
International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                            

ISSN (Print): 2394-5443   ISSN (Online): 2394-7454 

http://dx.doi.org/10.19101/IJATEE.2023.10101467 

1336 

 

A meta-heuristic clustered grey wolf optimization algorithm for cloud 

resource scheduling  
 

Juliet A Murali
1*

 and Brindha T
2 

Research Scholar, Department of Computer Science, Noorul Islam Centre for Higher Education, Tamilnadu, India
1 

Associate Professor, Department of Information Technology, Noorul Islam Centre for Higher Education, 

Tamilnadu, India
2
 

  
Received: 23-April-2023; Revised: 10-October-2023; Accepted: 12-October-2023 

©2023 Juliet A Murali and Brindha T. This is an open access article distributed under the Creative Commons Attribution (CC 

BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

1.Introduction 
1.1Background 

Cloud computing is an example of distributed 

computing and is one of the most widespread 

techniques nowadays. It enables the internet-based 

sharing of resources such as storage, servers, 

databases, and numerous application services. With 

the assistance of service providers, anyone can access 

these underfunded services [1]. Cloud service 

providers (CSPs), who run data centers (DCs) with 

powerful servers and infrastructure, offer these 

services. Software as a service (SaaS), platform as a 

service (PaaS), and infrastructure as a service (IaaS) 

are the three types of cloud service models [2].  

 

 
*Author for correspondence 

 

CSPs supply virtualized computing resources over 

the internet in the IaaS model. Amazon web services 

(AWS), microsoft azure, and google cloud platform 

(GCP) are well-known IaaS providers. PaaS offers a 

platform for creating, deploying, and managing 

applications that include infrastructure, development 

tools, and services. While the cloud provider takes 

care of the maintenance and the underlying 

infrastructure, users may concentrate on creating and 

deploying applications. Heroku, google app engine, 

and microsoft azure app service are a few PaaS 

platform examples. Email services like Gmail, 

productivity suites like Microsoft 365, and customer 

relationship management tools like Sales-force are 

examples of SaaS applications. The shared use of 

virtual resources, especially IaaS, is the main focus of 

this study. 

Research Article 

Abstract  
Cloud computing services refer to the on-demand provision of computer resources and services over the internet. 

Numerous resources are available from cloud service providers (CSPs). Infrastructure as a service (IaaS) is a cloud 

computing service that enables the sharing of computer resources over the web. One of the key challenges in cloud 

scheduling is the efficient allocation of these resources. Recently, several swarm-intelligence (SI) scheduling techniques 

have been adopted. In this study, a two-phase scheduling model known as the clustered grey wolf optimization (CGWO) 

algorithm is proposed. During the first phase, the task splitting agglomerative clustering (TSAC) algorithm classifies jobs 

based on their deadlines, while the advanced grey wolf optimization (AGWO) algorithm handles resource allocation. The 

CloudSim simulation results demonstrate that the CGWO framework outperforms currently used algorithms, including 

genetic algorithm (GA), particle swarm optimization (PSO), salp swarm algorithm (SSA), and standard grey wolf 

optimization (GWO). The evaluation considers factors such as makespan, resource utilization, cost, throughput, 

convergence speed, and others when comparing various cloud scheduling algorithms. The suggested model incorporates 

a clustering mechanism to alter the traditional first-in, first-out (FIFO) structure of job execution. This study reveals that 

GA and SSA are excellent choices, particularly for lower and intermediate task counts, if the primary goal is to reduce 

makespan. If effective resource utilization and throughput are top priorities, SSA and CGWO appear to be promising 

options. The improvement rate of SSA over CGWO in terms of makespan is approximately 0.135%. Regarding resource 

utilization, CGWO has shown an improvement rate of 8.228%, 4.88%, and 0.93% compared to GA, GWO, and PSO, 

respectively. CGWO's rate of resource utilization improvement is 1.28% lower than that of SSA. 

 

Keywords 
Cloud computing, Clustering, Scheduling, Resource allocation, Swam intelligence algorithms.   

 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1337          

 

1.2Challenges 
With the support of IaaS, users could construct, 

manage, and scale their virtualized infrastructure 

across the web. The effective distribution of these 

resources to meet workload demands is called 

resource scheduling. It might be challenging to assign 

cloud resources to a user [3, 4]. Cloud scheduling 

issues are NP-hard because of fluctuating workloads, 

heavy usage of dynamic cloud resources, and variety 

of optimization objectives. Depending on the 

circumstances and the requirements, the cloud 

scheduling problem can change. Task scheduling and 

resource scheduling are the typical categories. Jobs or 

tasks are distributed across the available cloud 

resources using task scheduling. Allocating virtual 

resources to activities or jobs is the basic goal of 

resource allocation [5]. 

 

Maximizing utilization should be the goal of resource 

scheduling, which means resources are used to their 

maximum potential. Over-provisioning of resources, 

where businesses allocate more virtual resources than 

they need, is a common problem. When different 

users or organizations share resources in multi-tenant 

cloud environments, resource scheduling must 

balance tenant resource distribution while preserving 

security, isolation, and fairness. It can be challenging 

to plan resources in real-time, to match without 

wasting or over-provisioning resources. The service 

level agreements (SLAs) are an essential part of 

cloud scheduling. Resource availability, virtual 

machines (VMs) resource needs, and load balancing 

are just a few considerations in resource scheduling. 

When VMs are allocated and de-allocated, resource 

fragmentation can occur over time. This results the 

inefficient use of resources and a rise in scheduling 

issues [6]. Application performance depends on 

optimizing network allocation for data transfer and 

communication. Cost optimization and data security 

are major concerns. Resource contention can happen 

when numerous VMs or workloads fight for the same 

resources [7]. 

 

1.3Motivation 

Making suitable scheduling algorithms and policy 

choices can be challenging. Organizations must select 

or create algorithms that meet their requirements 

because different workloads may demand various 

scheduling strategies. Different types of cloud 

scheduling algorithms exist based on the methods and 

objectives. A few of them are queue-based 

scheduling algorithms, genetic and evolutionary 

algorithms (EAs), heuristic algorithms, swarm 

algorithms and machine learning-based algorithms. 

Some other commonly used algorithms are static 

scheduling algorithms, dynamic scheduling 

algorithms, priority-based scheduling algorithms, 

load balancing algorithms, deadline-based scheduling 

algorithms, and queue-based scheduling algorithms.  

The selection of a cloud scheduling algorithm is 

influenced by the nature of the workload, resource 

limitations, performance objectives, and cost 

concerns. In complicated cloud environments, the 

allocation of resources can be balanced and 

optimized via hybrid approaches that incorporate 

several scheduling algorithms [8]. 

 

When tackling optimization issues in complicated 

search areas, where conventional search techniques 

may be ineffective or unfeasible swarm intelligence 

(SI) algorithms are suitable. They have uses in a 

number of industries, including engineering, banking, 

logistics, and telecommunications. The collective 

activity of social creatures like ants, bees, and birds is 

the inspiration for a technological optimization 

method known as SI. These algorithms are used to 

address complicated optimization issues. The SI 

algorithms identify optimum or nearly optimal 

solutions through population-based interactions 

agents [9]. 

 

Virtual resource allocation is an optimization 

problem. Nearly optimal solutions can be obtained by 

the use of the meta-heuristic algorithm. Most 

prominent meta-heuristic algorithms are the ant 

colony optimization (ACO) [10], grey wolf 

optimization (GWO) [11, 12 ], particle swarm 

optimization (PSO) [13,14], genetic algorithm (GA), 

salp swarm algorithm (SSA) [15, 16, 17] etc. GWO is 

a nature-based SI algorithm. 

 

1.4Objectives 

This work, introduced a cloud task scheduling 

algorithm based on the meta-heuristic GWO 

algorithm. The following are the shortcomings in 

present scheduling frameworks: (1) the active state is 

the sole physical machine (PM) state that most 

systems consider. PMs can be in many states, such as 

sleep or idle. It could result in resource over-

provisioning, waste of resources, and greater 

expenses. It also causes a chance to induce dynamic 

workload variability and SLA violations. (2) All 

tasks in a job are allocated to a single PM. The best 

VM placement is not guaranteed, nor is the proper 

use of resources. Resource consumption is inefficient 

as a result of resource fragmentation. When 

numerous VMs seek the same resources, resource 

contention can happen. 



Juliet A Murali and Brindha T 

1338 

 

(3) The scheduling policy is first-in, first-out (FIFO) 

(virtual central processing unit (vCPU) requested in a 

single PM). The proper utilization and allocation of 

resources are not maintained in the case of FIFO. The 

FIFO policy has changed since the introduction of 

clustering. (4) The number of resources required is 

not checked during PM allocation [18]. The proposed 

strategy employing VMs or other resource utilization 

is examined, which causes the management of 

resources under and over-provisioning. Here, 

dynamic workload handling serves to ensure 

balanced multi-tenancy. The availability of resources 

is checked to maintain the best possible VM 

placement. Additionally, the cost optimization 

remains kept up. 

 

1.5Contributions 

This paper, come up with a new task scheduling 

algorithm titled clustered grey wolf optimization 

algorithm (CGWO). The evaluation is done in 

CloudSim environment. The following are the major 

contributions: 

 Proposed a two-stage work scheduling technique 

based on a meta-heuristic termed GWO. 

 Task splitting agglomerative clustering (TSAC) is 

used to cluster the jobs before they are submitted 

to the cloud. 

 The second step involved some slight variations of 

the "encircling" and "attacking" equations, which 

applied in the proposal using CloudSim. 

 

The remainder of the paper is evaluated as follows. 

Section 2 discusses an analysis of resource 

distribution in a cloud context. The architecture of the 

suggested technique is described in section 3, along 

with problem formulations. It also provides the 

illustration of the algorithms and the mathematical 

models. Section 4 covers the evaluation of the result. 

Section 5 and section 6 discusses the discussion, 

conclusion and upcoming work. 

 

2.Literature review 
The bio-inspired or biologically motivated are 

frequently used to describe optimization strategies 

that draw their inspiration from biological processes 

and natural events. These methods use the behavior 

and mechanisms seen in live things and ecosystems 

to address challenging optimization issues. One of 

the categories of optimization methods inspired by 

the group behavior of social creatures like bees, ants, 

birds, and fish called SI algorithms. The SI 

algorithms have been used in cloud scheduling to 

attain work distribution, load balancing, and resource 

optimization [19]. 

The EAs are a family of optimization algorithms that 

draw inspiration from the process of natural selection 

and evolution observed in biological systems. These 

algorithms are used to find optimal or near-optimal 

solutions to complex problems by simulating the 

process of evolution over a population of candidate 

solutions. EAs are particularly well-suited for 

optimization problems where the search space is 

large, complex, and lacks a gradient for optimization 

[20, 21]. 

 

SI is a field examining artificial and natural systems 

made up of several individuals that are coordinated 

via decentralized control and self-organization. 

Simple autonomous entities are part of emergent 

collective intelligence system. Several fields, 

including optimization, robotics, data clustering, and 

routing, employ SI methods [22]. 

 

The biological immune system (BIS) serves as the 

basis for the computational intelligence system 

known as the artificial immune system (AIS). AIS are 

a set of computer algorithms and models that use 

insights from the human immune system to tackle 

challenging issues in variety of fields, such as 

optimization, anomaly detection, pattern recognition, 

and data mining. The adaptive and self-regulating 

characteristics of the BIS, which protect the body 

against diseases and develop the ability to identify 

and respond to new threats, are mimicked in AIS 

algorithms [23]. 

 

Memetic algorithms (MAs) are methods for solving 

optimization problems by merging local search 

techniques with GAs. Although MAs have been used 

in a variety of fields, including cloud computing, to 

address optimization problems, their success in these 

applications depends on the particular issue and the 

surrounding circumstances. The specific problem, 

how the optimization stated, and how the answers 

affect how MA are used to cloud computing [24]. 

 

Cloud computing is one of the many areas where 

biochemical algorithms to handle scheduling, 

resource allocation, and optimization issues. It is 

crucial to remember that the use of biochemical 

algorithms in cloud computing necessitates a 

thorough comprehension of both the particular issue 

domain and the biological processes. For best 

outcomes, it may be required to modify and adapt 

biochemical algorithms to fit the peculiarities of 

cloud computing settings [25, 26]. 

Computer models called plant growth simulation 

algorithms (PGSAs) are based on how plants grow 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1339          

 

and develop. It's vital to remember that PGSAs may 

need extensive adjustment and development in order 

to be used to cloud computing settings. In their 

original environment, these algorithms are often 

utilized for distinct objectives, therefore optimizing 

and managing cloud resources may require new 

methodologies and factors to be taken into account 

[27]. Table 1 compares algorithms with biological 

inspiration. In this section, we'll focus on   

algorithms. 

 

Table 1Comparison of optimization techniques 

S. No. Optimization techniques  Inspired By Examples 

1 EA [20,21] 
The process of biological evolution, such as 

natural selection, mutation, and crossover 

GA, genetic programming, 

evolution strategies  

2 SI Algorithms [22] 

Collective behaviour and interactions 

observed in social organisms, such as ants, 

bees, birds, and fish. 

ACO, PSO, GWO, SSA 

3 AIS [23] 
The immune system's ability to recognize 

and respond to foreign substances 

Artificial immune network 

(AIN),  

Immune network algorithm 

(INA), 

 clonal selection algorithm 

(CLONALG) 

4 MA [24] 
Information exchange and cooperation to 

improve the search process. 

Genetic local search (GLS),  

memetic differential evolution 

(MDE), memetic PSO (MPSO) 

5 Biochemical Algorithms [25,26] 
The chemical reactions and signalling 

pathways that occur within living cells. 

Chemical reaction optimization 

(CRO), artificial chemical 

reaction optimization (ACRO) 

6 PGSA [27] 

The growth and branching patterns 

observed in plant development to optimize 

complex systems, such as communication 

networks and distribution networks. 

Whale optimization algorithm 

(WOA), artificial plant 

optimization algorithm 

(APOA), plant propagation 

algorithm (PPA) 

 

A group of optimization and problem-solving 

methods known as SI are motivated by the group 

behavior of social insects and other animal swarms. 

By replicating the interactions and collaboration 

among people in a swarm, these algorithms utilized 

to solve complicated problems. In this paper, a GWO 

base scheduling policy which comes under SI. Some 

prominent SI algorithms are listed below: 

 

Like PSO, ACO is an optimization system draws 

inspiration from nature. ACO is usually employed to 

resolve combinatorial optimization issues when the 

objective is to select the best answer from a limited 

number of options. An effective optimization system 

named ACO emerged after studying how ants forage 

[28]. 

 

The GWO is a meta-heuristic algorithm [29, 30]. The 

simulation findings indicate that using benchmarked 

test functions improves the proposed optimizer 

performance. GWO is often used in containerized 

clouds. In a cloud context, the mean GWO algorithm 

is employed for work scheduling. The GWO, an 

optimization algorithm inspired by nature and based 

on the social behavior of grey wolves, is introduced 

in [31]. A population-based algorithm called GWO 

designs the social structure and hunting actions of 

grey wolves in nature. A population of different 

choices is iteratively improved using the method for 

tackling optimization issues. 

 

It has the ability to resolve a variety of optimization 

issues, including both single- and multi-objective 

issues. The performance of GWO is assessed against 

the results of several recognized optimization 

techniques, particularly differential evolution (DE), 

GA, and PSO. These benchmarking tests indicate 

how GWO performs fairly in solution quality and 

convergence rate. The authors examine how GWO 

converges to various benchmark functions. They 

demonstrate that the method frequently converges to 

solutions that are nearly optimum [32, 33]. 

 

By employing GA, it achieves optimal scheduling by 

treating user pleasure as an objective function and 

resource credibility as a component of user 

satisfaction. Subsequently, it includes this scheduling 

method into Agent and suggests a multi-agent-based 

cloud computing system design. The numerical 

outcomes demonstrate that this scheduling method 



Juliet A Murali and Brindha T 

1340 

 

increases user satisfaction as well as system running 

efficiency. In the objective function, the technique 

addresses both user satisfaction and resource 

credibility. It takes user satisfaction as the 

optimization aim and incorporates resource 

credibility into the function of user satisfaction. Then 

a GA was used to calculate the solutions. The 

technique can optimize user interests and 

computation efficiency by taking the aforementioned 

steps. In order to complete resource scheduling in 

cloud computing with multi-great agent's autonomy, 

learning capacity, and sociality, it offered a multi-

agent scheduling framework after participating this 

scheduling approach into agents [34]. 

 

GA and PSO are employed to compare the 

performance of the GWO-based technique PSO. The 

GWO's makespan and load variation are both 

minimized. When simulation results are compared to 

PSO along with standard GWO, the suggested mean 

GWO processes demonstrate a 9% improvement on 

PSO and a 3% improvement on normal GWO.  It also 

demonstrates that it lowers energy consumption for a 

large number of iterations, improving performance. 

Ahmad presented a hybrid GA-PSO approach. When 

comparing to GA as well as PSO, the simulation 

results depict that it reduces the makespan, cost, and 

balance load. 

 

SSA is a naturally inspired algorithm that mimics the 

actions of salp in seas or oceans. Identification of the 

food source is a collective action that creates a food 

chain. There is a leader at the front of the chain, and 

the others are followers. Depending on the leader's 

inspiration, the followers may adjust their stance. The 

position of the best solution inside the population is 

designated as the food source position (F) in the 

chain signifies the best solution for the problem [35]. 

A nature-inspired optimization approach called PSO 

is used to discover approximate solutions to 

challenging optimization issues. It was first created in 

1995 by James Kennedy and Russell Eberhart, who 

took their cue from the flocking or schooling of birds 

or fish. PSO has been used in a wide range of 

domains, including economics, robotics, and machine 

learning, and engineering design. It is popular for 

being straightforward to use, which makes it a 

popular option for resolving challenging optimization 

issues. There are numerous PSO algorithm variations, 

including global best PSO, local best PSO, 

constriction coefficients PSO, adaptive PSO, multi-

objective PSO, and discrete PSO [36]. 

 

Jain and Sharma [37] suggested a binary SSA that is 

quality of service (QoS) aware. When it comes to 

minimizing makespan, the QoS aware binary salp 

swarm algorithm (QBSSA) outperforms the GWO. It 

also optimizes resource utilization, increases 

throughput, and reduces average wait times. 

 

A hybrid work of GWO and teaching learning-based 

optimization was proposed in [38, 39]. In comparison 

to GWO, PSO, and biography based optimization 

(BBO) the simulation results show that it maximizes 

resource consumption and has good load balancing. 

This GWO technique can be applied to a various 

technology, which includes the fog computing, 

internet of things (IoT), and so on. Table 2 compares 

algorithms with biological inspiration. This section, 

focus on SI algorithms. 

 

Table 2 Comparison of recent optimization techniques. 

S. No. Optimization techniques Technique Inspired By Examples 

1 
ACO 

[28,29] 
SI 

nature-inspired, robustness, 

solves combinatorial 

problems 

convergence speed, parameter 

tuning, complexity 

2 
GWO 

[30,31] 
SI 

nature-inspired, few 

parameters, convergence 

limited flexibility, performance 

variability, limited research 

3 
GA 

[32,33,34] 

evolutionary 

computation 

versatility, population 

diversity, global search, 

crossover & mutation 

parameter tuning, 

computational intensity, 

representation choice 

4 
PSO 

[35,36] 
SI 

simplicity, convergence, 

adaptability, parallelization 

local optima, lack of diversity, 

parameter sensitivity, limited 

exploration 

5 SSA [40,41,42] SI 
novel approach, exploration 

& exploitation 

limited application, parameter 

sensitivity, computational cost 

 

 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1341          

 

The study revealed that SI algorithms were used to 

solve several optimization issues, like cloud 

scheduling [43, 44].The following are the primary 

causes:  

 Environments for cloud computing are distributed 

and dynamic. Because the SI algorithms are 

distributed and decentralized, they can be used to 

solve real-time cloud scheduling issues. 

 These SI algorithms are adept at sifting through 

search space and identifying globally optimal or 

nearly optimal solutions. 

  SI algorithms are helpful for cloud scheduling 

because they aim to allocate resources to meet 

performance metrics.  

 They can deal with situations in which resource 

availability and task execution timeframes are 

variable. 

 

3.Method 
Because virtual resources are distributed via the 

internet, customers can a QBSSA ess them through 

cloud computing. The PMs are used to build up the 

virtual resources. A significant issue is allocating 

suitable virtual resources to clients. The distribution 

of resources is done in two stages. The first step is to 

determine which resources are available. The work is 

completed in the second stage using the resources 

that have been given. 

 

3.1Basic architecture   

The customer's request is a group of heterogeneous 

tasks   *            +. These tasks execution is 

done by the allocating VMs say 

   *                +. The proposed 

resource allocation algorithm, CGWO provides a 

near-optimal solution for task allocation problems. 

The architectural model is demonstrated in the Figure 

1. 

 

The cloud task manager manages the tasks submitted 

by the user. The functions of the cloud pre-processing 

manager comprise the clustering of all enrolled 

pieces of work and collection of availability, 

capacity, and cost value of virtual resources present 

in the DC. This information is at hand to the 

scheduler. The scheduler makes a study about this 

information and finds out the appropriate VM 

allocation to tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Architectural framework 

 

This block diagram in Figure 2 represents the 

suggested model. Components explained: 

 

User Request: This reflects the requests made for 

cloud resources like VM, containers, or server-less 

computing operations by users or applications. These 

requests may include details regarding the resources 

needed, performance standards, etc. 

 

Clustering: The clustering divides the request into 

two categories. The first group of jobs has a short 

deadline, whereas the second group has a long 

deadline. For this, TSAC is employed. 

The scheduling method advanced grey wolf 

optimization (AGWO) receives the result from 

clustering. The scheduling method employed initial 

solution identification, fitness calculation, hunting 

phase, exploration phase, termination checking, and 

final solution identification steps. 

 

Initial population identification: Initial population 

identification is one of the important tasks in AGWO, 

and based on this final solution varies. The number of 

options depends on how many jobs need to be 

planned. 

 

Customers / 

Users 

Cloud Task 

Manager Scheduler 

Pre-processing Manager 

Cloud Data 

Centre 



Juliet A Murali and Brindha T 

1342 

 

Fitness calculation: According to objective functions, 

the fitness value for each schedule is determined. To 

evaluate fitness value for the initial population λp 

value is identified, which represents the number of 

VMs available for the task scheduling. This variable 

is an entirely novel variable that AGWO has added. 

The fact that the makespan decreases as tasks are 

spread across more VMs means that this parameter is 

inversely proportional to the fitness value. 

 

Hunting phase: Based on the fitness value, this 

component changes the alpha, beta, and delta 

solutions. The beta solution comes in second place, 

the delta comes in third, and the alpha is currently the 

top solution. These solutions lead the hunting pack. 

Exploration phase: The positions of the alpha, beta, 

and delta solutions are used to update all the 

scheduling solutions in the pack throughout this 

phase. This facilitates the search space's exploration 

and promotes convergence toward optimal solutions. 

Termination checking: A maximum number of 

iterations, a predetermined fitness threshold, or a time 

limit can all be used as termination conditions. The 

stopping criterion is also based on the variable A, 

which falls under 1. 

 

Final solution identification: The algorithm's best 

solution is often the position of the alpha solution, 

returned as the best answer to the optimization 

problem. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Complete block diagram 

 

3.2Problem formulation 

The main objective of the proposed framework is to 

create a resource allocation algorithm in the cloud 

environment. The performance metrics under 

consideration during the implementation of the 

framework are makespan, cost, etc. The schedule 

created by the resource allocation algorithm should 

produce a schedule having minimum Makespan 

    ( ) and provide efficient utilization of resources, 

in turn, reduce the cost     ( ). Assume   is the 

optimal schedule for the problem. 

   ( )   
       ( )  (   )       ( )          
         (1) 

      

    ( )      (         ( ))  (2) 

    ( )      (         )  (3) 

The fitness function    ( ) is given in Equation 1, 

where µ is a constant its value is 1≥ µ≥0.  
3.2.1Makespan 

Makespan is defined as the amount of time from start 

to finish for completing a set of job, that is the 

maximum completion time of all jobs. It also depends 

on the CPU computing power. There are m number 

of VMs and n number of tasks. Assume that 10 tasks 

are split among 3 separates VMs.VM1 is assigned 

tasks T1, T2, and T3, VM2 is allocated tasks T4, T5, 

T6, and T7, and VM3 is allocated the remaining tasks 

T8, T9, and T10.The finish time represents the fastest 

these three VMs may possibly finish. The VM 3 (slot 

 
 

User Request Clustering Requests 

Initial Population 

Identification 
Fitness Calculation Hunting Phase 

Exploration Phase 
Termination 

Criteria 

Find Best 

Solution 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1343          

 

5) finish time is listed below. Here is the start time of 

VM2 (slot 1), which is the minimum of 10 jobs split 

among the three VMs. It is shown in Figure 3. 

 

 

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 

VM1 

 

T1 T2 T3 

 

VM2 T4 T5 T6 T7 

 

VM3 

  

T8 T9 T10 

Figure 3 Task Distributions in VMs 

 

        ( )  ∑ ∑ (           ) 
   

 

   
 

     (4)  

Where     represents the task completion 

time,  represents the task as well as     represents 

the start-time of task   .The cost value is a function of 

CPU computing power and load capacity of VM and 

is calculated using Equation 5. It is a function of 

processing power and memory needed for the 

exaction of task. 
3.2.2Cost 

The cost value is a function of CPU computing power 

and load capacity of VM and is calculated using 

Equation 5. It is a function of processing power and 

memory needed for the exaction of task. 

           (                ) (5) 

 

                             (6) 

                          (7) 

3.2.3Resource utilization 

It is calculated using a VM's task completion time, 

makespan, and total number of VMs. It is calculated 

by using Equation 8. 

                     

∑ (
                                   

            
) 

    (8) 

 
3.2.4Throughput 

The number of tasks completed in a particular 

amount of time is referred to as throughput. Here it is 

calculated using Equation 9. 

          
                                             ⁄  

     (9) 
3.2.5Convergence speed  

The term "convergence speed" describes the rate at 

which a scheduling algorithm reaches an ideal or 

nearly ideal solution. It is frequently quantified in 

terms of convergence time or iteration count.  Faster 

convergence is indicated by a lower value. 

                  
                                (10) 

 

3.3Task scheduling model 

Task entry, clustering, and optimization are all part of 

the proposed paradigm. Customer requests are 

entered into a task entry queue during the first phase. 

These duties will be distributed across virtual 

resources. The clustering strategy in the proposed 

framework is TSAC, which is a version of 

hierarchical agglomerative clustering that is TSAC. 

The optimization step employs AGWO, a modified 

version of GWO. Figure 4 depicts the situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Architecture of CGWO framework 

 

3.4Task splitting agglomerative clustering 

One of the key components of the proposed system is 

clustering. The jobs that will be scheduled are 

divided into two categories in this clustering section. 

Tasks with a long deadline are placed in one of two 

categories: high range or low range. For example, 

imagine there are six tasks T1, T2, T3, T4, T5, T6 to 

be scheduled, each with a deadline of 2, 5, 10-, 20-, 

Task Entry Queue 

. . 

Task Entry 

Module 

Clustering and Optimization Module 

Task 

Categorizatio

n (TSAC) 

Resource 

Allocation 

(AGWO) 

Deadline & 

Similar 

Function 

Cost availability 

of resources & 

Fitness Function 

Job Request 

Nearly Optimal 

Schedule 

Event/Algorith

m 

Data Collection/ 

Function Evaluation 



Juliet A Murali and Brindha T 

1344 

 

15-, or 3-time units. According to the clustering 

method, T1, T2, and T6 are in the low range 

category, and T3, T4, and T5 are in the high range 

category. 

   (     )        (       )  (11) 

 

Where     and       

The TSAC algorithm initially considers each 

scheduling tasks as a single cluster and find out the 

similarity function using Equation 8.     and     are 

the deadlines for tasks    and   , respectively, in 

Equation 8. Examine how the deadlines for tasks    

and    are comparable. Repeat the process until there 

are only two clusters left. Algorithm 1 depicts the 

clustering algorithm.  

 

Algorithm 1: Task Splitting Agglomerative 

Clustering  

Input: Tasks to be scheduled. 

Output: Two clusters, high range and low range 

Initially each task makes a cluster search space. 

Set CL as total number of clusters. 

Evaluate       (       ) using Equation 11 

While (    ): 
Merge the two closest clusters 

Update    (     ) 

Decrement    by 1 

End while 

 

3.5Advanced grey wolf optimization  

The encircling and attacking formulae are slightly 

adjusted in this proposed strategy. Based on the 

distribution of jobs across cloud DC, a priority value 

is introduced. The rest of the methods appear to be 

normal GWO. Table 3 lists the parameters utilised in 

the technique. The calculation of the fitness value is 

an important aspect of this technique. It shows how 

far the agent has come towards aim. 

 

Table 3 Variables used 

Parameters              Meaning 
 r1, r2 random values in [0,1] 

  ⃗⃗⃗   random value decreases 

from 2 to 0 

 ⃗ p  ( t ) Position  of prey 

 ⃗ ( t ) Position of Wolf 

P(t+1)  Fitness value  

Pα Best search Agent 

Pβ Second Best Search Agent 

Pδ Third Best Search Agent 

λp, λα, λβ, λδ Number of VMs used for 

task  distribution 

CPTij Completion Time of Task 

Tj in VMi 

STTj Start-Time of Task TjinVMi 

Dtx Deadlines for tasks tx 

Dty Deadlines for tasks ty 

vCPUNeed Processing Power 

MemNeed Memory Needed 

 

3.5.1 Encircling the prey  

Encircling the prey entails determining the fitness 

value that is closest to the target. When a project or 

task is divided among available VMs in a cloud 

scheduling problem, utilization efficiency improves. 

The following equations suggest a mathematical 

model for encircling behaviour. The suggested model 

includes a variableλ_p, which represents the number 

of VMs utilized for job/task distribution data. The 

aim is inversely proportional to it. The agent is 

getting closer to the goal as its values rise. 

 ⃗⃗  |    ⃗  ( )  [ ⃗  ( )   ⁄ ]|  (12) 

 ⃗ (   )  | ⃗  ( )     ⃗⃗ |   (13) 

Where    is the number of VMs used for task 

allocation over the cloud.   ⃗  ( )is the prey’s position, 

 ⃗ ( )) signifies the wolf position and P(t+1) Equation 

13 is fitness value. The vector    as well as ⃗⃗  
Equation 12 are estimated as equated in 14 and 15. 

                  (14) 

           (15) 

The best three groups, alpha (α), beta (β), as well as 

delta (δ), finish this phase. The best groups are 

determined by assessing the fitness value of each 

schedule used in the encircling phase. The alpha(α) 

emerges as the finest among them. The remaining 

answers are placed in the omega (ω) category. 
3.5.2 Hunting and attacking 

During the hunting phase, activity is rescheduled 

rooted on the mean of alpha, beta, as well as delta. 

This will continue until the vector A falls below one, 

which is the attacking condition. The alpha has now 

become the best option. The following are the 

equations (Equation 16 to Equation 22) utilized in the 

hunting phase: 

 ⃗⃗   |   ⃗   [ ⃗ ( )   ⁄ ]|   (16)  

 ⃗⃗   |   ⃗   [ ⃗ ( )   ⁄ ]|   (17) 

 ⃗⃗   |   ⃗   [ ⃗ ( )   ⁄ ]|   (18)  

 ⃗    ⃗       ⃗⃗      (19)  

 ⃗    ⃗       ⃗⃗      (20)  

 ⃗    ⃗       ⃗⃗      (21)  

 ⃗ (   )   ( ⃗    ⃗    ⃗  )  ⁄   (22)  



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1345          

 

Algorithm 2 depicts the AGWO Algorithm's pseudo-

code form. 

Algorithm 2: Advanced Grey Wolf Optimization 

Algorithm  

Input: Tasks to be scheduled. 

Output: nearly optimal Schedule. 

Initialize the population based on number of task n 

Initialize a, A and C 

Categorize the tasks using TSAC Algorithm 

Availability of resource is checked and select task 

category. 

Set the initial iteration t=1 

for k=1 to n do 

        Generate Initial Populations Pi 

End for 

Estimate the fitness function for each schedule using 

fitness function Equation 1. 

 Identify the best solutions Pα, Pβ ,Pδ. 

While (t<max(t)) 

for each schedule  

                  Update the position of current schedule 

using  ⃗  (t+1) Equation 22. 

End for 

          Update a, A and C. 

Estimate the schedule fitness  

           Update best solutions Pα,,Pβ ,Pδ. 

t=t+1 

End while 

return best solution Pα. 

 

4.Results 
This section details the tests that were conducted to 

assess the suggested method's performance. 

 

4.1Experimental setup 
The simulation results were analyzed on HP PC with 

an Intel CORE i5 8th Gen x64 processor and 8GB of 

RAM. The CloudSim simulator is used to examine 

the proposed framework's performance. The 

CloudSim 4.0 toolkit is compatible with the jdk 

1.8.0_111 package and operates on the Windows 10 

platform using NetBeans IDE 8.2. 

CloudSim allows the dynamic creation of tasks using 

the concept of Cloudlets. It also supports the dynamic 

creation of heterogeneous VM instances. In our 

proposed model the capabilities of VMs such as 

available memory, the processing speed of VCPU are 

variant. To evaluate CGWO several tasks are 

managed with various heterogeneous sets of tasks 

and VMs. 

 

4.2Evaluation of results 
The performance results in comparison of the 

proposed CGWO are with the GA, PSO [10], SSA, 

and Standard GWO [9] concerning makespan for task 

scheduling problem. The simulations parameters are 

given in Table 4. The datasets considered for the 

evaluation amount to the count of tasks vary from 5 

to 1000. The simulation result is obtained by 

executing the tasks 20 times, and by taking the 

average value obtained from the execution. The 

simulation environment has 30 PM, 86 VMs 

distributed over this PMs and a totally of 166 vCPUs. 

The task length parameter specifies the 

computational load of each task in terms of millions 

of instructions per second (MIPS). The job length 

might range from 100 to 1000 MIPS, reflecting 

various computational needs. Each virtual computer 

has access to random access memory (RAM). Here, 

the range is defined as 256 MB to 1024 MB. The 

computing power of the virtual CPU is measured in 

MIPS by the capacity of vCPU. The vCPUs have a 

500–1000 MIPS performance range. The VM policy 

indicated above is time-shared. The method by which 

numerous VMs divide up the same physical resources 

(such CPU, memory, etc.) for use is known as time-

sharing. 

 

Table 4 Simulation parameters 

Parameters Values 

Count of Tasks 5-1000 

Count of VMs 86 

Count of PMs 30 

Task length 100-1000 MIPS 

RAM 256-1024 (MB) 

Capacity of vCPU 500-1000MIPS 

Number of Iterations 20 

VM Policy Time Shared 

 

Makespan-The makespan value would be a specified 

amount of time expressed in seconds, minutes, or any 

other suitable unit, and would reflect the entire 

amount of time needed to accomplish all tasks. It 

estimates the total duration for execution. Better 

performance is symbolised by a lower makespan.  

 

Figure 4 shows the makespan value obtained by 

applying CGWO, GA, PSO [10], SSA, and GWO. 

Table 5 represents the tabular representation of 

makespan. The graph Figure 5 shows the number of 

tasks on the x-axis and the makespan value in 

seconds on the y-axis. The makespan should be kept 

to a minimum. Resource Utilization- The percentage 

of computing resources (such as CPU, memory, or 

network) that are used during task execution is often 

used to describe resource utilization. When the 

percentages are higher, resource utilization is higher. 

Figure 6 and Table 6 shows the comparison of GA, 

PSO, Standard GWO, SSA, with the proposed 



Juliet A Murali and Brindha T 

1346 

 

method, in terms of resource utilization. The x-axis 

represented the number of tasks, while the y-axis 

parameter varied as resource utilization. The VMs 

limited to 50.  It can be seen from the comparison 

that SSA uses its resources more efficiently. 

Comparing the CGWO to the normal GWO, 

improvements can be seen. 

 

Table 5 Makespan in second 

Number of tasks PSO GWO GA SSA CGWO 

5 24.05 22.11 20.12 19.35 20.54 

100 54.31 53.35 52.31 51.87 54.67 

200 130.12 120.24 110.42 114.33 115.53 

500 419.33 410.38 388.63 385.56 386.73 

1000 785.42 774.46 761.54 755.43 750.86 

 

 
Figure 5 Comparison of Makespan 

 

Table 6 Resource utilization in % 

Number of tasks GA Standard GWO PSO SSA CGWO 

5 63.64 66.51 70.56 72.86 72.16 

100 69.38 72.32 75.55 77.75 72.75 

200 71.27 74.67 77.71 79.79 80.76 

500 76.56 80.54 82.66 82.74 82.44 

1000 79.76 80.56 82.81 84.83 84.83 

 

 
Figure 6 Comparison of resource utilization 

 

Cost-The cost function of CGWO is measured 

against varying a number of tasks. The cost value is 

calculated on the dynamic availability of resources 

and the individual cost of resources. As the count of 

0
100
200
300
400
500
600
700
800
900

5 100 200 500 1000

M
a
k

es
p

a
n

 (
se

c)
 

Number of tasks 

Performance comparison of makespan 

PSO GWO GA SSA Clustered GWO

0
10
20
30
40
50
60
70
80
90

5 100 200 500 1000

U
ti

li
za

ti
o
n

 (
%

) 

Number  of  tasks 

Performance comparison of resorce utilization 

GA Standard GWO PSO SSA Clustered GWO



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1347          

 

task increases the cost value decreases means the 

good resource utilization and is depicted in Figure 7. 

In terms of total cost, Figure 8 compares GA, PSO, 

standard GWO, as well as SSA to the proposed 

approach. The number of tasks was displayed on the 

x-axis, while the total cost was indicated on the y-

axis. The simulation values for the total cost of GA, 

PSO, SSA, Standard GWO, and CGWO when there 

are 500 tasks are 54, 46, 44, 50.5, and 44.1, 

respectively. In comparison to PSO and traditional 

GWO, Figure 6 indicates that the proposed technique 

has the lowest cost. 

 

 
Figure 7 Comparison of resource utilization 

 

 
Figure 8 Cost evaluation 

 

Throughput - The quantity of jobs completed in a 

certain amount of time, such as seconds or minutes, is 

known as throughput. Higher values suggest a 

processing capacity that is greater. 

 

The CGWO method appears to consistently obtain 

the maximum throughput values across various 

numbers of tasks, according to the presented data. 

Figure 9 displays the results of various heuristic 

methods in terms of throughput. When there are 500 

jobs to schedule, GA, GWO, PSO, SSA, and CGWO 

have throughput values of 180,170,170,200,200 

correspondingly. The table representations of 

throughput values are shown in Table 7. 

 

Here, Table 7 exposes the performance of CGWO 

over other traditional models like GA, PSO, Standard 

GWO, and SSA in terms of throughput. Besides, the 

experimentation confirmed the proposed CGWO 

outperformed the other conventional models and 

proved its efficacy. 

 

 

 

0

10

20

30

40

50

60

50 80 100 200 300 500 1000

C
o
st

 (
$

) 

Number of tasks 

Cost Evaluation 

0

20

40

60

80

5 100 200 500 1000

T
o
ta

l 
C

o
st

 (
$

) 

Number of tasks 

Total Cost 

GA PSO Standard GWO SSA Clustered GWO



Juliet A Murali and Brindha T 

1348 

 

Table 7 Throughput 

Number of tasks GA Standard GWO PSO SSA CGWO 

5 5 5 5 5 5 

100 80 85 90 90 90 

200 100 120 150 150 148 

500 180 170 170 200 200 

1000 200 220 235 252 250 

 

 
Figure 9 Comparison of throughput 

 

Convergence Speed: The rate at which a scheduling 

algorithm achieves an ideal or very close to ideal 

solution is referred to as convergence speed. The 

faster a problem converges to its optimal or nearly 

optimal state, the lower its Convergence Speed value. 

For GA, PSO, GWO, SSA, and CGWO, the 

corresponding numbers of iterations are 30, 25, 20, 

and 20, respectively. We can compare the 

convergence speeds of various algorithms like GA, 

PSO, GWO, SSA, and CGWO based on the 

information provided for their values at various issue 

sizes. Based on the given data representing 

convergence speed values for different algorithms 

(GA, PSO, GWO, SSA, and CGWO) at different 

problem sizes, we can compare their convergence 

speeds. 

 

 
Figure 10 Comparison of convergence speed 

 

The convergence speed representations are displayed 

in the Figure 10 for various issue sizes, and each 

algorithm is represented by a different column. The 

algorithm converges to an optimal or nearly ideal 

solution more quickly the lower the convergence 

speed set. These conclusions can be drawn from the 

0

100

200

300

5 100 200 500 1000

Throughput 

GA GWO PSO SSA Clustered GWO

T
h

ro
u

g
h

p
u

t(
se

c 
) 

Number of tasks 

100 200 500 1000

GA 2.09 3.68 7.7 3.8

PSO 2.17 5.2 5.9 3.2

GWO 2.13 6.01 4.9 2.61

SSA 2.07 5.72 5.1 2.58

Clustered GWO 2.19 5.78 5.1 2.6

0
1
2
3
4
5
6
7
8
9

C
o
n

v
er

g
en

ce
 S

p
ee

d
 

Convergence speed 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1349          

 

presented data. In comparison to the other methods, 

GA and SSA show considerably faster convergence 

speeds for issue sizes of 100 and 200.GWO and 

CGWO show relatively higher convergence speeds 

than the other methods for issue sizes of 500 and 

1000. The PIR %for the makespan of the proposed 

CGWO, GA, PSO, SSA, and Standard GWO are 

shown in Table 8. It could be observed that the 

makespan values obtained through Clustered-GWO 

are better than compared to other methods. The PIR 

of makespan sketches the proposed CGWO produces 

0.135%,0.488%,3.565%, and 2.368% over SSA, GA, 

GWO, and PSO. 

 

Table 8 Performance improvement rate (%)-makespan 
  PSO GWO GA SSA CGWO 

Total Makespan 1413.23 1380.54 1333.02 1326.54 1328.33 

PIR % over PSO NA 2.368 6.017 6.535 6.391 

PIR % over Std. GWO NA NA 3.565 4.071 3.930 

PIR % over GA NA NA NA 0.488 0.353 

PIR % over SSA NA  NA  NA  NA  0.135 

 

The performance improvement rate (PIR %) for the 

utilization of resources of the proposed CGWO, GA, 

PSO, SSA, and Standard GWO are shown in Table 9. 

The PIR of resource utilization illustrates the 

proposed CGWO produces -1.28%,2.181%,3.774%, 

and 3.735% over SSA, PSO, standard GWO, and 

GA. 

 

Table 9 Performance improvement rate (%) - resource utilization 
  GA Standard GWO PSO SSA CGWO 

Total  360.61 374.6 389.29 397.97 392.94 

PIR % over GA NA 3.735 7.367 9.388 8.228 

PIR % over Std. GWO NA NA 3.774 5.872 4.667 

PIR % over PSO NA NA NA 2.181 0.929 

PIR % over SSA  NA  NA  NA NA  -1.28 

 

Though the proposed CGWO framework shows some 

improvements with the existing models it has some 

limitations. The main limitations are that this 

framework is not tested with real-time environments. 

Also, this work considers only the factors such as the 

makespan, cost, resource utilization and throughput. 

It does not consider the factors such as the load 

balance, time etc.  

 

5.Discussion  
To analyze the effectiveness of the suggested cloud 

resource scheduling model, assessment matrices such 

as cost, resource usage, makespan with time, 

throughput, and convergence speed were taken into 

consideration. 

 

All optimization strategies tend to have an increasing 

makespan as the number of jobs rises. The PSO 

algorithm, followed by GWO, GA, and SSA, has the 

longest makespan under most conditions. When 

additional jobs taken into account, CGWO 

consistently has the smallest makespan among the 

algorithms. SA typically has the smallest makespan 

values across all problem sizes, which indicates faster 

work completion. For the utilization of resources, the 

following observations are made. Higher resource 

utilization levels are typically seen in SSA, CGWO, 

and PSO, showing superior performance in terms of 

effective resource allocation and utilization. When 

compared to the other algorithms, GA and standard 

GWO show substantially lower resource utilization 

numbers. SA and CGWO consistently exhibit the 

greatest resource utilization rates across all task 

amounts, with CGWO reaching 84.83% at 1000 

tasks. In comparison to other algorithms, GA often 

uses fewer resources, especially when the number of 

tasks is small. 

 

The cost value is determined by factoring the 

resources' individual costs and their dynamic 

availability. It shows that when the number of tasks 

rises, the cost value falls, indicating efficient use of 

resources. The cost comparison of CGWO seems to 

be an initial increasing trend, indicating that some 

setup costs are associated with a smaller number of 

tasks. The cost begins to drop after a certain number 

of jobs around 200 tasks, possibly economies of scale 

or resource optimization.  

 

The throughput statistics provided allow us to draw 

the following conclusions: All algorithms attain the 

same throughput number for small problem sizes (5 



Juliet A Murali and Brindha T 

1350 

 

and 100), indicating equivalent performance in terms 

of task/job completion rate. SSA, CGWO, and PSO 

typically provide greater throughput values for bigger 

problem sizes (200, 500, and 1000), indicating 

superior performance in terms of processing 

tasks/jobs at a higher pace. For bigger problem sizes, 

GA and GWO show relatively lower throughput 

values than the other techniques. Based on the 

required level of throughput and the number of jobs 

in a particular optimization issue, this data can be 

useful for choosing the most appropriate method. 

 

GA shows the lowest convergence speed number for 

problems of size 100, indicating a faster convergence 

rate than the other algorithms. GWO shows the 

maximum convergence speed value for issue sizes 

200 and 500, indicating slower convergence than the 

other algorithms. All algorithms have relatively low 

values for convergence speed for problems of size 

1000, indicating similar convergence rates. 

 

The observed weaknesses of SI algorithms are 

covered in the paragraph below. SI algorithms can 

take longer to decide on other approaches. These 

algorithms frequently need a variety of parameters, 

including population size, convergence criteria, and 

equilibrium between exploration and exploitation. 

Finding the ideal parameter settings might be 

challenging. The best answer may not always be 

found by SI systems, which only provide heuristic 

solutions. Despite being parallelized; SI approaches 

may not be able to scale in cloud systems due to the 

abundance of resources and tasks. The performance 

of SI algorithms may vary based on the initial 

conditions. SI methods can be difficult to implement 

and comprehend, necessitating knowledge of the two 

algorithms and the issue domain. A complete list of 

abbreviations is shown in Appendix I. 

 

6.Conclusion and future work 
This study described CGWO as a resource allocation 

approach for cloud resource scheduling. In the 

proposed model, a clustering mechanism was 

introduced to modify the FIFO structure of task 

execution. The statuses of the VMs were also 

considered, as resource availability played a 

significant role in job allocation. The workload was 

distributed across DCs. The analysis of the proposed 

model was based on performance metrics, including 

makespan, resource utilization, cost, throughput, and 

convergence speed. In summary, the choice of the 

most suitable optimization algorithm depended on the 

specific objectives and trade-offs within the 

optimization problem. If the primary goal was to 

minimize makespan and resource utilization was not 

a critical concern, GA or SSA may be appropriate 

choices. On the other hand, if resource utilization was 

a primary concern, GA might be preferred despite a 

slightly longer makespan. Future research projects 

will focus on essential factors such as flow time and 

load balance during the scheduling of tasks and jobs. 

Since SSA demonstrated superiority over GWO in 

the experimental study, a shift to SSA instead of 

GWO is planned. Additionally, the results obtained 

were based solely on CloudSim, but further 

validation will be performed in real-world 

environments.  

 

Acknowledgment 
None. 

 

Conflicts of interest 
The authors have no conflicts of interest to declare. 

 

Author’s contribution statement 
Juliet A Murali: Study conception, data collection, 

investigation on challenges design, analysis and 

interpretation of results, draft manuscript preparation, 

original draft, writing – review and editing. Brindha T: 

Study conception, data collection, investigation on 

challenges, supervision, manuscript correction. 

 

References 
[1] Chang X, Xia R, Muppala JK, Trivedi KS, Liu J. 

Effective modeling approach for IaaS data center 

performance analysis under heterogeneous workload. 

IEEE Transactions on Cloud Computing. 2016; 

6(4):991-1003. 

[2] Khazaei H, Mišić J, Mišić VB, Rashwand S. Analysis 

of a pool management scheme for cloud computing 

centers. IEEE Transactions on Parallel and Distributed 

Systems. 2012; 24(5):849-61. 

[3] Khazaei H, Miic J, Miic VB, Mohammadi NB. 

Modeling the performance of heterogeneous IaaS 

cloud centers. In 33rd international conference on 

distributed computing systems workshops 2013 (pp. 

232-7). IEEE. 

[4] Wang B, Chang X, Liu J. Modeling heterogeneous 

virtual machines on IaaS data centers. IEEE 

Communications Letters. 2015; 19(4):537-40. 

[5] Ghosh R, Longo F, Naik VK, Trivedi KS. Modeling 

and performance analysis of large scale IaaS clouds. 

Future Generation Computer Systems. 2013; 

29(5):1216-34. 

[6] Guo P, Bu LL. The hierarchical resource management 

model based on cloud computing. In IEEE symposium 

on electrical & electronics engineering 2012 (pp. 471-

4). IEEE. 

[7] Wadhonkar A, Theng D. A survey on different 

scheduling algorithms in cloud computing. In 2nd 

international conference on advances in electrical, 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(107)                                                                                                             

1351          

 

electronics, information, communication and bio-

informatics 2016 (pp. 665-9). IEEE. 

[8] Bansal N, Singh AK. Valuable survey on scheduling 

algorithms in the cloud with various publications. 

International Journal of System Assurance 

Engineering and Management. 2022; 13(5):2132-50. 

[9] Manasrah AM, Ba AH. Workflow scheduling using 

hybrid GA-PSO algorithm in cloud computing. 

Wireless Communications and Mobile Computing. 

2018; 2018:1-6. 

[10] Tomás L, Tordsson J. An autonomic approach to risk-

aware data center overbooking. IEEE Transactions on 

Cloud Computing. 2014; 2(3):292-305. 

[11] Natesan G, Chokkalingam A. Optimal task scheduling 

in the cloud environment using a mean grey wolf 

optimization algorithm. International Journal of 

Technology. 2019; 10(1):126-36. 

[12] Natesan G, Chokkalingam A. Task scheduling in 

heterogeneous cloud environment using mean grey 

wolf optimization algorithm. ICT Express. 2019; 

5(2):110-4. 

[13] Attiya I, Zhang X. A simplified particle swarm 

optimization for job scheduling in cloud computing. 

International Journal of Computer Applications. 2017; 

163(9):34-41. 

[14] Huang CL, Yeh WC. A new SSO-based algorithm for 

the bi-objective time-constrained task scheduling 

problem in cloud computing services. arXiv preprint 

arXiv:1905.04855. 2019. 

[15] Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris 

H, Mirjalili SM. Salp swarm algorithm: a bio-inspired 

optimizer for engineering design problems. Advances 

in Engineering Software. 2017; 114:163-91. 

[16] Tolba M, Rezk H, Diab AA, Al-dhaifallah M. A novel 

robust methodology based salp swarm algorithm for 

allocation and capacity of renewable distributed 

generators on distribution grids. Energies. 2018; 

11(10):1-34. 

[17] Abusnaina AA, Ahmad S, Jarrar R, Mafarja M. 

Training neural networks using salp swarm algorithm 

for pattern classification. In proceedings of the 2nd 

international conference on future networks and 

distributed systems 2018 (pp. 1-6). ACM. 

[18] Bruneo D. A stochastic model to investigate data 

center performance and QoS in IaaS cloud computing 

systems. IEEE Transactions on Parallel and 

Distributed Systems. 2013; 25(3):560-9. 

[19] Nssibi M, Manita G, Korbaa O. Advances in nature-

inspired metaheuristic optimization for feature 

selection problem: a comprehensive survey. Computer 

Science Review. 2023; 49:100559. 

[20] Mashwani WK. Comprehensive survey of the hybrid 

evolutionary algorithms. International Journal of 

Applied Evolutionary Computation. 2013; 4(2):1-9. 

[21] Hua Y, Liu Q, Hao K, Jin Y. A survey of evolutionary 

algorithms for multi-objective optimization problems 

with irregular Pareto fronts. IEEE/CAA Journal of 

Automatica Sinica. 2021; 8(2):303-18. 

[22] Kaur K, Kumar Y. Swarm intelligence and its 

applications towards various computing: a systematic 

review. In international conference on intelligent 

engineering and management 2020 (pp. 57-62). IEEE. 

[23] Yang H, Liang YW, Chen J. Definition of danger 

signal in artificial immune system with cloud method. 

In fourth international conference on natural 

computation 2008 (pp. 644-7). IEEE. 

[24] Alsmady A, Al-khraishi T, Mardini W, Alazzam H, 

Khamayseh Y. Workflow scheduling in cloud 

computing using memetic algorithm. In Jordan 

international joint conference on electrical engineering 

and information technology 2019 (pp. 302-6). IEEE. 

[25] Kapur R. Review of nature inspired algorithms in 

cloud computing. In international conference on 

computing, communication & automation 2015 (pp. 

589-94). IEEE. 

[26] Yang T, Zhao Y. Application of cloud computing in 

biomedicine big data analysis cloud computing in big 

data. In international conference on algorithms, 

methodology, models and applications in emerging 

technologies 2017 (pp. 1-3). IEEE. 

[27] Rao MS, Modi S, Singh R, Prasanna KL, Khan S, 

Ushapriya C. Integration of cloud computing, IoT, and 

big data for the development of a novel smart 

agriculture model. In international conference on 

advance computing and innovative technologies in 

engineering 2023 (pp. 2779-83). IEEE. 

[28] Liu CY, Zou CM, Wu P. A task scheduling algorithm 

based on genetic algorithm and ant colony 

optimization in cloud computing. In 13th international 

symposium on distributed computing and applications 

to business, engineering and science 2014 (pp. 68-72). 

IEEE. 

[29] Abdel-basset M, Abdle-fatah L, Sangaiah AK. An 

improved lévy based whale optimization algorithm for 

bandwidth-efficient virtual machine placement in 

cloud computing environment. Cluster Computing. 

2019; 22:8319-34. 

[30] Nadimi-shahraki MH, Taghian S, Mirjalili S. An 

improved grey wolf optimizer for solving engineering 

problems. Expert Systems with Applications. 2021; 

166:113917. 

[31] Patel D, Patra MK, Sahoo B. Gwo based task 

allocation for load balancing in containerized cloud. In 

international conference on inventive computation 

technologies 2020 (pp. 655-9). IEEE. 

[32] Kumar A, Bawa S. Generalized ant colony optimizer: 

swarm-based meta-heuristic algorithm for cloud 

services execution. Computing. 2019; 101(11):1609-

32. 

[33] Malekloo MH, Kara N, El BM. An energy efficient 

and SLA compliant approach for resource allocation 

and consolidation in cloud computing environments. 

Sustainable Computing: Informatics and Systems. 

2018; 17:9-24. 

[34] Tseng FH, Wang X, Chou LD, Chao HC, Leung VC. 

Dynamic resource prediction and allocation for cloud 

data center using the multiobjective genetic algorithm. 

IEEE Systems Journal. 2017; 12(2):1688-99. 

[35] Shadravan S, Naji HR, Bardsiri VK. The sailfish 

optimizer: a novel nature-inspired metaheuristic 



Juliet A Murali and Brindha T 

1352 

 

algorithm for solving constrained engineering 

optimization problems. Engineering Applications of 

Artificial Intelligence. 2019; 80:20-34. 

[36] Del VY, Venayagamoorthy GK, Mohagheghi S, 

Hernandez JC, Harley RG. Particle swarm 

optimization: basic concepts, variants and applications 

in power systems. IEEE Transactions on evolutionary 

computation. 2008; 12(2):171-95. 

[37] Jain R, Sharma N. A QoS aware binary salp swarm 

algorithm for effective task scheduling in cloud 

computing. In proceedings of progress in advanced 

computing and intelligent engineering 2021 (pp. 462-

73). Springer Singapore. 

[38] Mousavi SM, Moghadasi M, Fazekas G. Dynamic 

resource allocation using combinatorial methods in 

cloud: a case study. In 8th international conference on 

cognitive infocommunications 2017 (pp.73-8). IEEE. 

[39] Mavrovouniotis M, Li C, Yang S. A survey of swarm 

intelligence for dynamic optimization: algorithms and 

applications. Swarm and Evolutionary Computation. 

2017; 33:1-7. 

[40] Huang CL, Jiang YZ, Yin Y, Yeh WC, Chung VY, 

Lai CM. Multi objective scheduling in cloud 

computing using MOSSO. In congress on 

evolutionary computation 2018 (pp. 1-8). IEEE. 

[41] Ibrahim RA, Ewees AA, Oliva D, Abd EM, Lu S. 

Improved salp swarm algorithm based on particle 

swarm optimization for feature selection. Journal of 

Ambient Intelligence and Humanized Computing. 

2019; 10:3155-69. 

[42] Hegazy AE, Makhlouf MA, El-tawel GS. Improved 

salp swarm algorithm for feature selection. Journal of 

King Saud University-Computer and Information 

Sciences. 2020; 32(3):335-44. 

[43] Supreeth S, Patil K, Patil SD, Rohith S, Vishwanath 

Y, Prasad KS. An efficient policy-based scheduling 

and allocation of virtual machines in cloud computing 

environment. Journal of Electrical and Computer 

Engineering. 2022; 2022:1-12. 

[44] Lipsa S, Dash RK, Ivković N, Cengiz K. Task 

scheduling in cloud computing: a priority-based 

heuristic approach. IEEE Access. 2023; 11:27111-26. 

 

Juliet A. Murali, received her M.Tech 

in Computer Science and Engineering 

from Karunya Institute of Technology 

and Sciences. She is a research scholar 

at Noorul Islam Centre for Higher 

Education, Kumarakovil, Thuckalay, 

Kanyakumari District, Tamil Nadu, 

India. She completed her B.Tech in 

Information Technology from Mahatma Gandhi University, 

India. Her current areas of interest include Cloud 

Computing, Parallel Processing, and distributed computing. 

Email: jullietjulli123@gmail.com 

 

 

 

 

 

Dr. Brindha T received her Ph.D. 

degree in Cloud Computing from 

Noorul Islam Centre for Higher 

Education, India. She completed her 

M.E. degree in Software Engineering 

from Periyar Manniammai College of 

Engineering, Anna University, India, 

and her B.Tech degree from Jayamatha 

Engineering College, Anna University, India. Currently, 

she is working as an Associate Professor in the Department 

of Information Technology at Noorul Islam Centre for 

Higher Education. Her areas of interest include Cloud 

Computing, Service-Oriented Computing, Parallel 

Processing, and Distributed Computing.  

Email: brindha@niuniv.com 

 

Appendix I 
S. No.  Abbreviation  Description 

1 ACO Ant Colony Optimization  

2 ACRO Artificial Chemical Reaction Optimization  

3 AGWO Advanced Grey Wolf Optimization  

4 AIN Artificial Immune Network  

5 AIS Artificial Immune System  

6 APOA Artificial Plant Optimization Algorithm  

7 AWS Amazon Web Services 

8 BBO Biography Based Optimization  

9 BIS Biological Immune System  

10 CGWO 

Clustered Grey Wolf Optimization 

Algorithm  

11 CLONALG Clonal Selection Algorithm  

12 CRO Chemical Reaction Optimization  

13 CSP Cloud Service Provider 

14 DC Data Center 

15 DE Differential Evolution  

16 EA Evolutionary Algorithm 

17 FIFO First-In, First-Out  

18 GA Genetic Algorithm  

19 GCP Google Cloud Platform 

20 GLS Genetic Local Search  

21 GWO Grey Wolf Optimization  

22 IaaS Infrastructure as a Service 

23 INA Immune Network Algorithm  

24 IoT Internet of Things  

25 MA Memetic Algorithms  

26 MDE Memetic Differential Evolution  

27 MIPS Millions of Instructions Per Second 

28 MPSO Memetic PSO  

29 PaaS Platform as a Service  

30 PGSA Plant Growth Simulation Algorithms  

31 PM Physical Machine  

32 PPA Plant Propagation Algorithm  

33 PSO Particle Swarm Optimization  

34 QABSSA QoS Aware Binary Salp Swarm Algorithm  

35 QoS Quality of Service  

36 RAM Random Access Memory 

37 SaaS Software as a Service 

38 SI Swarm Intelligence  

39 SLA Service Level Agreements 

40  SSA Salp Swarm Algorithm 

41 TSAC Task Splitting Agglomerative Clustering  

42 vCPU virtual Central Processing Unit  

43 VM Virtual Machine  

44 WOA Whale Optimization Algorithm  

 

 

 

mailto:jullietjulli123@gmail.com

