 

Evaluation metrics played a crucial role in assessing 

classification efficacy and guiding classifier 

modeling. When dealing with asymmetric data 

classification, different evaluation metrics were 

essential. While accuracy is a common metric for 

classification [6062], it is not suitable for 

asymmetric classification [63] because a less 

effective model can achieve a higher accuracy. 

Evaluation of expected and predicted class labels or 

assessment of probabilities for the anticipated class 

labels were needed for classification issues. 
4.1.1Metrics for label prediction 

In the context of asymmetric data classification, BRA 

and the G-mean metrics are considered the most 

reliable performance indicators for classification 

algorithms in label prediction. Additionally, the AUC 

analysis was employed to visualize the categorization 

of the dataset used for label prediction. Equations 1 

to 5 provide the mathematical expressions for 

calculating specificity, sensitivity, BRA, G-mean, 

and AUC, as follows: 

 

Specificity: The percentage of accurately detected 

negatives over all possible negative forecasts 

produced by the algorithm is measured by specificity 

[63]. It is also referred to as the true negative rate. 

             
  

      
   (1) 

The true positive, true negative, false positive, and 

false negative are denoted as TP, TN, FP, and FN 

respectively. 

 

Sensitivity: A performance metric derived from the 

positive observations is sensitivity or recall [63]. The 

percentage of positive observations that were 

identified accurately as positive is displayed by 

sensitivity. 

             
  

      
   (2) 

The true positive, true negative is denoted as TP 

and TN respectively. 

 
BRA: The efficiency of BRA's uses outweighs the 

normal classification accuracy. So, Dealing with 

asymmetric data required balanced accuracy for the 

most of the binary and multi-class categorization. It is 

the mathematical average of sensitivity and 

specificity [64]. 

    
                       

 
  (3) 

 

G-mean: The evaluation measure G-mean is 

frequently employed in asymmetric data analysis 

[65].The G-mean of sensitivity and specificity is 

denoted by G-mean [64]. 

            (                       )  

     (4) 
AU-ROC curve: To assess how successfully a 

classifier balances out its TP rates and FP rates, AUC 
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provides a value representing a scalar [66].This 

measure's closest representation is given below 

    
         

 
    (5) 

The true positive, false positive is denoted as TP and 

FP respectively. 
4.1.2Metrics for probability prediction 

For probability prediction in classification 

algorithms, BS, ECE, and MCE are considered the 

most reliable performance indicators. Additionally, 

the calibration curve, also known as the reliability 

curve, was utilized to visualize the categorization of 

the dataset used for probability prediction [17, 37]. 

Equations 6 to 8 provide the mathematical 

expressions for calculating BS or log-loss, ECE, and 

MCE, as follows: 

 

BS: BS, referred to as log-loss values and mean 

squared error (MSE). It is a well-liked statistical-

based evaluation metric for assessing how well the 

likelihood estimator performs [61].It also measures 

how close the calibrated probabilities are to 0 or 1and 

describes how closely the calibrated probabilities 

resemble the real probabilities. 

    
 

 
∑   (  
 
       )

     
 

 
∑ (  ( 
 
       ))  

     (6) 

Where Ni is the total number of occurrences in the i
th

 

bin, fi denotes the percentage of positive occurrences, 

and ei denotes the mean calibrated probability in the 

i
th

 bin [16]. 

 

ECE: The ECE assesses the effectiveness of the 

calibration overall [16].The calibrated likelihoods 

must be ordered and split into various bins before 

being used to compute ECE. 

     ∑       
 
           (7) 

 

If fi is the mean calibrated probability in that bin, oi is 

the proportion of positive instances in the i
th

bin, and i 

is the proportion of occurrences that fit in the i
th

 bin. 

 

MCE: The sustainability of calibration is assessed by 

utilizing the MCE. A calibration method's MCE 

value will be lower compared to other methods if it is 

more reliable and consistent [16]. Consequently, it is 

essential to evaluate the sustainability of calibration. 

              
            (8) 

 

Calibration curve: Calibration curves (reliability 

diagrams) were used to predict the likelihood of a 

given group utilizing classifiers and to determine 

outcomes [66, 67]. It provides a predictive means of 

determining if the scores are reliable. 

 

4.2 Label prediction results 

This section presents the experiments and simulation 

findings for the proposed strategy aimed at 

addressing unbalanced hydrological data 

classification and prediction estimation. The 

comparative outcomes are displayed in this section, 

utilizing evaluation metrics such as BRA, sensitivity, 

specificity, AUC, and G-Mean. The results are given 

in Table 2 for six classification models: LR, SVM, 

GNB, KNN, DT, and RF in combination with five 

samplers: SMOTE, ADASYN, Tomek, 

SMOTEENN, and SMOTETomek, respectively. 

 

Table 2 Comparative analyses of various classification methods in combination with samplers for Label Prediction 

Models Sensitivity (%) Specificity (%) BRA (%) G-mean (%) AUC (%) 

LR 80.01 84.21 82.06 81.98 0.824 

LR+SMOTE 75.10 79.09 77.31 76.97 0.777 

LR+TOMEK 68.05 72.20 70.03 69.97 0.698 

LR+ADASYN 72.12 80.62 76.28 75.89 0.765 

LR+SMOTEENN 74.39 78.96 76.91 75.97 0.758 

LR+SMOTETOMEK 68.08 84.03 76.24 75.58 0.765 

SVM 96.01 100 98.19 97.98 0.983 

SVM+SMOTE 91.50 95.90 93.03 92.98 0.934 

SVM+TOMEK 94.23 98.17 96.67 95.98 0.961 

SVM+ADASYN 98.11 98.00 97.00 96.99 0.960 

SVM+SMOTEENN 95.50 98.50 97.01 96.99 0.968 

SVM+SMOTETOMEK 95.51 96.52 96.63 95.10 0.960 

GNB 90.42 86.13 88.90 87.98 0.888 

GNB+SMOTE 80.09 90.34 85.11 84.85 0.855 

GNB+TOMEK 82.12 86.00 84.66 83.98 0.842 

GNB+ADASYN 87.90 91.93 89.23 88.98 0.892 

GNB+SMOTEENN 85.51 92.50 89.89 88.93 0.892 

GNB+SMOTETOMEK 84.02 94.14 89.82 88.86 0.887 

KNN 85.13 89.90 87.70 86.98 0.874 
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Models Sensitivity (%) Specificity (%) BRA (%) G-mean (%) AUC (%) 

KNN+SMOTE 82.92 84.86 83.94 82.99 0.831 

KNN+TOMEK 68.96 76.23 72.88 71.89 0.725 

KNN+ADASYN 76.56 80.34 78.80 77.97 0.770 

KNN+SMOTEENN 79.09 83.45 81.67 80.98 0.812 

KNN+SMOTETOMEK 80.31 86.90 83.56 82.95 0.826 

DT 98.76 100 99.80 98.99 0.992 

DT+SMOTE 92.34 96.21 94.92 93.98 0.941 

DT+TOMEK 90.43 94.22 92.45 91.98 0.916 

DT+ADASYN 88.65 92.21 90.87 89.98 0.899 

DT+SMOTEENN 94.23 96.34 95.78 94.99 0.948 

DT+SMOTETOMEK 94.50 97.51 96.34 95.99 0.956 

RF 98.22 99.11 98.54 98.50 0.984 

RF+SMOTE 94.09 98.08 96.15 95.98 0.958 

RF+TOMEK 95.16 99.22 97.32 96.98 0.965 

RF+ADASYN 96.31 98.55 97.44 96.99 0.970 

RF+SMOTEENN 98.02 99.01 98.07 98.50 0.976 

RF+SMOTETOMEK 97.32 99.00 97.11 97.99 0.967 

 

According to Table 2, it is observed that the 

RF+SMOTEENN model has the best performance 

with 98.07% BRA, 98.02% sensitivity, 99.01% 

specificity, 0.976% AUC, and 98.50% G-Mean. 

Following that, the SVM+SMOTEENN model 

demonstrates better performance with 97.01% BRA, 

95.50% sensitivity, 98.50% specificity, 0.968% 

AUC, and 96.99% G-Mean. The best outcomes are 

highlighted in red and in bold. 

 

Additionally, Figure 4 in our experiment displays 

ROC plots based on the Top AUC scores attained 

using the ML models. Figure 4(a) depicts an ROC 

plot in relation to different classifiers before 

sampling. This plot indicates that, when comparing 

the standalone classifiers, all of them exhibit over-

fitting results before sampling. In particular, it reveals 

that DT produces exaggerated results when compared 

to other discrete classifiers. 

 

Figure 4(b) portrays a ROC plot in relation to 

different classifiers with SMOTE sampling. When 

comparing the classifiers, this plot shows that RF has 

the highest AUC, while LR has the lowest AUC for 

the dataset under consideration. 

 

Figure 4 (c) depicts a ROC plot in relation to 

different classifiers with Tomek sampling. When 

comparing the classifiers, this plot illustrates that RF 

and SVC have the highest AUC, whereas LR has the 

lowest AUC for the dataset under consideration. 

 

Figure 4 (d) shows a ROC plot in relation to different 

classifiers with adasyn sampling. When comparing 

the classifiers, this plot demonstrates that RF has the 

highest AUC and LR has the lowest AUC for the 

dataset under consideration. 

 

Figure 4 (e) depicts a ROC plot in relation to 

different classifiers with SMOTEENN sampling. 

When comparing the classifiers, this plot displays 

that RF has the highest AUC and LR has the lowest 

AUC for the dataset under consideration. 

 

Figure 4 (f) portrays a ROC plot in relation to 

different classifiers with SMOTETomek sampling. 

When comparing the classifiers, this plot indicates 

that RF has the highest AUC, while LR has the 

lowest AUC for the dataset under consideration. 

 

From overall analysis, hybrid samplers in 

combination with all classifiers are better than other 

samplers’ combinations continuously. Significantly, 

RF and SVM in combination with hybrid samplers 

providethe top AUC scores. More importantly, 

Figure 4(e) and Table 2 demonstrate that the 

RF+SMOTEENN model achieves the highest AUC 

value. 

 

4.3Probability prediction results 

The experimental data divided into three subsets: 

20% for testing, 60% for training, and 20% for 

calibration or validation, following the 

recommendation in [16]. This division was essential 

for validating the model's performance. In the initial 

stage, we scrutinized two chosen probabilistic and six 

ML algorithms. To assess the discrimination and 

calibration capabilities of the model, we employed 

measurements such as the BS, ECE and MCE [46]. 

Before calculating the ECE, we sorted the calibrated 

probabilities and divided them into various bins. In 
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this study, we randomly divided the bins into three 

categories: 10, 100, and 1000. We utilized these 

specified average probability ranges (bins) to define 

the fraction of positives [68].The results illustrated 

that IR outperformed other techniques on all six 

classifiers. Notably, IR exhibited superior 

performance when applied with GNB and LR as the 

classifiers. As per the data in Table 3, it is evident 

that the GNB + IR model exhibits best performance 

with lower error rate in each bin compared with other 

algorithms. Our results differed based on bin 

frequency when using experimental data. The 

probability prediction results for these segmented 

bins are shown in Table 3. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4 AUROC plots for the models from (a-f) 
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Table 3 Error metrics for probability prediction by using classifiers with calibrators 

  

Techniques 

BS ECE MCE 

Bins IR PS IR PS IR PS 

 

 

 

b = 10 

GNB 0.227 0.228 0.231 0.323 0.336 0.991 

LR 0.660 0.686  0.668 0.790 0.702 1.524 

KNN 0.804 0.867 0.903 1.429 1.226 2.197 

RF 0.642 0.701 0.698 2.275 2.008 5.714 

DT 0.961 1.957 1.898 2.117 2.008 2.795  

SVC 0.660 0.719 0.872 2.938 2.713 4.005  

 GNB 0.234 0.235 0.240 0.345 0.355 0.999 

 LR 0.669 0.690 0.673 0.800 0.711 1.541 

 KNN 0.874 0.872 0.931 1.444 1.232 2.199 

b = 100 RF 0.652 0.713 0.709 2.283 2.019 5.721 

 DT 0.983 1.967 1.918 2.131 2.052 2.798 

 SVC 0.680 0.731 0.880 2.945 2.725 4.012 

 

 

 

b = 1000 

GNB 0.238 0.238 0.243 0.353 0.358 1.056 

LR 0.671 0.699 0.677 0.815 0.715 1.579 

KNN 0.877 0.878 0.938 1.458 1.238 2.201 

RF 0.656 0.725 0.712 2.290 2.029 5.730 

DT 0.985 1.979 1.921 2.141 2.064 2.802 

SVC 0.683 0.744 0.885 2.949 2.732 4.039 

 

Overall analysis shows an empirical assessment of 

the likelihood of positive group occurrences for the 

group under discussion. In a model that has been 

properly calibrated, the likelihood of positive group 

events occurring in a specific bin for the class 

contemplated corresponds to the average forecasted 

likelihood.  

 

Figure 5 (a-f) illustrates linear correlation connecting 

the average anticipated likelihood and the likelihood 

of the positive group occurrence appearing in that bin 

for the group under consideration. 

 

Figure 5 (a) portrays the calibration plot (reliability 

curve) based on the error metrics attained using the 

GNB model with calibrated classifiers. When using 

the GNB, IR achieves excellent calibration, as shown 

in this plot. Simultaneously, the PS and GNB arcs are 

plotted beneath the diagonal, indicating that the 

algorithm has over-fitted, and the likelihoods are 

excessively high. 

 

Figure 5 (b) portrays the reliability curve based on 

the error metrics attained using the LR model with 

calibrated classifiers. Based on the simulation 

measures and the curve, LR+IR are ranked second 

and exhibits marginally inferior performance than 

GNB+IR. LR with PS produces arcs that are similar 

to IR. 

 

Figure 5 (c, f) interprets the reliability curve based on 

the error metrics attained using the KNN and SVC 

models with calibrated classifiers. The presence of an 

IR arc above the diagonal indicates that the algorithm 

has under fitted, and the likelihoods are excessively 

tiny. 

 

Figure 5 (d) portrays the reliability curve based on 

the error metrics attained using the RF with 

calibrated classifiers. The presence of an IR arc is 

plotted between the diagonal from bottom to top. 

Simultaneously, the PS and GNB arcs are plotted 

beneath the diagonal, indicating that the algorithm 

has over-fitted and the likelihoods are excessively 

high. 

 

Figure 5 (e) interprets the reliability curve based on 

the error metrics attained using the DT with 

calibrated classifiers. The presence of an IR arc on 

the diagonal suggests that the algorithm is perfectly 

calibrated. The presence of the PS arc below the 

diagonal indicates that the algorithm has over fitted, 

and the likelihoods are excessively high. 

 

If the ML algorithm predicts correctly, the proportion 

of prominent group classifications and the average 

likelihood allocated to the most prevalent classes in 

every bin should be near to one another. Failure to act 

precisely will cause these two values to be in 

different locations. As per the observation, it was 

concluded that the best performing model for 

calibration is GNB+IR. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5 Calibration plots for the models from (a-f) 

 

5.Discussion  
This study focuses on two types of predictions using 

sampling and calibration techniques with various 

classifiers to address data asymmetry issues. 

Asymmetric datasets were obtained from the Kaggle 

repository for classifier performance evaluation. The 

initial data pre-processing stage involves dataset 

cleansing to handle missing values, followed by 

feature selection to facilitate data splitting and target 

identification. The two prediction types explored in 

this study are label prediction and probability 

prediction. 
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Label prediction aims to identify a suitable sampling 

model. Initially, we employ well-known classifiers, 

including RF, GNB, KNN, DT, LR, and SVC, for 

classification without sampling. We assess 

performance using measures such as BR, sensitivity, 

specificity, AUC, and G-Mean. Subsequently, we 

apply various sampling approaches, such as SMOTE, 

Tomek Links, ADASYN, SMOTEENN, and 

SMOTETomek, to transform the data. We then 

reapply the same ML techniques to compute the 

metrics.  

 

The results showed that individual classifiers yielded 

exaggerated results before sampling, while ML 

classifiers demonstrated improved performance after 

sampling. Hybrid sampling methods outperformed 

other approaches with all classifiers. Based on the 

simulation measures, the combination of RF and 

SMOTEENN performed exceptionally well, 

achieving a 98.07% BRA, 98.02% sensitivity, 

99.01% specificity, 0.976% AUC, and 98.50% G-

Mean. SMOTEENN emerged as an effective model 

for label prediction. 

 

Following label prediction, probability prediction 

aims to find an adaptive calibration model. To 

address data asymmetry challenges in probability 

prediction, we introduce two widely used calibration 

approaches, IR and PS. We randomly divide the 

dataset into three subsets: training, calibration, and 

testing sets, as recommended in [16], to evaluate 

calibration performance. 

 

The classification model is trained using the training 

set, while the calibration model is trained using the 

calibration set. We build ML models and apply them 

to calibrate results using the validation set. 

Subsequently, we assess the efficacy of each 

calibration method using the testing set. We sort the 

calibrated probabilities and divide them into bins, 

with bin sizes randomly selected from three options: 

10, 100, and 1000.  

 

Compute various metrics, including BS, ECE, MCE, 

and reliability curves, to assess the performance of 

each ML model. IR consistently outperforms the PS 

technique when combined with all six classifiers, 

with the best results achieved by GNB in 

combination with IR, displaying the lowest error rate 

in each bin. IR emerges as an effective model for 

probability prediction. However, it's important to 

note that the error rate increases as the bin size 

increases. Therefore, based on our analysis, label 

prediction is found to be more suitable than 

probability prediction. 

 

Variations in model performance are observed in 

both types of predictions. Some shortcomings are 

identified with classifiers when dealing with 

asymmetric datasets. The limitations of each 

technique are discussed in this section. For 

categorical predictions, LR is effective but requires 

independence of every parameter in the data sample. 

GNB makes assumptions about sample distribution. 

KNN has limitations related to data storage for large 

search problems. 

 

SVM faces challenges due to the lack of transparency 

caused by high-dimensional data. While DT is quick 

for learning and prediction, it is sensitive to minor 

dataset changes and prone to overfitting. In contrast, 

RF learns quickly and produces effective forecasts 

once trained, making it a recommended model for 

forecasting. In this research, the RF method is 

applied to improve water potability state prediction. 

In Figure 6 (a-i), the RF algorithm's prediction 

results are depicted. Water potability was predicted 

based on the levels of nine parameters (pH, Hardness, 

solids, chloramines, sulfate, conductivity, 

organic_carbon, THMs, and turbidity). As per the 

dataset description, a label of zero signifies "not 

drinkable," while a label of one indicates "potable." 

It's evident that all factors are predicted to be higher 

in the "not drinkable" category compared to the 

"potable" category. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future direction 
The primary goal of this study was to determine the 

most effective approaches for label and probability 

prediction when dealing with asymmetric data. To 

achieve this, we thoroughly investigated various ML 

classifiers and their combinations with different 

resampling techniques for the classification and 

prediction of asymmetric data. Additionally, we 

explored ML classifiers, including IR, PS, and the 

integration of these calibration techniques for 

probabilistic forecasting. The dataset employed in 

this research originates from recorded physiological 

and biochemical properties of water, reflecting real-

world applications. By conducting rigorous 

comparisons, we have assessed the performance of 

these methods to identify the most suitable strategies 

for classifying and predicting asymmetric data. Our 

findings offer clear recommendations for addressing 
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these challenges effectively. For label prediction 

tasks, the SMOTEENN emerged as the most reliable 

choice. This approach consistently demonstrated 

robust performance, significantly enhancing the 

accuracy and reliability of classification results. In 

the domain of probability prediction, the IR 

calibration method stood out as the superior option. It 

effectively mitigated issues such as over-fitting, 

under-fitting, and misclassification by ensuring well-

calibrated probability estimates. This research 

contributes not only to the identification of optimal 

strategies for asymmetric data classification and 

prediction but also to addressing common issues such 

as over-fitting and misclassification. By integrating 

leading ML models with appropriate samplers and 

calibrators, effective solutions for these critical 

challenges in real-world applications are provided. 

Discovering and establishing a standard for 

environmental modelling is a never-ending hard slog. 

The findings of this study are influenced by the 

dataset used. This cannot be stated to apply to other 

dataset depending on its features, though. 

Consequently, it is recommended to broaden the 

scope of this research by utilizing different datasets. 

Meanwhile, it is believed that the study will be more 

effective if this work is extended to use more 

calibration techniques in research. As researchers 

seek to select the best model for asymmetric data, the 

recommendations outlined above are expedient. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

Figure 6 Water potability prediction based on the dataset parameters (a-i) 
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Appendix I 
S. No. Abbreviation Description 

1 AdaSyn Adaptive Synthetic Sampling 

2 ANN Artificial Neural Networks 

3 AUC Area Under the Curve 

4 BRA Balanced Random Accuracy 

5 BS Brier Score 

6 CCG Cervical Cell Generation 

7 CNN Condensed Nearest Neighbour 

8 DL Deep Learning 

9 DT Decision Tree 

10 EC Electrical Conductivity 

11 ECE Expected Calibration Error 

12 ENN Edited Nearest Neighbour 

13 GBT Gradient Boosting Tree 

14 GNB Gaussian Naive Bayes 

15 GRU Gated Recurrent Unit 

16 G-mean Geometric Mean 

17 IF Isolation Forest 

18 IR Isotonic Regression 

19 KNN K-Nearest Neighbour 

20 LR Logistic Regression 

21 LSTM Long Short Term Memory 

22 MCE Maximum Calibration Error 

23 ML Machine Learning 

24 MLP Multi-Layer Perceptron 

25 MSE Mean Squared Error 

26 NB Naive Bayes 

27 NN Nearest Neighbour 

28 NOM Natural Organic Matter 

29 NP Near Pseudo 

30 PH Potential Hydrogen 

31 PS Platt Scaling 

32 PSO Particle Swarm Optimization 

33 RF Random Forest 

34 RNN Recurrent Neural Networks 

35 ROS Random Over Sampling 

36 RUS Random Under Sampling 

37 SA Simulated Annealing 

38 SMOTE  Synthetic Minority Oversampling 

Technique 

39 SMOTEENN SMOTE with Edited Nearest Neighbour 

40 SVC Support Vector Classifier 

41 SVM Support Vector Machine 

42 TDS Total Dissolved Solids 

43 THMs Trihalomethanes 

44 TOC Total Organic Carbon 

45 Tomek T-link 

46 WHO World Health Organisation 

 

 


