
International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2023.10102216

1552

Anomaly detection in smart contracts based on optimal relevance hybrid

features analysis in the Ethereum blockchain employing ensemble learning

Sabri Hisham
*
, Mokhairi Makhtar and Azwa Abdul Aziz

Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, 22000 Besut, Terengganu, Malaysia

Received: 31-August-2023; Revised: 19-December-2023; Accepted: 21-December-2023

©2023 Sabri Hisham et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.Introduction
Blockchain architecture is based on distributed and

decentralised technology used to store transaction

records in blocks [1]. These blocks are linked to each

other based on the value of the hash address

(previous hash) generated through a cryptographic

mechanism [2]. Blockchain technology has

developed as an open ledger to record transactions in

a distributed manner. New blocks will be created

after the mining process is complete through the

protocol consensus that requires each peer to verify

transactions [3–5].

*Author for correspondence

The development of decentralised applications

(DApp) has grown in popularity with the

digitalisation of smart contracts, previously only

utilised for cryptocurrency transactions, in the

blockchain 2.0 Era. In the areas of health [6],

decentralised voting [7], the internet of things (IoT)

[8], and supply chain management [9], the use of

DApp has expanded quickly and caught the attention

of both industry and academics [10]. Nowadays,

blockchain is a technological catalyst for the

introduction of several new applications, such as non-

fungible tokens (NFT), metaverse, decentralised

autonomous organisation (DAO), and decentralised

finance (DeFi) [11].

Research Article

Abstract
Blockchain 2.0 has revolutionized the domain by introducing blockchain as a decentralized application (DApp)

development platform, previously recognized mainly in the cryptocurrency sphere. Consequently, the rise of DApp

development has inadvertently camouflaged fraudulent activities within smart contracts, leading to substantial losses for

investors. Implementing machine learning (ML) approaches can significantly enhance the efficacy of anomaly detection.

However, many studies still grapple with selecting the most pertinent features to optimize anomaly detection levels. This

challenge intensifies when managing the high-dimensional raw data extracted directly from the Ethereum blockchain

network, which falls under the category of big data. Smart contracts, the core of blockchain that governs DApp logic,

have increasingly become a haven for fraud. This study focuses on analyzing three primary characteristic components

based on contract source code (operation code (opcode), application binary interface (ABI) code, and contract

transaction) to develop anomaly detection models in smart contracts using an ensemble hybrid feature strategy. The

approach involves two key stages: firstly, reducing the initial feature size through constant, quasi-constant, and variant

validation; and secondly, identifying the most relevant feature set using the searching for uncorrelated list of variables

(SULOV) method, grounded in the minimum redundancy maximum relevance (MRMR) principle. The anomaly detection

model employs a voting ensemble technique, harnessing a dataset of the most pertinent features. The model's

effectiveness is gauged by comparing its performance with individual models, including random forest (RF), k-nearest

neighbor (KNN), decision tree (DT), linear discriminant analysis (LDA), and stochastic gradient descent (SGD). The

findings indicate that the proposed model achieves superior anomaly detection levels, with a determination value

measurement rate of 92.99%, outperforming individual classifiers using the 44 most relevant features while minimizing

classification time. The model's efficiency is further corroborated through comparative analysis with previous studies and

alternative methodologies using the same contract dataset. The proposed ensemble-based model significantly improves

anomaly detection in contract source code analysis, employing a minimal and relevant set of features refined through the

SULOV method.

Keywords
Ethereum, Blockchain, Smart contract, Features selection, Relevance features, Ensemble method, Anomaly detection.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1553

Smart contracts are becoming more popular on the

Ethereum network and have been introduced to solve

the weaknesses discovered in Bitcoin [12]. In

addition to the expansion of DApp development,

Ethereum is the second-largest group in the world of

cryptocurrencies through the Ether currency after

Bitcoin [13], with a market capitalisation of around

US$25 billion and had more than 67 million accounts

in June 2019 [14]. Szabo [15] is credited with

introducing the idea of smart contracts. The author

described them as a set of digital agreement details

that require members to abide by the terms of the

agreement. Due to technological restrictions at the

time, which demanded the deployment of security

features through cryptographic protocols, this

concept was abandoned. However, Satoshi Nakamoto

originally created Bitcoin in 2008, and smart

contracts re-emerged in popularity as a result of their

adoption of Bitcoin technology. With the introduction

of Ethereum and the increase in the usage of smart

contracts, which apply programming script logic

without requiring outside parties, Buterin [16, 17] has

energised the development of DApp.

Basically, the architecture of Ethereum consists of

two types of accounts, namely externally owned

accounts (EOA) and contract accounts (CA). The

main function of EOA, which is controlled by a

private key, is to transfer Ether between accounts.

Meanwhile, the contract code fully controls CA and

is responsible for deploying smart contracts. Both

types of accounts are in hexadecimal format [18].

Each account consists of four attributes (Hash,

Storage, Ether Balance, and Nonce). Nonce provides

an overview of the quality of transactions between

accounts or contracts. At the same time, the Ether

Balance reveals the account balance in Wei units,

while the hash is a hash code generated by the

ethereum virtual machine (EVM), and storage

represents the 256-bit hash resulting from the Merkle

Root mechanism [19]. The Ethereum network

consists of two types of transactions: normal

transactions and internal transactions [20].

Furthermore, the user accounts initiate normal

transactions, and internal transactions refer to

transactions initiated by smart contracts. Internal

transactions are also managed off-chain (no

cryptographic signatures). However, there are some

managed on-chain (not a part of the blockchain) that

require a small amount of gas (Ethereum Gas) for the

transaction fee (affecting address balances).

Therefore, internal transactions, also known as

messages, do not have a transaction hash compared to

normal transactions. Thus, each normal transaction

has more than one internal transaction referring to it.

Smart contracts are exposed to threats of invasion

and cybercrime to the point of causing huge losses to

investors in particular. This is due to bugs in the

contract, low quality of the source code, and no

security assessment of the contract performed before

production on the real network [21]. Among other

causes are attitude as well as negligence by users,

causing confidential information (private keys, for

example) to be stolen, the nature of contracts that are

automatic execution, and the lack of enforcement or

regulatory mechanisms in managing blockchain

applications. It is also due to the nature of blockchain

users or accounts being anonymous (tracing

behaviour becomes difficult) [22]. Smart contracts

developed using the Solidity language are exposed to

vulnerabilities like traditional programming

languages (Java, C, and C++), and what differentiates

them is that the contract's source code is unable to be

modified after being produced into the blockchain

network [23].

Other than that, weaknesses in smart contracts have

provided hackers with the opportunity to manipulate

the source code for the purpose of fraud or scams.

User-oriented DApp developed through popular

game applications such as Fomo three dimensions

(3D) and Cryptokitties2 have provided wealth to

early investors from the investment results of new

investors [5]. This fraudulent activity is called a

Ponzi scheme, and it also advertises its activities on

bitcointalk.org as high-yield investment programmes

(HYIP) or gambling games to trap new investors

[24]. In addition, weaknesses in smart contracts

caused the DAO attack in 2016 and Parity Wallet in

2017, causing an estimated loss of over $400 million

[2]. The attackers have stolen 3.5 million Ether,

equivalent to US$45 million, due to the vulnerability

in the DAO contract. Hence, fixing the vulnerability

requires launching a hard fork, which is risky, even if

it involves a low cost [23].

Therefore, an initial anomaly detection system in the

blockchain network is critical to protecting against

cybercrime. Since smart contracts have been the

focus of intruders committing fraudulent activities, an

analysis of abnormalities in the source code needs to

be conducted. Consequently, a preliminary study

creates a manual review of the source code accessed

from etherscan.io for the open source contract

(source code available) to identify source code

behaviour that reflects ponzi scams [25]. A manual

Sabri Hisham et al.

1554

structural analysis review of the source code was

performed in a study by [26], who used the

etherscam.io platform to access verified contracts to

detect Ponzi schemes hiding in contracts. Although

this study succeeded in detecting Ponzi schemes, the

analysis was limited to the structure of the

programme code. However, analysing the billions of

non-open source contracts in the Ethereum network is

challenging since the source code is unavailable.

Therefore, it is impossible for a manual approach to

analyse anomalies, considering that 77.3% of smart

contracts are open source [27]. Manual anomaly

identification also requires machine specifications

such as large memory, a central processing unit

(CPU), storage, and many human resources. It is also

very prone to errors as humans conduct this process.

Since most blockchain accounts are anonymous,

detecting fraudulent activities becomes increasingly

difficult and challenging [28]. In addition, the size of

large-capacity blockchain data (categorised as big

data) challenges researchers to determine the most

relevant features that can produce an optimal

detection level. Thus, the machine learning (ML)

approach that is able to extract features from large

data sets and is scalable is very suitable to be adapted

together with blockchain technology to detect

fraudulent activities [29, 30]. Therefore, a study by

[31–33] has analysed the smart contract source code

based on the ML approach to detect Ponzi schemes.

Most recent studies have begun to explore artificial

intelligence (AI) [34, 35] and deep learning (DL) [36,

37] to detect anomalies in smart contracts.

However, previous studies still faced several issues

and challenges in producing an optimal anomaly

detection level based on smart contract source code

analysis. First, determining the characteristic

components of smart contract source code analysis is

not comprehensive. Most analyses only focus on one

or two characteristic components of the source code

(operation code (Opcode), transaction) through an

individual analysis approach (not hybrid features)

[38]. Second, extracting characteristics for contract

source code components is difficult as it involves

semantic code-based data (textual) and needs to be

monitored to produce a better level of anomaly

detection [39]. Third, identifying the most relevant

features from the large original feature dimension is a

challenging task as it determines the performance of

the final model [40]. Fourth, the performance of

smart contract anomaly analysis in previous studies is

still at a moderate level. For example, the 95%

precision rate and 69% recall rate [32] can still be

improved by adapting the ensemble approach to

overcome the weaknesses of individual models [41–

43]. Fifth, the problem of balancing the distribution

of data labels on the data set interferes with the

model's performance. For example, even though

transactions on Ethereum exceed 3.8 billion, only

2041 phishing accounts were successfully detected.

This contributes to the production of overfitting and

weak models [4].

This scenario motivates researchers to investigate

feature hybrid approaches to analyse anomaly

detection for all feature components associated with

source code, namely Opcode, application binary

interface (ABI) code, and transaction. Nevertheless,

the source code characteristics, namely Opcode and

application binary interface code (ABI code), are

presented in a textual format. Consequently, it

becomes necessary to employ extraction techniques

and feature vectorisation transformations. The

utilisation of a hybrid feature method generates a

substantial feature size and necessitates feature

selection approaches to identify the most pertinent

features while maintaining optimal model

performance. Ultimately, implementing a prediction

model that can enhance the performance of the

existing model is necessary.

Hence, this study delineates fourth objective derived

from the deficiencies and concerns identified in prior

research. The primary aim of this study is to analyze

the smart contract source code's behaviour for the

purpose of anomaly detection. This analysis will be

based on combining hybrid features, including

Opcode, ABI code, and transaction data. The second

purpose pertains to the execution of feature extraction

and transformation methods on the source code,

specifically the Opcode and ABI code, which

encompasses textual information. The third purpose

of this study is to implement feature filtering

(reduction) and searching for an uncorrelated list of

variables (SULOV) feature selection methods in

order to identify and retain the most relevant

characteristics. The fourth objective is to enhance the

performance of the ultimate model by employing the

voting ensemble technique.

Generally, processes start with the initial feature

reduction, which checks and verifies the quasi-

constant and variance thresholds. Consequently, the

most relevant features (screening uncorrelated

features) are determined from a large number of

features in order to contribute to improving the

performance of the final model using the SULOV

technique (based on the minimum redundancy

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1555

maximum relevance (MRMR) approach). The final

model is built based on the parameter input of the

most relevant feature set to be trained and tested

using the approach ensemble. As it is known, the

ensemble approach can overcome the performance of

weak classifier models [44] and avoid the occurrence

of overfitting [45].

Therefore, the following procedures must be

conducted in order to accomplish the study's

objective and paper contribution: 1) Using a dataset

of 1,904 Ponzi contracts derived from research [38].

2) Using the Etherscan.io application programming

interface (API), create three different types of

contract source code datasets (Opcode, ABI code,

and contract-account transaction). 3) Collecting and

converting text semantic data sets using vectorisation

transformation techniques (N-Gram and term

frequency-inverse document frequency (TF-IDF)). 4)

Combining in an ensemble to create a hybrid feature

composed of contract-account transactions, ABI

code, and Opcode.5) Apply quasi-constant and

variance analysis approaches for prefix feature

reduction. 6) Employ the MRMR-based SULOV

approach to identify the most pertinent features. 7)

The ensemble voting method is used to develop the

final model. 8) Analysing the findings by contrasting

the ensemble model's performance with that of the

individual model and the findings of other studies

that used the same data set. The study's findings

demonstrate that the voting ensemble model, which

performed better than the individual classifier model,

obtained an accuracy value of 92.99%.

This study's structure is broken down into sections.

The evaluation of earlier study findings is described

in section 2. The proposed research methodology is

thoroughly explained in section 3. Correspondingly,

the analysis of the experimental study's outcomes is

presented in section 4. The findings are explained and

further discussed in section 5. The study

recommendations, findings, and potential future

studies are summarised in section 6.

2.Literature review
This section describes previous studies related to

anomaly detection based on smart contract source

code analysis. It is crucial to analyse prior research to

expand our understanding of a field. A comparison of

earlier studies on anomaly detection in smart

contracts is provided in Table 1.

Table 1 Previous study for anomaly detection in smart contracts
References Description Dataset Features Model Limitations

[46] Long short-term memory

(LSTM)-based

oversampling is used in
Ponzi schemes detection

approach based on

oversampling-based (PSD-
OL), a method for smart

contracts that detects Ponzi

schemes.

Ponzi Dataset from XBlock

dataset

(3,019 contracts- 2,851
normal contracts, 168 Ponzi

contracts)

Transaction,

Opcode

LSTM Did not use relevant feature

selection techniques.

[38] Detection of normal and
abnormal behaviour in a

smart contract-based Ponzi

scheme dataset.

1,904 contracts (Ponzi label)
from Etherscan.io

Transaction
Opcode,

Source code

Soft Voting
Ensemble

Did not use relevant feature
selection techniques. Did not

use the ABI Code format

since the original source code
is too complex and difficult to

read and understand by

humans.

[5] Develop a Multi-view

Cascade Ensemble model

(MulCas) using the ML

approach for Ponzi detection

in a smart contract. Extract

three features (bytecode,
semantic, and developer)

from two data sources

(opcode, transaction)

6,498 contracts (314 Ponzi

contracts,6,184 normal

contracts) from Etherscan.io

Opcode,

Transaction

Ensemble Did not use relevant feature

selection techniques. The

source code needs to be

compiled on a different

version of the solidity

compiler.

[47] Introduce SourceP, a

technique that uses data

flow and pre-trained models
to find smart Ponzi schemes

on the Ethereum platform.

Ponzi Dataset from XBlock

dataset and collect 6,498

(318 Ponzi contracts,6,180
normal contracts) from

Etherscan.io

Opcode GraphCodeBert Did not use relevant feature

selection techniques and

ensemble learning approach.

Sabri Hisham et al.

1556

References Description Dataset Features Model Limitations

[23] Create sFuzz tools, an

adaptive fuzzer for smart

contracts on the Ethereum
platform that targets those

hard-to-cover branches

using an American fuzzy lop
(AFL) fuzzer and an

effective, lightweight multi-

objective adaptive strategy.

Smart contract code

coverage analysis for the

test suite

Solidity code

(sol files)

AFL-based Did not use the feature

filtering method and relevant

feature selection techniques.

[48] Present the convolutional-

based bidirectional gated

recurrent Unit (CBGRU)
model, a novel hybrid DL

approach that carefully

incorporates various word
embeddings (Word2Vec,

FastText) and DL

techniques (LSTM, gated
recurrent unit (GRU),

bidirectional

LSTM(BiLSTM),
convolutional neural

network(CNN), and

BiGRU).

SmartBugs Dataset-Wild

from [49] contained 47,587

real sol files

Source code

files

(solidity)

DL Did not use the feature

filtering method and relevant

feature selection techniques
after feature extraction.

[50] Purpose the Echidna smart
contract fuzzer tools, an

open-source tool that

enables it to automatically
generate tests to find

assertion and custom
property violations.

VeriSmart benchmark,
TetherToken

Solidity code
(sol files)

property-based
fuzzing

(QuickCheck)

Did not use the feature
filtering method and relevant

feature selection techniques.

[51] Contained two parts (a

sharing layer and a task-

specific layer)
sharing layer: text-to-vector

transformation

task-specific layer: construct
a classification model using

CNN

XBlock platform (149,363

smart contracts)

Opcode Classical CNN Did not use the feature

filtering method and relevant

feature selection techniques.

[52] Propose a tool called
SmartCheck that

significantly enhances the

detection of vulnerabilities
linked to the DASP10

categories of faulty

randomisation, temporal
manipulation, and access

control.

Two datasets of Solidity
contracts with 208 tagged

vulnerabilities and 47,518

unique contracts were
collected through Etherscan

Solidity code
(sol files)

Based on
DASP10

categories

Did not use the feature
filtering method and relevant

feature selection techniques.

[2] Propose an ML model based

on LightGBM and N-gram
characteristics to identify

honeypot contracts based on

frequency opcodes.

218,250 negative samples

(non-honeypot contracts)
and 616 positive samples

(honeypot contracts) were

obtained

Opcode LightGBM Did not use the feature

filtering method or ensemble
learning approach and

focused on opcode source

code analysis without

examining the behaviour

contract transaction.

[39] Propose a semantic-aware
detection method for ML-

based detection of Ponzi

schemes in Ethereum smart
contracts. Semantic-aware

detection approach for Ponzi

(SADPonzi) using symbolic
method

1,395 well-labelled sample Opcode eXtreme
gradient

boosting

(XGB),
RF

Did not use the feature
filtering method, relevant

feature selection techniques,

and ensemble learning
approach.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1557

References Description Dataset Features Model Limitations

[53] Propose an ordered

boosting-based anti-leakage

smart Ponzi scheme
detection (Al-SPSD) model.

Optimise using synthetic

minority oversampling
technique (SMOTE) and

Optuna framework.

Extract the contract from

Google Big Query.

(81 Ponzi,644 non Ponzi)

Opcode Gradient

boosting

method
(GBDT)

Did not use the feature

filtering method, relevant

feature selection techniques,
and ensemble learning

approach.

The present investigation, carried out by [46], has

analysed the Ponzi scheme phenomenon within the

context of smart contracts. The source code analysis

relies on utilising CA characteristics and bytecode

Opcode. This is achieved by introducing PSD-OL, an

oversampling-based LSTM technique. Note that the

LSTM model was trained using datasets provided by

the XBlock public repository (3019 contracts). The

study's findings indicate that the proposed model

achieved a high accuracy value of 0.96 using the

SMOTE technique. Nevertheless, the present study

does not employ the feature selection technique to

ascertain the most pertinent characteristics from the

pool of 83 features (comprising opcode and

transaction features) prior to training them using an

LSTM model, which can potentially enhance the

final model's overall performance.

The aforementioned study by [38] examines

anomalies in smart contracts by analysing three

components of contract source code: Opcode,

account features, and source code features. This

analysis was performed using a hybrid approach that

combines various features. A comprehensive dataset

of 1,904 CAs was utilised to gather the necessary

opcode data sets, account features, and source code.

Moreover, the present study employs a soft ensemble

voting methodology for the purpose of training

models for contract anomaly detection. The

investigation yielded an accuracy value of 0.88%,

surpassing the previous study conducted by [32],

which achieved an accuracy of 0.79% using the

identical dataset. However, this study does not

employ precise feature selection strategies to

generate the most pertinent features that enhance the

efficacy of the ultimate model. This study also

utilises the original source code dataset, which

exhibits a high level of complexity, semantic

intricacy, and logical structure and presents

challenges in terms of human readability and

comprehension. The utilisation of ABI code is

perceived as more appropriate for studying source

code due to its inherent comprehensibility for human

interpretation, facilitating the enhancement of

anomaly prediction capabilities.

Insufficient consideration was provided in the

aforementioned study conducted by [5] to the

sampling methodology employed for the data sets

utilised, as well as an undue emphasis on the analysis

of CA transactions. Consequently, the researcher

introduced a theoretical framework known as the

MulCas by analysing the source code (opcode and

transaction) and expanding the existing dataset from

the prior investigation, encompassing 6,498 CAs.

This study extracts three new features (Opcode,

semantic, and developer) from two data set sources

(Opcode and transaction). Other than that, this study

has contributed the largest contract data set (6,498

contracts) from [31]. The study's findings indicate

that the MulCas model, as described, achieves a

recall value of 0.674, a precision of 0.951, and an F1-

score of 0.789. Note that these metrics demonstrate

superior performance compared to the SadPonzi [39].

Analysis of contract source code in a hybrid way

(opcode, transaction) through feature extraction has

produced a large feature size or dimension. Thus, no

relevant feature selection techniques are specified in

this study to help improve model performance.

The implementation of graph analysis utilising flow

graph data to analyse Ponzi schemes within a

contract has been carried out [47]. This approach

involves constructing a classification model based on

the aforementioned data. This methodology diverges

from prior research endeavours focused on feature

extraction when analysing the source code. The

model, referred to as SourceP, has analysed the

source code in opcode format. Moreover, the

experimental findings have yielded an F1-score of

90.7% and a recall of 87.2%. The findings from the

comparative analysis with previous studies indicate

that SourceP outperforms MulCas [5] and SadPonzi

[39] in terms of recall, f1-score, and precision. The

primary objective of this study is to examine the

method of source code analysis based on individual

characteristics, specifically opcode. The paper argues

that the hybrid characteristic approach, which

combines opcode with other characteristics such as

source code, transaction, or account, has some

limitations. Nevertheless, this study does not perceive

the identification of pertinent attributes as a means to

Sabri Hisham et al.

1558

enhance the performance of models, as its scope is

limited to pre-training model creators.

The researchers in [23] conducted a study wherein

they devised a contract fraud detection tool named

sFuzz, which was built around the multi-objective

AFL fuzzer method. The efficacy of this tool has

been evaluated by the development of a contract

simulation encompassing a sample size exceeding

4,000 contracts. The primary aim of Sfuzz is to do

source code testing on contracts prior to their

deployment on the Ethereum network to identify any

potential flaws or vulnerabilities. Consequently, the

present study employs Opcode source code to

conduct an analysis aimed at achieving high code

coverage. The experimental findings indicate that

sFuzz exhibits notable reductions in processing times,

superior effectiveness, and enhanced reliability

compared to the current fuzzer.

A study using a hybrid DL CBGRU model was

discussed [48]. The study has analysed various word

embedding techniques, including Word2Vec and

FastText, and employed a range of DL

methodologies, including LSTM, GRU, BiLSTM,

CNN, and bidirectional gated recurrent unit

(BiGRU). Moreover, the proposed hybrid technique

utilises dataset-wild data sets, specifically

SmartBugs, which are in the solidity format (sol

files), to identify vulnerabilities in smart contracts.

The experimental findings demonstrate that the

CBGRU model effectively achieves an average

accuracy rate of 93% when analysing vulnerabilities

such as timestamp manipulation, infinite loop, and

reentry. This study utilises an extraction methodology

that combines two features without employing the

feature filtering method or selecting the most relevant

features to enhance the model's performance.

Research conducted by [50] has devised a set of

testing tools named Echidna, specifically designed

for smart contracts. These tools are built upon the

foundation of smart contract fuzzers. The efficacy of

this tool has been evaluated through the use of ten

commercially available security solutions in order to

solicit comments pertaining to security, usability, and

user experience. In addition, the primary objective of

this work is to identify and address software defects

in smart contracts during their first stages while

ensuring that the processing performance remains at

an appropriate level. The experimental findings

indicate that Echidna demonstrates a detection

capability for bugs within a time frame of less than 2

minutes. However, Solfuzz, when utilising real

tokens (namely Tether), requires a minimum of 15

minutes or maybe longer.

A study was undertaken by [51] to perform a

semantic analysis of the source code of the contract.

The study employed a text processing strategy known

as word embedding in the bottom sharing layer, and

DL techniques were utilised to create the model in

the task-specific layer. Subsequently, the multi-task

model, alternatively referred to as this technique, has

demonstrated superior effectiveness in detecting

fraudulent activities. The multi-task model is

characterised by its cost-effectiveness, efficiency in

terms of time, utilisation of human resources, and

storage requirements compared to a single-task

model. This study uses extracting Opcode data sets

and labelling normal and abnormal using

vulnerability tools. However, this study lacks the

implementation of feature screening techniques and

the selection of the most relevant features after going

through the Opcode feature extraction process on the

bottom screen using the word embedding method

before the model is developed using CNN.

The analytical tool Smartbug, developed by [52],

tests and debug smart contracts. An analysis

informed the development of this tool of Solidity

source code (sol files), and it offers compatibility

with a total of ten additional tools for integration

purposes. The Smartbug detection repository contains

a comprehensive collection of 143 annotated

vulnerabilities, specifically focusing on 208 distinct

vulnerabilities. The percentage range of 11% to 24%

is determined by the decentralized application

security project (DASP) 10 category, which

encompasses time manipulation, access control, and

faulty randomness.

The investigation of honeypot identification in smart

contracts was conducted by [2] with the examination

of honeypot scheme detection. The present study

examined the symbolic and contractual behaviour

within the Opcode through analysis. Hence, N-gram

(a text processing technique) and the light gradient-

boosting machine (LightGBM) algorithm were

employed in constructing the detection model. The

study's findings indicate that the utilisation of

features, specifically unigram and bigram, effectively

yields the F1-score (0.93) and area under the roc

curve (AUC) (0.99) values in the context of detecting

honeypots in smart contracts. One notable advantage

of this study is its systematic execution of feature

selection, extraction, undersampling, and feature

significance procedures prior to the building of the

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1559

LightGBM model. The study could be enhanced by

incorporating a feature filtering procedure with

suitable methodologies and examining it within the

framework of transaction behaviour.

The heuristic-guided symbolic technique has been

used by [39] to develop SADPonzi. This study uses

the solidity dataset to analyse investor behaviour,

such as money transfer transactions (semantic

approach) and its relationship with other investors

(other users). The effectiveness of SADPonzi was

analysed with 3.4 million contracts and successfully

detected ponzi schemes (835). The evaluation result

for the SADPonzi approach produced 100%

precision, recall, and f1-score compared to the TxML

and OpcodeML approaches. This study focuses on

the analysis of semantic information generated from

the process of symbolic execution, Opcode and does

not use feature filtering or the selection of the most

relevant features.

Correspondingly, a research investigation was

conducted by [53] to examine the disparity in data

sets pertaining to target classes through the analysis

of contract source code (Opcode). The presence of

imbalanced class distribution within the data has led

to data leakage, resulting in a model exhibiting

inferior performance. Therefore, this study has put

out measures to mitigate data leaking using Al-SPSD

methodology, which stands for Ponzi scheme

detection using Ordered Boosting, has been designed

to identify Ponzi scams within contracts by analysing

the opcode source code. The study's findings indicate

that Al-SPSD achieved a notable F1-score of 96%.

The N-Gram approach is employed to extract opcode

characteristics. In this work, an experiment was

undertaken to ascertain the ideal value of n-gram

(specifically, n = 1, 2, 3, or 4) that yields the

maximum performance of the model. Nevertheless,

the present study does not investigate the technique

of feature filtering, the selection of the most pertinent

features, or the utilisation of ensemble learning

models.

Based on the analysis of previous studies related to

the detection of anomalies through the analysis of

smart contract source code, it has been proven that

most studies analyse one or two source code features

using an individual or hybrid analysis approach. The

observation also discovered that a hybrid analysis for

the Opcode source code, ABI code, and transaction

features has not yet been implemented. The source

code feature of ABI code is easier to understand and

read by humans compared to the original source code

(solidity). Most studies also focus on the feature

extraction and model development process, compared

to the adaptation of methods for model optimisation,

such as feature screening techniques and the selection

of the most relevant features.

3.Methods

The proposed smart contract-based anomaly

detection framework through the analysis of the three

components of the contract source code (opcode, ABI

code, and contract transaction) is explained in this

section (Figure 1). This process started with data

collection for three source code components (opcode,

ABI code, and contract transaction) based on the

ponzi dataset containing 1904 CA shared publicly by

[38]. However, this data set does not provide data for

source code (ABI code and opcode) as well as CA

transactions. Thus, these three datasets are obtained

through the Etherscan API in JavaScript Object

Notation (JSON) format. These three raw data are

read directly from Etherscan and stored in the My's

Structured Query Language (MySQL) database

through their respective tables to facilitate the feature

extraction process in the pre-processing phase.

However, the source code data (ABI code and

Opcode) is textual-based, and the ML approach only

operates optimally based on numerical data.

Therefore, Opcode and ABI code must undergo a

feature transformation process to produce numeric

vector values through the N-Gram and TF-IDF. In

general, these features are classified into two types of

feature categories: code features (Opcode and ABI

code) and account features (contract transactions).

These three data sets are combined as an ensemble to

form a main data set through a hybrid feature

combination approach. Subsequently, this main data

set, which has a large feature dimension, will reduce

the number of features through the quasi-constant and

variance validation methods. This feature set then

goes through the process of selecting the most

relevant features using the SULOV method by

filtering uncorrelated list variables. This data set,

which is the most revealing, is balanced using the

SMOTE, as the distribution of data labelled Ponzi

and non-Ponzi is unbalanced. The last phase is to

train an anomaly detection model based on the

ensemble approach using the data set parameter input

resulting from the previous process. The anomaly

prediction results in the output that determines

whether the contract is normal (non-Ponzi) or

abnormal (Ponzi). This research experiment was

conducted using the Python (Jupyter) programming

Sabri Hisham et al.

1560

languages, from the data collection phase to the development of the final model.

Figure 1 Smart contract anomaly detection framework

3.1Data gathering

The source of the data set is a crucial aspect and

requirement of the initial research phase. This study

analyses the smart contract source code based on

three components of the source code (Opcode, ABI

code, and contract transaction) extracted directly

from etherscan.io using a Ponzi dataset of 1,904

labelled CA shared by [38]. This dataset containing

1,904 CA was labelled with 1,599 as '0' (non-Ponzi)

and 305 as '1' (Ponzi), as indicated in Table 2.

Table 2 Ponzi contract dataset

Contract account Target distribution Size

1,904

non-Ponzi 1,599

Ponzi 305

The provided dataset exclusively consists of

categorised CA, specifically distinguishing between

Ponzi and non-Ponzi accounts. It does not encompass

datasets pertaining to source code components such

as opcode, ABI code, and transaction information.

Thus, the three characteristic components of the

contract source code (Opcode, ABI code, and

contract transaction) are extracted directly from

Etherscan.io (blockchain explorer platform) using the

API endpoint (using the API key obtained after

registration at Etherscan.io) based on 1,904 CA

labelled Ponzi and non-Ponzi (refer to Table 3). Note

that this data crawling process has produced 1,904

Opcodes, ABI codes, and normal transactions

(external transactions). Normally, a Ponzi has a

lifespan with a median rate of only 2.5 days before

being blocked by Etherscan.io. Thus, the transaction

for this CA is too minimal or zero [5]. Therefore, the

data set containing the normal contract (labelled '0')

always has new transactions and is constantly

growing up to now. An example of transaction details

for a normal contract address is

'0x00000000219ab540356cBB839Cbe05303d7705Fa

' as in Figure 2.

An instance of a Ponzi CA address, namely

'0x1ce7986760ADe2BF0F322f5EF39Ce0DE3bd0C8

2B', has been in existence for a duration of 1,299

days and has been subjected to a blocking action by

Etherscan (see Figure 3).

Table 3 Etherscan.io API endpoint for data crawling

Features category Etherscan API endpoint

Opcode http://etherscan.io/api?module=opcode&action=getopcode

ABI code https://api.etherscan.io/api?module=contract&action=getsourcecode

Contract transaction https://api.etherscan.io/api?module=account&action=txlist&address=xxx

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1561

Figure 2 The latest transaction of a normal contract

Figure 3 The detailed transaction of the Ponzi contract

Many prior research investigations, such as those

conducted by [46, 54, 55], have employed the Python

library (disassembler) to produce opcodes from

bytecodes. Nevertheless, this approach is vulnerable

since it introduces the possibility of encountering

failure while executing the conversion from bytecode

to opcode. Therefore, the approach of acquiring the

opcode source code straight via the API channel

proves to be more efficient as it leverages Etherscan's

management of the bytecode-to-opcode conversion

process.

3.2Data Pre-processing

In section 3.1 of the data collection, the researchers

extracted three components of the source code

dataset: Opcode, ABI code, and CA transaction

history. These components were obtained from

labelled CA specifically those categorised as either

Ponzi or non-Ponzi. The retrieved data was then

placed in separate tables within the MySQL database.

The pre-processing phase serves as an initial stage in

which the data set is extracted prior to its utilisation

in subsequent processes. The determination of

whether the CA is classified as normal (non-Ponzi) or

abnormal (Ponzi) relies on an analysis of a dataset

that has undergone multiple pre-processing stages.
3.2.1Opcode features

As explained in the previous section, the proposed

framework is based on access through the Etherscan

API to obtain opcodes (refer to Figure 4). This

method is easier since the Etherscan engine

automatically converts bytecode to Opcode. The

conversion of bytecode to Opcode is crucial for

anomaly analysis since the content of the bytecode

format is incomprehensible to humans [38].

However, most previous studies performed the

process of converting bytecode to Opcode through

disassembler software developed using the Python

library. Yellow Paper (Ethereum) provides tabular

references for binary bytecode instructions in

Sabri Hisham et al.

1562

mnemonic Opcode form. This conversion process

starts with making the bytecode in the form of a

token, and this token is converted to an opcode

through a set of instructions. In general, an opcode

consists of two main components: the mnemonic

(opcode) and the operand (hexadecimal number

type). Examples of mnemonic opcodes are "PUSH2",

"MSTORE," and "CALDATASIZE." While

hexadecimal operands are "0x00f7," "0x00," and

"0x80".

Figure 4 Bytecode to Opcode conversion

In this section, the extraction of Opcode features

consists of word mnemonics using feature extraction

methods based on natural language processing

(NLP). Therefore, within the framework of this

proposal, a text analytical classification method has

been used using the N-Gram (2, 3) method, which

combines bigrams and trigrams to identify relevant

word combinations. The latest Opcode feature set is

produced after the removal process of words

exhibiting high word frequency values (see Figure

5).

Figure 5 Pre-processing of opcode

3.2.2ABI code features

This study focuses on open-source contracts that have

source code. According to [56], over 2 million

Ethereum contracts are deployed on the Ethereum

network; only about 1% have source code, and the

rest are hidden source codes (contracts). Technically,

the contract owner can decide whether to publish the

contract source code so that the public can interact

through the contract address or not publish. However,

to increase the level of reliability, the contract owner

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1563

can publish the contract using the compiler (setting

the version and flag) so that public users can

independently verify it through the contract address.

Through the user's transparent verification

mechanism, using compiler information (version and

flag), the source code can be generated and viewed

publicly. Therefore, in this study, the ABI code is

obtained through the API for contracts that have been

verified only so that the source code can be obtained.

Figure 6 displays the ABI code after the user verifies

the contract. Meanwhile, Figure 5 illustrates that the

ABI code is unable to be obtained since the user has

not verified this contract. However, the real source

code is not used in this study as it contains sentences

or words that do not contribute to improving the

model's performance and yield insignificant results.

Comment statements like those in Figure 7 on the

programme code discovered in the original source

code do not provide a clear meaning in the model

classification. As a result, the ABI code's content is

more meaningful and clear than the original source

code [57]. Nevertheless, a study by [38] used the

original source code to be analysed in a hybrid way

along with other source code components such as

opcode and transaction contract.

ABI code contains source code based on textual,

semantic, and programme logic. Therefore, the ABI

code needs to go through a text-cleaning process to

remove symbols, blank spaces, numbers, bad

characters, and non-English characters. The next step

is the pre-processing process, which includes

tokenising, stop words, and word reduction based on

the dictionary (lemmatising) (see Figure 8).

Figure 6 Contract source code verified

Figure 7 Contract source code not verified

Sabri Hisham et al.

1564

Figure 8 Pre-processing of ABI code

3.2.3Account features

Transaction recording in Ethereum occurs when a

user transfers ether to another user's account through

a contract, creates a new smart contract, and invokes

a smart contract (function). Basically, Ethereum

consists of three categories of transactions, namely

external, internal, and token transactions (ethereum

request for comment (ERC)-20 and ERC-721) (see

Figure 9). These two main categories are external

transactions (also called normal transactions) and

internal transactions. The normal transaction is

referred to as the recording of Ether (ETH) transfer

transactions between external users or EOAs

differently via wallet addresses. Note that internal

transactions are off-chain (no transaction recording in

Ethereum and no cryptographic signature). They

affect the ETH balance after the normal transaction is

recorded. Transactions related to symbolic digital

assets are related to ERC-20 tokens (fungible tokens)

and ERC-721 (non-fungible). These three transaction

categories are accessed through the transaction tab in

Etherscan.io, as portrayed in Figure 10. However,

this study only focuses on anomaly analysis on

external transactions since it involves interaction

from EOA, including scammers, hackers, and

intruders through verified contracts.

The account feature refers to transaction analysis

based on CA addresses labelled normal (Ponzi) or

abnormal non-Ponzi). The raw data extracted directly

from Etherscan through the API is stored in MySQL

before it goes through the pre-processing phase. This

phase filters features that contain null values (missing

values) by replacing them with the median, removing

features that have a zero variant value, removing

features that are not applicable

(ERC20_most_rec_token_type and ERC20_most sent

token type), and removing duplicates on records (see

Figure 11).

Figure 9 Ethereum transaction category

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1565

Figure 10 Transaction tab in Etherscan blockchain explorer

Figure 11 Pre-processing of account features

3.3Features transformation

The dataset (opcode and ABI code) obtained from

Etherscan.io comprises programming code that

exhibits semantic, code-based, and text-based

characteristics. However, in order to train the model

using the ML approach according to established best

practices, it is necessary to accept input parameters of

the numerical type. Consequently, it is necessary to

subject two datasets of source code (opcode and ABI

code) to the process of feature extraction using

vectorisation techniques such as N-Gram and TF-

IDF. The TF-IDF method is a statistical method for

determining the relevance of word groupings in a

document [58]. The Python TfidfVectoriser function

with token settings (char, word, ngram_range,

max_features) is used to convert textual material to

vector numbers. This technique is commonly used to

analyse text-based data sets in order to discover

phishing activities, abnormalities, fraud, and so on

[59]. The TF-IDF approach, however, contains flaws

such as extracted keywords with unclear meanings,

misspellings, and so on. As a result, the pre-

processing phase is critical for reducing feature

extraction mistakes and increasing the accuracy of

the final model produced by the processes of text

cleaning, normalisation, tokenising, lemmatising, and

stop words described in the preceding section.

The results of vectorisation in the generation of a

vector value of numerical type lead to an expansion

in the size of the feature dimension. Correspondingly,

the feature vectorisation process has resulted in the

data set dimensions of Opcode being (1904, 17309),

ABI code being (1904, 10838), and contract

transaction being (11722, 49). The research

methodology employed involves examining the

amalgamation of three distinct feature components

inside a hybrid ensemble, resulting in the

measurement of data dimensions (15530, 17356).

Table 4 summarises the dimensions of rows and

features for the three feature components.

Table 4 Feature vectorisation transformation

Features

category

Features Feature extraction method Rows size Features size

Code features Opcode TF-IDF with input (word,
ngram_range=(2,3) and

max_features=30000)

1904 17309

ABI code TF-IDF with input (character, 1904 10838

Sabri Hisham et al.

1566

Features

category

Features Feature extraction method Rows size Features size

ngram_range=(2,3) and

max_features=30000)

Account features Transaction Account Behaviour 11722 49

Hybrid features Opcode, ABI

code and

transaction

Hybrid features

15530 17356

This scenario is based on the opcode data set (op),

which has dimension J as follows:

Op = {O1, O2,…….OJ }.

Meanwhile, the ABI code data set (ab) produces a

feature size L after the vectorisation transformation

process.

Ab = {A1, A2,…….AL }.

The normal transaction dataset (Tx) for the contract

yielded 49 features generated from the extraction

process from etherscan.io.

Tr = {T1, T2,…….T49 }.

Therefore, the combination of the three components

of the source code of this contract will produce a new

data set (Co) as follows:

Co =Op U Ab U Tr

Co ={O1,O2,…….OJ … A1, A2,…….AL …

T1,T2,…….T49 }.

3.4Features reduction

This study encompasses two primary phases of

feature reduction for hybrid features, specifically

opcode, ABI code, and transaction. These stages

involve feature cleaning and feature filtering,

including identifying and removing constant features

and quasi-constant features (see Table 5). This

strategy serves as a first way for screening features to

reduce their number before proceeding with selecting

the most relevant features using the proposed method

and then creating the final anomaly detection model.

The feature cleaning procedure is determined by the

size of the feature dimension (15530, 17356), which

is obtained by combining three feature categories:

Opcode, ABI code, and transaction. The

aforementioned procedure has effectively diminished

the number of features by 10. This was achieved

through several steps, including the replacement of

missing data with median values, the elimination of

features with zero variance, the removal of irrelevant

features (namely, ERC20_most_rec_token_type and

ERC20_most_sent token type), and the elimination of

duplicate records.

The feature filter step employs the constant features

approach in order to detect values that remain

consistent across the entire row of the dataset. These

features are deemed unnecessary and are

subsequently removed, as they do not contribute to

the predictive performance of the model for the target

variable. Consequently, by eliminating the constant

features, a total of 875 features have been decreased

from the initial count of 17,346 to 16,471. The

subsequent filtering technique pertains to quasi-

constant features, which serve the purpose of

identifying the predominant features within the

dataset that do not contribute significantly to

enhancing prediction accuracy. By employing this

approach, a grand total of 201 features were

effectively eliminated from the initial feature set,

reducing its size from 16,471 to 16,270.

Table 5 Basic features reduction for hybrid features

Method Before Features

Reduction

After Features Reduction Total Features Reduction

Features cleaning 17356 17346 10

Constant features 17346 16471 875

Quasi-constant features 16471 16270 201

3.5Relevance features selection using SULOV

The feature size (201 features) produced from the

feature reduction step explained in the previous

section is still too large, and the selection of the most

relevant features is necessary to develop a more

optimal detection model. There are some common

questions faced by data scientists about identifying

the most important or irrelevant features, and this

step becomes more challenging if the feature size is

too large. Another question is to identify features that

are highly correlated to the point of causing

redundancy and to be sure of the results of features

that are truly performing or overfitting.

Therefore, this study uses the SULOV for the

selection of features of minimal size relevant to

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1567

maintaining optimal model performance. SULOV is a

technique that inspires algorithms. MRMR became

more popular after an article related to this algorithm

was published by an Uber engineer in 2019 [60]. The

MRMR algorithm targets minimal relevant features

(not all relevant features) and optimal performance,

while Boruta (also one of the best feature selection

techniques) is capable of determining all relevant

features. Therefore, usually, the size of features

produced by SULOV is less than that of Boruta

without removing the performance level at an optimal

level. The SULOV technique consists of two distinct

steps, referred to as phase 1 (SULOV) and phase 2

(recursive XGBoost (XGB)), as depicted in Figure

12. Phase 1 encompasses a series of procedures

aimed at identifying pairs of features that exhibit a

lack of correlation, as demonstrated by a high mutual

information (MI) score. Pairs of characteristics

exhibiting strong correlations were excluded due to

their poor MI scores.

Figure 12 SULOV method

In phase 2, the uncorrelated feature set obtained from

phase 1 is utilised to partition the data set (train,

valid) by selecting the ten most significant feature

sets (i.e., those with the highest level of relevance).

This process is iterated five times. The iterative

procedure will generate a set of five XGB models,

each exhibiting a distinct assortment of

characteristics based on their respective levels of

relevance. Therefore, the generation of the most

minimum and optimal set of features is achieved by

combining the top 10 characteristics from the 5 XGB

models and subsequently conducting a de-duplication

process (see Figure 13). The present study has

undertaken an experimental investigation with the

most recent feature set comprising 201 features. The

SULOV technique was employed to generate the

final feature set that is most minimal and optimal to

the research objectives. The experimental findings

demonstrate the efficacy of the SULOV technique in

reducing the number of features from 201 to 44,

resulting in a final set of features deemed the most

optimal (refer to Table 6).

Figure 13 Filtering uncorrelated features using the SULOV method

Sabri Hisham et al.

1568

Table 6 Relevance feature selection using the SULOV method

Method Before SULOV method Feature reduction size Relevance features

SULOV Method 201 157 44

The aforementioned approach has yielded a total of

44 sets of very pertinent features while

simultaneously eliminating 157 features that exhibit a

significant association out of the initial pool of 201

features (refer to Table 7).

Table 7 Final relevance features

S. No. Relevance features S. No. Relevance features

1 Total ERC20 tnxs 23 ERC20 uniq rec contract addr

2 Time Diff between first and last (Mins) 24 ERC20 min val rec

3 Number of Created Contracts 25 12604

4 Unique Received From Addresses 26 11312

5 Total Transactions (including tnx to create the contract) 27 ERC20 uniq sent addr

6 Total Ether Balance 28 max value received

7 Min val sent 29 7516

8 7474 30 8136

9 8225 31 11851

10 358 32 Avg min between sent tnx

11 Avg val received 33 min value received

12 Avg min between received tnx 34 11790

13 8758 35 ERC20 avg val sent

14 3798 36 15721

15 ERC20 max val rec 37 max val sent

16 11045 38 11859

17 4743 39 Unique Sent To Addresses

18 Total Ether Received 40 avg val sent

19 8660 41 min value sent to contract

20 16920 42 ERC20 uniq sent addr.1

21 6037 43 ERC20 total Ether sent contract

22 16295 44 avg value sent to contract

3.6Data preparation

The subsequent step is partitioning the dataset in

accordance with a 70:30 ratio. The divide resulted in

a training data set containing 10,871 rows, while the

remaining 4,656 rows were allocated to the testing

data set (see Table 8).

Table 8 Training and testing set data

Training set data (70%) Testing set data (30%)

(10871, 17346) (4659, 17346)

The observation on class balance reveals an

imbalance in the number of target classes (0,1),

which, if left unaddressed, may lead to the

development of a weak model characterised by

overfitting. Consequently, the present study has

implemented the SMOTE oversampling technique in

order to generate synthetic data, achieving a balanced

distribution of target classes. The aforementioned

procedure results in an equal distribution of rows for

both the training dataset, with 8,716 non-Ponzi and

8,717 Ponzi instances, as well as the test dataset, with

3,747 non-Ponzi and 3,748 Ponzi instances, as

illustrated in Table 9.

Table 9 SMOTE oversampling

Set data Before SMOTE After SMOTE

Training non-Ponzi: 8716

Ponzi: 2155

non-Ponzi: 8716

Ponzi: 8717

Testing non-Ponzi: 3747

Ponzi: 912

non-Ponzi: 3747

Ponzi: 3748

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1569

3.7Ensemble learning

ML classifiers exhibit diverse performance

characteristics and limitations. The ensemble strategy

is implemented to enhance the limitations of

individual classifiers, resulting in a composite of

more robust classifiers. Consequently, this study

employs the most pertinent collection of attributes

derived from the preceding procedure. An anomaly

detection model was built using an ensemble model

based on soft voting. Note that the model was trained

on a labelled dataset consisting of two classes: 0 for

non-Ponzi and 1 for Ponzi. The dataset included 44

sets of important features. The study of the contract

source code, as depicted in Figure 14, served as the

basis for this model. Consequently, this study has

introduced an ensemble soft voting methodology,

where each classifier engages in a class voting

procedure with one another. The ultimate forecast

generated is derived from a methodology known as a

weighted voting technique. The ensemble model that

has been developed utilises a selection strategy

wherein two classifiers are chosen from a pool of five

classifiers, namely XGB, extra-tree classifier (ETC),

bagging classifier, gradient boosting (GB) classifier,

and random forest (RF). This selection process

results in six different combinations of classifiers,

which are then used as the estimator parameters for

the voting classifier. Hence, the accuracy values

obtained from the performance evaluation of the six

combinations of classifiers serving as estimators are

organised in a ranked manner. The technique outlined

in this study suggests that the final model selection is

determined by identifying the model with the highest

ranking.

The bagging classifier is a type of ensemble learning

technique that is utilised for both classification and

regression tasks. The classifier, known as Bootstrap

Aggregating or Bagging, was initially proposed by

Breiman in 1996 [61]. It effectively addresses the

 . T

 bag(x)

denoting the prediction function.

 ̌bag (X)=argmaxk ̌bag(X). (1)

Meanwhile, the GB model generates a new tree based

on the updated and Gk(x) values in the model (see

Equation 2).

 ∑

 (2)

XGB is derived from the most recent iteration of

gradient boosting, as seen in Equation 3.

 (x)= (x)+ (x) (3)

The ETC is an ML model that falls under the

category of bagging, specifically bootstrap

aggregation. It is built using RF and has the ability to

mitigate changes within the dataset. Note that the

subsequent explanation delineates the formulation of

the ETC, which is derived from the base learner

((x)) as depicted in Equation 4.

 = ∑
 ()

 (4)

Therefore, the anomaly detection model employs the

soft ensemble voting classifier technique to

determine the ultimate classification as either normal

(non-Ponzi) or abnormal (Ponzi).

Figure 14 Voting ensemble prediction strategy

Sabri Hisham et al.

1570

4.Results
The experimental procedure employed in this

investigation utilised a laptop computer equipped

with particular technical parameters, including 32

gigabytes of random access memory (RAM) powered

by an Intel i7-7700 processor operating at a

frequency of 2.8 gigahertz and requiring a minimum

of 10 gigabytes of available disc space. In order to

facilitate uninterrupted data crawling from

etherscan.io using the API, it is imperative to have a

reliable and high-speed internet connection. The

dataset preparation for the three source code

components, namely opcode, ABI code, and account

transaction, is conducted using data obtained from

the Etherscan API. This dataset is derived from the

Ponzi dataset (account contract) as described in the

referenced study [38]. Moreover, the present work

commences with the initial stage of dataset

preparation and proceeds towards constructing an

anomaly detection model utilising the Python and

Jupyter programming languages. The evaluation of

the suggested model is conducted thoroughly,

utilising eight assessment metrics: precision, recall,

F1-score, accuracy, true positive (TP), false positive

(FP), true negative (TN), and false negative (FN).

The specifics of this measurement metric are

displayed in Table 10.

Table 10 Metric measurement for performance analysis

Metric

measurement

Definition Remarks

True positive (TP)
The observed class is "Ponzi," and the

anticipated class is also "Ponzi."

A high value that serves as an indicator of strong

performance.

False positive (FP)
Actual is "non-Ponzi" but predicted "Ponzi"

class

Lower values are indicative of excellence in

performance.

True negative (TN)
Actual is "non-Ponzi" and predicted 'non-

Ponzi' class

A high value that serves as an indicator of strong

performance.

False negative (FN)
Actual 'Ponzi' but predicted 'non-Ponzi'

class

Lower values are indicative of excellence in

performance.

Precision (P) TP /(TP+FP)
A high level of precision is indicative of a model that

generates a low number of FP.

Recall (R) TP /(TP+FN)
A low recall value suggests that the model produces a

significant number of FN.

F1-Score 2.P.R /(P+R) A high score is indicative of a strong performance.

Accuracy (TP+TN) /(TP+TN+FP+FN)
A high value that serves as an indicator of a strong

performance.

4.1Evaluation of proposed features

This section provides an examination of the efficacy

of the planned study in generating the most pertinent

features. The performance of the anomaly detection

level, as determined by the final model developed, is

contingent upon the careful selection of optimal

features. Hence, an evaluation is conducted to assess

the efficacy of using the most pertinent features by

comparing them to the complete set of features, as

exhibited in Table 11. This evaluation is based on

their accuracy and classification time performance.

The findings of this experiment indicate that the

utilisation of pertinent features, consisting of 44

features, resulted in an accuracy rate of 92.99%. In

comparison, including all features, totalling 17,346,

yielded a slightly higher accuracy rate of 93.07%.

The utilisation of pertinent features has exhibited a

marginal decline, namely a loss of 0.08% compared

to the achievement of 93.07% accuracy using all

available features. This finding demonstrates that

employing a set of 44 pertinent features yields nearly

equivalent performance to utilising the complete set

of features for anomaly identification. Other than

that, the proposal to employ a subset of pertinent

features holds greater importance in comparison to

utilising the full feature set to analyse the

classification time, encompassing both training and

testing phases.

Hence, it was observed that using pertinent features

significantly reduces the classification time

(comprising training and testing time) compared to

the classification time required when using the

complete feature set, as measured in milliseconds

(ms). The use of the pertinent feature set necessitates

a training duration of 3.87 ms, significantly smaller

than the 70.04 ms required when using the complete

feature set. The aforementioned situation is

comparable to the testing time of 0.26 ms that arises

from utilising a specific set of pertinent features.

Note that this testing time is notably reduced

compared to the 1.83 ms that results from employing

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1571

the complete set of features. The experiment's

findings indicate that the selected set of features

effectively detects anomalies by achieving high

levels of accuracy. Additionally, this feature set

optimises the time required for classification,

resulting in time savings, reduced human resource

utilisation, and lower processing costs during the

training and testing phases.

Table 11 Performance comparison: full features and proposed features

Features approach Features size Accuracy (%) Training time (ms) Testing time (ms)

Full Features 17346 93.07% 70.04 1.83

Proposed Features 44 92.99% 3.87 0.26

4.2Evaluation of proposed ensemble model

The data set generated using the SULOV method

serves as the input parameter for training the anomaly

detection model employing the ensemble voting

strategy. The building of the final model is

determined by picking the optimal estimator voting

combination from a set of six combinations: (XGB,

ETC), (XGB, Bagging), (ETC, RF), (XGB, GB),

(XGB, RF), and (GB, RF). Consequently, these

combinations are rated based on their accuracy

values, as provided in Table 12.

Table 12 Performance analysis of ensemble voting estimator combinations

S. No. Voting

estimator

Precision F1-

score

Recall Accuracy TPR FPR False

negative

rate

(FNR)

TNR Ranking

1 XGB, ETC 97.35 92.66 88.39 92.99 0.88 0.02 0.12 0.98 1

2
XGB,

Bagging
96.78 92.31 88.23 92.65 0.88 0.03 0.12 0.97

2

3 ETC, RF 97.32 91.36 86.1 91.86 0.86 0.02 0.14 0.98 4

4 XGB, GB 96.19 91.99 88.15 92.33 0.88 0.03 0.12 0.97 3

5 XGB, RF 92.98 89.27 85.86 89.69 0.86 0.06 0.14 0.94 5

6 GB, RF 96.01 91.48 87.35 91.86 0.87 0.04 0.13 0.96 4

The analysis of the estimator voting combination

reveals that the combination of XGB and ETC

exhibits the most favourable performance, achieving

the greatest accuracy score of 92.99%. The

combination of (XGB, Bagging) holds the second

position, followed by (XGB, GB) in third place.

Meanwhile, (ETC, RF) and (GB, RF) are tied for

fourth place, while the combination of (XGB, RF)

occupies the last spot. Based on the evaluation

results, it can be concluded that the combination of

XGB and ETC exhibits the highest performance

among all the estimator voting combinations. This

combination is ranked first and is recommended to be

chosen as the final model. Moreover, the efficacy of

the proposed model in detecting anomalies is

evaluated by assessing its performance against

different individual classifiers. This evaluation is

conducted utilising eight key metrics for assessment,

namely precision, recall, f1-score, accuracy, true

positive rate (TPR), false positive rate (FPR), FN rate

(FNR), and true negative rate (TNR). These metrics

are presented in Table 13.

Table 13 Comparative analysis of ensemble model performance with individual classifiers

S. No. Approach Precision F1-Score Recall Accuracy TPR FPR FNR TNR

1 RF 96.99 91.62 86.82 92.06 0.87 0.03 0.13 0.97

2
k-nearest neighbour

algorithm (KNN)
81.45 78.96 76.62 79.58 0.77 0.17 0.23 0.83

3 DT 90.7 71.38 58.85 76.41 0.59 0.06 0.41 0.94

4 LDA 61.58 70.82 83.32 65.67 0.83 0.52 0.17 0.48

5 SGD 59.96 23.93 14.95 52.48 0.15 0.1 0.85 0.9

6 Proposed Model 97.35 92.66 88.39 92.99 0.88 0.02 0.12 0.98

The observation results indicate that the proposed

model has demonstrated superior performance

compared to the RF classifier. This conclusion is

based on the evaluation of eight measurement

metrics, where the proposed model achieved an

accuracy value of 92.99%, surpassing the RF

classifier's accuracy of 92.06%. These findings are

visually represented in Figure 15, highlighting the

Sabri Hisham et al.

1572

suggested model's position as the highest-performing

model. Four classifiers, namely the KNN, decision

tree (DT), linear discriminant analysis (LDA), and

stochastic gradient descent (SGD) exhibited an

accuracy value below 80%. The analytical findings

demonstrate that the suggested model effectively

achieves an optimal level of anomaly detection.

The efficacy of the proposed model is further

assessed by considering the rate of misclassification

errors, as depicted in Figure 16. The analysis

findings indicate that the suggested model has

yielded the lowest FPR of 0.02 compared to

alternative classifiers. In comparison to other

classifiers, the proposed model demonstrates the

lowest FNR value of 0.12. The misclassification error

rate, namely the FPR and FNR, indicates the model's

strength and ability to effectively detect anomalies.

Hence, a lower misclassification error rate suggests

that the created model is stronger and more optimal

in its anomaly detection capabilities.

Figure 15 Analysis of model performance based on metric measurement

Figure 16 Misclassified error rate analyst (FPR, FNR)

0

20

40

60

80

100

120

Precision F1-Score Recall Accuracy TPR FPR FNR TNR

V
a
lu

es

Performance measure

RF

KNN

DT

LDA

SGD

Proposed Model

0.03

0.17

0.06

0.52

0.1

0.02

0.13

0.23

0.41

0.17

0.85

0.12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RF KNN DT LDA SGD Proposed

Model

V
a
lu

es

Classifier

FPR

FNR

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1573

4.3Comparison with existing works

The efficacy of the suggested model is assessed by

conducting a comparative analysis of the study's

findings with those of prior studies utilising the most

relevant features in the dataset, as depicted in Table

14. The present comparative analysis reveals that the

proposed model has achieved an accuracy rate of

92.99%, exhibiting a notable improvement of 3.32%

compared to the 89.67% reported in the prior study.

Furthermore, the suggested model exhibits the

highest recall value, achieving a rate of 92.66%,

surpassing the 81.48% achieved by the prior model.

However, a marginal decline was observed in the

proposed model, achieving an accuracy of 0.09% and

an F1-score of 0.35% compared to the preceding

investigation. Nevertheless, in a comprehensive

analysis, the proposed model demonstrated superior

performance compared to the prior work, utilising the

most relevant features in the dataset and

demonstrating the potential for enhanced anomaly

detection capabilities.

Table 14 Comparative analysis of the performance of the proposed model with previous work
References Feature Reduction Approach Algorithm Dataset Precision Recall F1-Score Accuracy

[38]
Feature Importance XGB Ensemble Ponzi

(1904)

97.44% 81.48% 88.74% 89.67%

Proposed

Model

Basic features reduction and relevance

features using the SULOV Method

Ensemble Ponzi

(1904)

97.35% 92.66% 88.39% 92.99%

4.4Comparison with the boruta method

The competitiveness aspect of the proposed study

was tested using the Boruta feature selection

technique. The Boruta technique was introduced by

two researchers from the University of Warsaw

(Witold and Miron) based on RF [62]. Therefore, an

experiment was conducted by replacing the SULOV

technique with Boruta, as displayed in Figure 17.

Figure 17 Relevance features selection with Boruta

The experimental results suggest that the Boruta

technique used together with the proposed model

produces an accuracy value of 92.89%, which is

slightly lower compared to the 92.99% produced by

the SULOV technique (see Table 15). The number of

relevant features produced by Boruta is much higher

(175 features) compared to SULOV (44 features).

The size of 175 features generated by Boruta has

caused the classification time (training time) to take a

long time (21.16 ms) compared to SULOV (3.87 ms).

This scenario demonstrates that the SULOV

technique produces minimal and optimal features

more and requires a shorter classification time than

the Boruta technique. The result is a positive impact

from the point of view of blockchain network

anomaly detection performance through contract

source code analysis.

Table 15 Comparative analysis of the performance of the proposed model with Boruta Method
Feature reduction approach Algorith

m

Relevanc

e

features

Total

features

reductio

n

Precisio

n

Recall F1-

Score

Accurac

y

Trainin

g Time

(ms)

Testin

g

Time

(ms)

Proposed model with Boruta Method Ensemble 175 26 97.04% 88.47 92.56
%

92.89% 21.16 0.15

Proposed model with SULOV

Method

Ensembl

e

44 157 97.35% 92.66

%

88.39

%

92.99% 3.87 0.26

Sabri Hisham et al.

1574

5. Discussion
This analysis utilises a dataset generated by [38],

comprising 1904 account contracts categorised as

either ponzi (305) or non-ponzi (1,599). Most prior

research endeavours continue to encounter the

obstacle of ascertaining the most pertinent attributes

for constructing anomaly detection models. The

careful selection of appropriate characteristics

significantly impacts the overall performance of the

subsequent model that is to be constructed. In

addition, the analysis of the contract source code now

only examines specific aspects in isolation rather than

considering a combination of features. However, it is

important to note that the contract source code

consists of three distinct components, namely

opcode, ABI code, and contact transaction, all of

which possess the potential for analysis. Furthermore,

this work is centred on examining three source code

components as hybrid ensemble characteristics to

detect anomalies in smart contracts. The source code

exhibits semantic and text-based formatting.

Consequently, the procedure of vectorisation is

employed to convert it into a numerical dataset,

which can then be utilised for training the ML model.

The resultant data set obtained through the process of

feature vectorisation is merged to construct a hybrid

ensemble data set including three distinct

combinations of contract source code feature

components.

Hence, the primary objective of this study is to

ascertain the optimal collection of features that

should be recovered from a vast dataset comprising

over 10,000 characteristics subsequent to

amalgamating the three constituent elements of the

source code. The attainment of this objective is

accomplished by employing fundamental strategies

for reducing features, such as constant-quasi and

variance, and generating the most pertinent sets of

features using the MRMR-based SULOV approach.

The SULOV technique comprises two sequential

stages. The initial stage involves identifying and

eliminating highly correlated features, resulting in a

refined set of uncorrelated features. Moreover, the

subsequent stage employs the XGB Feature

Importance method to generate a final set of relevant

features, prioritised or ranked according to

importance. The research methodology effectively

decreases the number of features from 17,346 (all

features) to the 44 most significant features. The

utilisation of pertinent characteristics has a

discernible effect on enhancing performance

compared to performance achieved by employing the

complete collection of features.

The subsequent step involves constructing an

ensemble model utilising soft voting, wherein input

parameters (pertinent feature sets) are employed to

train the model. This study employs a selection

technique that involves six combinations of two

classifiers functioning as voting estimators. Note that

the final model is determined by selecting the

combination with the highest-ranking order, which is

determined based on the accuracy value. The model

under consideration exhibited notable achievement in

achieving the best accuracy value (92.99%)

compared to a range of separate classifiers. In

addition, the proposed model exhibited superior

performance compared to the study [38], achieving

an accuracy rate of 89.67% while utilising the

identical dataset. The investigation of error

misclassification rates, namely the FPR and FNR,

indicates a comparatively low value compared to

individual classifiers' performance. In general, the

anomaly detection model generated in this study

successfully achieves an ideal detection level, aided

by utilising the most relevant features for model

performance optimisation. The study's performance

was evaluated by substituting the SULOV approach

with Boruta inside the framework provided in this

study. The experimental findings indicate that the

SULOV technique effectively generates 44 pertinent

characteristics while exhibiting superior accuracy

performance compared to the Boruta technique,

which yields 175 features.

Hence, in order to apply the hybrid feature technique

for detecting abnormalities in the blockchain network

through the analysis of contract source code

(including opcode, ABI code, and transaction), it is

imperative to have access to a comprehensive

labelled data source. This is essential for developing

an effective detection model. In essence, source code

and ABI code are distinct formats derived from a

common origin. The source code encompasses

several elements, such as a structured format,

semantic meaning, programme logic, operands,

conditional expressions, and remark tags, among

others. Nevertheless, utilizing this source code for

anomaly analysis proves inefficient due to its lack of

coherent and comprehensible content, rendering it

devoid of any discernible significance for human

comprehension. The ABI code, similar to the API, is

comprised of programme code that is designed to be

easily comprehensible and legible to humans.

Consequently, the ABI code is better suited for doing

anomaly analysis in comparison to the source code.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1575

However, a notable limitation of our study is the

difficulty in obtaining raw data sets of ABI codes

from the Etherscan blockchain explorer using the

API. This phenomenon arises due to the Ethereum

architecture's utilisation of the EVM for processing

the compiled source code of the contract, as well as

its acceptance of unpublished source code sourced

from the Ethereum network. Consequently, the

proportion of smart contracts deployed on the

Ethereum network and providing source code is quite

small. Nevertheless, the accessibility of the published

source code on Ethereum is not immediate, as it

necessitates users to undertake a verification process

prior to its appearance on the network. The difficulty

in acquiring the raw data set ABI code has had

repercussions on the thoroughness of preparing other

data sets, such as opcodes and transactions. This is

due to their reliance on the same contract address,

which introduces the potential for an uneven

distribution of data sets. The utilisation of a limited

dataset sample is prone to yield a model that exhibits

elevated performance or overfitting. However, it is

important to note that this model may not be ideal in

actuality. The deployment of this model inside a real-

world implementation ecosystem may have

implications for the accuracy and effectiveness of

anomaly detection capabilities. Nevertheless, several

research studies have employed solidity decompiler

tools, such as pyevmasm [53] and evmdis, to

undertake the reverse engineering of opcodes into

source code. However, it is important to note that

these endeavours are not without their limitations, as

there exists a potential danger of failure during the

conversion process. This failure may occur when the

resulting source code format does not adhere to the

original standard. Therefore, it is important to

conduct comprehensive research or utilise highly

reliable techniques in order to effectively convert the

opcode format to the source code with greater

accuracy than the original source code.

The limitations of the study are also related to the

architecture of Ethereum, which is divided into two

chains (on-chain and off-chain). The term "on-chain

data" pertains to data that is produced within the

blockchain network itself. This encompasses many

elements, such as accounts, transactions, and

contracts, including those according to the ERC-20

and ECR-721 standards. Off-chain data pertains to

the transmission of data originating from external

sources, which is then routed through the API

channel to the smart contract within the blockchain

network. This encompasses a wide range of data

types, including but not limited to meteorological

data, supply chain data, financial data, and any other

data accessible through an API. In the practical

implementation of DApp, a hybrid approach is often

employed, including both off-chain and on-chain

operations.Hence, the primary objective of this

research is to concentrate on the identification of

anomalies exclusively within on-chain data, with a

specific emphasis on leveraging contract data

analysis techniques. One of the data sets utilised in

anomaly analysis of the contract source code

comprises account transactions associated with the

contract address. Nevertheless, the study has certain

drawbacks as it primarily concentrates on the

utilisation of external transaction data sets,

specifically regular transactions, while neglecting to

incorporate internal transaction data sets. The ledger

on-chain captures external transaction data, mostly

involving EOA associated with hacker groups who

exploit smart contract manipulation. Internal

transactions are initiated when a corresponding entry

is made in the external transaction ledger, as viewed

from an operational perspective. Nevertheless, the

ledger does not document internal transactions that

occur off-chain and impact the Ether balance.

Consequently, investigating anomalies using the

internal transaction dataset focuses on examining

patterns of money transfers, balances, transactions,

timestamps, and amounts. Therefore, for a more

comprehensive examination of blockchain anomaly

detection, it is imperative to consider both types of

transactions in the investigation of this proposal.

Nevertheless, it is essential to acknowledge that

abnormalities or incursions can also manifest beyond

the confines of the blockchain network, commonly

referred to as off-chain occurrences. To enhance the

comprehensiveness of this study, it would be

advantageous to incorporate off-chain data sets.

A complete list of abbreviations is summarised in

Appendix I.

6.Conclusion and future work
Smart contracts play a vital role in the development

of DApp on blockchain networks. The emergence of

blockchain 3.0 has sparked a transformative shift in

the realm of DApp, which emerged subsequent to the

advent of smart contracts during the era of

blockchain 2.0. The utilisation of blockchain

technology has led to the transformation of Bitcoin

transfer transactions into DApp, which offers

enhanced security and reliability as an application

platform. Nevertheless, smart contracts have emerged

as a breeding ground for hackers involved in

deceptive practices, including but not limited to ponzi

Sabri Hisham et al.

1576

scams, honeypots, HYIP, phishing, and similar illicit

activities. The impact is experienced by individuals

or investors who have incurred substantial financial

losses due to deceptive practices in bitcoin

investment endeavours. Hence, implementing a

robust fraud detection system that facilitates the

timely identification of irregularities is of utmost

significance. Therefore, integrating science data

adaption solutions, AI, ML, and blockchain

technology can potentially enhance the efficiency of

anomaly detection systems. Applying ML techniques

to analyse extensive datasets derived from the

Ethereum network poses significant challenges.

Performing manual analysis by individually

examining transactions on Etherscan.io is unfeasible

due to the significant time, financial, and human

resource investments it necessitates, as well as the

elevated risk of erroneous data analysis.

Therefore, this study has explored the method of

analysing the three components of the contract source

code to detect anomalies in the contract. The contract

source code component combines opcode, ABI code,

and contract transactions to produce a hybrid feature

set. Combining these three source code feature

components has produced a feature size exceeding 10

thousand features after going through the feature

vectorisation transformation process based on TF-

IDF and N-Gram methods to produce vector number

values to facilitate ML model processing. Since the

dimensions of the features are too large, this study

has proposed two main processes, namely the basic

feature reduction method (constant-quasi and

variance) and the SULOV method, to finalise the

most relevant set of features. As a result, the 44 most

relevant feature sets are generated from the full

feature set (17,346) without lowering the

performance level of the model. This set of relevant

features becomes the input to train an ensemble

model based on ensemble soft voting. The strategy in

this study is the selection of combinations of

classifiers that act as voting estimators to be selected

as the final model based on the highest ranking

(highest accuracy value). Correspondingly, the model

produced successfully obtained the highest accuracy

value (92.99%) compared to various other classifiers,

and its performance was better than the results of

other studies using the same data set. The analysis of

blockchain data presents a significant problem due to

the dynamic nature of the blockchain environment,

which frequently undergoes modifications to enhance

security measures, upgrade software versions, and

other similar objectives. Consequently, modifying

features inside the blockchain network leads to

revising existing ML models, as the metadata set or

features have undergone changes by adding or

removing features. In addition, the hybrid technique,

which involves integrating multiple source code

feature components, creates an extensive feature set.

Hence, this phenomenon underscores the necessity

for advanced processing devices, including high-

capacity RAM, storage, and CPUs.

Hence, one of the prospective areas of research in the

future involves exploring alternative NLP techniques

(FastText, Word2Vec, uni-gram, bi-gram, doc2vec,

to name a few), apart from TF-IDF and N-Gram, for

text-based processing in order to convert source code

based on semantic code (text-based). A necessity

arises to conduct a comparative examination of

various strategies due to the fact that varying

approaches yield disparate outcomes. Therefore, the

optimal method choice will enhance the efficacy of

the anomaly detection model by scrutinising the

source code of smart contracts on Ethereum.

Acknowledgment
The Research Management and Innovation Centre (RMIC),

University of Sultan Zainal Abidin, funded this study.

Conflicts of interest
The authors have no conflicts of interest to declare.

Author's contribution statement
Sabri Hisham: Models and method selection, building a

framework, conducting experiments, analysis of

experimental results, draft writing, checking for plagiarism,

and proofreading. Mokhairi Makhtar: Supervision, give

an opinion, input on draught revision, and final revision.

Azwa Abdul Aziz: Supervision, exchange of sample

manuscripts, and draught evaluation comments.

References
[1] Hu T, Liu X, Chen T, Zhang X, Huang X, Niu W, et

al. Transaction-based classification and detection

approach for Ethereum smart contract. Information

Processing & Management. 2021; 58(2):102462.

[2] Chen W, Guo X, Chen Z, Zheng Z, Lu Y, Li Y.

Honeypot contract risk warning on Ethereum smart

contracts. In international conference on joint cloud

computing 2020 (pp. 1-8). IEEE.

[3] Bitcoin NS. Bitcoin: a peer-to-peer electronic cash

system. 2008.

[4] Wu J, Yuan Q, Lin D, You W, Chen W, Chen C, et al.

Who are the phishers? phishing scam detection on

Ethereum via network embedding. IEEE Transactions

on Systems, Man, and Cybernetics: Systems. 2020;

52(2):1156-66.

[5] Zheng Z, Chen W, Zhong Z, Chen Z, Lu Y. Securing

the Ethereum from smart ponzi schemes: identification

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1577

using static features. ACM Transactions on Software

Engineering and Methodology. 2023; 32(5):1-28.

[6] Deepa N, Pham QV, Nguyen DC, Bhattacharya S,

Prabadevi B, Gadekallu TR, et al. A survey on

blockchain for big data: approaches, opportunities, and

future directions. Future Generation Computer

Systems. 2022; 131:209-26.

[7] Huang J, He D, Obaidat MS, Vijayakumar P, Luo M,

Choo KK. The application of the blockchain

technology in voting systems: a review. ACM

Computing Surveys (CSUR). 2021; 54(3):1-28.

[8] Christidis K, Devetsikiotis M. Blockchains and smart

contracts for the internet of things. IEEE Access.

2016; 4:2292-303.

[9] Berdik D, Otoum S, Schmidt N, Porter D, Jararweh Y.

A survey on blockchain for information systems

management and security. Information Processing &

Management. 2021; 58(1):102397.

[10] Belchior R, Vasconcelos A, Guerreiro S, Correia M. A

survey on blockchain interoperability: past, present,

and future trends. ACM Computing Surveys (CSUR).

2021; 54(8):1-41.

[11] Qin K, Zhou L, Gervais A. Quantifying blockchain

extractable value: how dark is the forest? In

symposium on security and privacy (SP) 2022 (pp.

198-214). IEEE.

[12] Rahouti M, Xiong K, Ghani N. Bitcoin concepts,

threats, and machine-learning security solutions. IEEE

Access. 2018; 6:67189-205.

[13] Liu L, Tsai WT, Bhuiyan MZ, Peng H, Liu M.

Blockchain-enabled fraud discovery through abnormal

smart contract detection on Ethereum. Future

Generation Computer Systems. 2022; 128:158-66.

[14] Wood G. Ethereum: a secure decentralised generalised

transaction ledger. Ethereum Project Yellow Paper.

2014; 151(2014):1-32.

[15] Szabo N. Formalizing and securing relationships on

public networks. First Monday. 1997; 2(9).

[16] Buterin V. Ethereum white paper: a next generation

smart contract & decentralized application platform.

First Version. 2014; 53.

[17] Buterin V. A next-generation smart contract and

decentralized application platform. White Paper. 2014;

3(37):1-27.

[18] Cheng Z, Hou X, Li R, Zhou Y, Luo X, Li J, et al.

Towards a first step to understand the cryptocurrency

stealing attack on Ethereum. In international

symposium on research in attacks, intrusions and

defenses (RAID 2019) 2019 (pp. 47-60). USENIX

Association.

[19] Sallam A, Rassem T, Abdu H, Abdulkareem H, Saif

N, Abdullah S. Fraudulent account detection in the

 ’ us machine learning

techniques. International Journal of Software

Engineering and Computer Systems. 2022; 8(2):43-50.

[20] Camino R, Torres CF, Baden M, State R. A data

science approach for detecting honeypots in Ethereum.

In international conference on blockchain and

cryptocurrency (ICBC) 2020 (pp. 1-9). IEEE.

[21] Hu B, Zhou C, Tian YC, Qin Y, Junping X. A

collaborative intrusion detection approach using

blockchain for multimicrogrid systems. IEEE

Transactions on Systems, Man, and Cybernetics:

Systems. 2019; 49(8):1720-30.

[22] Preuveneers D, Rimmer V, Tsingenopoulos I, Spooren

J, Joosen W, Ilie-zudor E. Chained anomaly detection

models for federated learning: an intrusion detection

case study. Applied Sciences. 2018; 8(12):1-21.

[23] Nguyen TD, Pham LH, Sun J, Lin Y, Minh QT. Sfuzz:

an efficient adaptive fuzzer for solidity smart

contracts. In proceedings of the ACM/IEEE 42nd

international conference on software engineering 2020

(pp. 778-88).

[24] Fan S, Fu S, Xu H, Zhu C. Expose your mask: smart

ponzi schemes detection on blockchain. In

international joint conference on neural networks

(IJCNN) 2020 (pp. 1-7). IEEE.

[25] Vasek M, Moore T. Analyzing the bitcoin ponzi

scheme ecosystem. In financial cryptography and data

security: FC 2018 international workshops, BITCOIN,

VOTING, and WTSC, Nieuwpoort, Curaçao 2019 (pp.

101-12). Springer Berlin Heidelberg.

[26] Bartoletti M, Carta S, Cimoli T, Saia R. Dissecting

ponzi schemes on Ethereum: identification, analysis,

and impact. Future Generation Computer Systems.

2020; 102:259-77.

[27] Zhou Y, Kumar D, Bakshi S, Mason J, Miller A,

Bailey M. Erays: reverse engineering Ethereum's

opaque smart contracts. In 27th USENIX security

symposium (USENIX Security 18) 2018 (pp. 1371-

85).

[28] Tug S, Meng W, Wang Y. CBSigIDS: towards

collaborative blockchained signature-based intrusion

detection. In international conference on internet of

things (iThings) and IEEE green computing and

communications (GreenCom) and IEEE cyber,

physical and social computing (CPSCom) and IEEE

smart data (SmartData) 2018 (pp. 1228-35). IEEE.

[29] Wang W, Song J, Xu G, Li Y, Wang H, Su C.

Contractward: automated vulnerability detection

models for Ethereum smart contracts. IEEE

Transactions on Network Science and Engineering.

2020; 8(2):1133-44.

[30] Zhang L, Wang J, Wang W, Jin Z, Zhao C, Cai Z, et

al. A novel smart contract vulnerability detection

method based on information graph and ensemble

learning. Sensors. 2022; 22(9):1-25.

[31] Chen W, Zheng Z, Cui J, Ngai E, Zheng P, Zhou Y.

Detecting ponzi schemes on Ethereum: towards

healthier blockchain technology. In proceedings of the

2018 world wide web conference 2018 (pp. 1409-18).

[32] Chen W, Zheng Z, Ngai EC, Zheng P, Zhou Y.

Exploiting blockchain data to detect smart ponzi

schemes on Ethereum. IEEE Access. 2019; 7:37575-

86.

[33] Jung E, Le TM, Gehani A, Ge Y. Data mining-based

Ethereum fraud detection. In international conference

on blockchain (Blockchain) 2019 (pp. 266-73). IEEE.

Sabri Hisham et al.

1578

[34] Yan Z, Susilo W, Bertino E, Zhang J, Yang LT. AI-

driven data security and privacy. Journal of Network

and Computer Applications. 2020; 172:102842.

[35] Peng H, Li J, Wang S, Wang L, Gong Q, Yang R, et

al. Hierarchical taxonomy-aware and attentional graph

capsule RCNNs for large-scale multi-label text

classification. IEEE Transactions on Knowledge and

Data Engineering. 2019; 33(6):2505-19.

[36] Pham T, Lee S. Anomaly detection in bitcoin network

using unsupervised learning methods. arXiv preprint

arXiv:1611.03941. 2016.

[37] Bogner A. Seeing is understanding: anomaly detection

in blockchains with visualized features. In proceedings

of the international joint conference on pervasive and

ubiquitous computing and proceedings of the

international symposium on wearable computers 2017

(pp. 5-8). ACM.

[38] Aljofey A, Rasool A, Jiang Q, Qu Q. A feature-based

robust method for abnormal contracts detection in

Ethereum blockchain. Electronics. 2022; 11(18):1-24.

[39] Chen W, Li X, Sui Y, He N, Wang H, Wu L, et al.

Sadponzi: detecting and characterizing ponzi schemes

in Ethereum smart contracts. Proceedings of the ACM

on Measurement and Analysis of Computing Systems.

2021; 5(2):1-30.

[40] K š ć A K R F JI. S
blockchain technology and data mining techniques for

anomaly detection. Applied Sciences. 2021; 11(17):1-

37.

[41] Kumar N, Singh A, Handa A, Shukla SK. Detecting

malicious accounts on the Ethereum blockchain with

supervised learning. In cyber security cryptography

and machine learning: fourth international symposium,

Be'er Sheva, Israel, proceedings 2020 (pp. 94-109).

Springer International Publishing.

[42] Awang MK, Makhtar M, Udin N, Mansor NF.

Improving customer churn classification with

ensemble stacking method. International Journal of

Advanced Computer Science and Applications. 2021;

12(11):277-85.

[43] Awang MK, Makhtar M, Mamat AR. Ensemble

selection and combination based on cost function for

UCI datasets. Journal of Theoretical and Applied

Information Technology. 2021; 99(16):4015-25.

[44] Hisham S, Makhtar M, Aziz AA. Combining multiple

classifiers using ensemble method for anomaly

detection in blockchain networks: a comprehensive

review. International Journal of Advanced Computer

Science and Applications. 2022; 13(8):404-22.

[45] Baba NM, Makhtar M, Fadzli SA, Awang MK.

Current issues in ensemble methods and its

applications. Journal of Theoretical & Applied

Information Technology. 2015; 81(2):266-76.

[46] Wang L, Cheng H, Zheng Z, Yang A, Zhu X. Ponzi

scheme detection via oversampling-based long short-

term memory for smart contracts. Knowledge-Based

Systems. 2021; 228:107312.

[47] Lu P, Cai L, Yin K. SourceP: smart ponzi schemes

detection on Ethereum using pre-training model with

data flow. arXiv preprint arXiv:2306.01665. 2023.

[48] Zhang L, Chen W, Wang W, Jin Z, Zhao C, Cai Z, et

al. Cbgru: a detection method of smart contract

vulnerability based on a hybrid model. Sensors. 2022;

22(9):1-24.

[49] Durieux T, Ferreira JF, Abreu R, Cruz P. Empirical

review of automated analysis tools on 47,587

Ethereum smart contracts. In proceedings of the 42nd

international conference on software engineering 2020

(pp. 530-41). ACM/IEEE.

[50] Grieco G, Song W, Cygan A, Feist J, Groce A.

Echidna: effective, usable, and fast fuzzing for smart

contracts. In proceedings of the 29th SIGSOFT

international symposium on software testing and

analysis 2020 (pp. 557-60). ACM.

[51] Huang J, Zhou K, Xiong A, Li D. Smart contract

vulnerability detection model based on multi-task

learning. Sensors. 2022; 22(5):1-24.

[52] Ferreira JF, Cruz P, Durieux T, Abreu R. Smartbugs: a

framework to analyze solidity smart contracts. In

proceedings of the 35th international conference on

automated software engineering 2020 (pp. 1349-52).

IEEE/ACM.

[53] Fan S, Fu S, Xu H, Cheng X. Al-SPSD: anti-leakage

smart ponzi schemes detection in blockchain.

Information Processing & Management. 2021;

58(4):102587.

[54] Chen J, Xia X, Lo D, Grundy J, Luo X, Chen T.

Defectchecker: automated smart contract defect

detection by analyzing EVM bytecode. IEEE

Transactions on Software Engineering. 2021;

48(7):2189-207.

[55] Vivar AL, Castedo AT, Orozco AL, Villalba LJ. An

analysis of smart contracts security threats alongside

existing solutions. Entropy. 2020; 22(2):1-29.

[56] Torres CF, Steichen M. The art of the scam:

demystifying honeypots in Ethereum smart contracts.

In 28th USENIX security symposium (USENIX

Security 19) 2019 (pp. 1591-607).

[57] Sun X, Lin X, Liao Z. An ABI-based classification

approach for Ethereum smart contracts. In

international conference on dependable, autonomic

and secure computing, international conference on

pervasive intelligence and computing, international

conference on cloud and big data computing, 2021

(pp. 99-104). IEEE.

[58] Asha J, Meenakowshalya A. Fake news detection

using n-gram analysis and machine learning

algorithms. Journal of Mobile Computing,

Communications & Mobile Networks. 2021; 8(1):33-

43.

[59] Aljofey A, Jiang Q, Rasool A, Chen H, Liu W, Qu Q,

et al. An effective detection approach for phishing

websites using URL and HTML features. Scientific

Reports. 2022; 12(1):1-19.

[60] Zhao Z, Anand R, Wang M. Maximum relevance and

minimum redundancy feature selection methods for a

marketing machine learning platform. In international

conference on data science and advanced analytics

(DSAA) 2019 (pp. 442-52). IEEE.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1579

[61] Gollapalli M, Alansari A, Alkhorasani H, Alsubaii M,

Sakloua R, Alzahrani R, et al. A novel stacking

ensemble for detecting three types of diabetes mellitus

using a Saudi Arabian dataset: Pre-diabetes, T1DM,

and T2DM. Computers in Biology and Medicine.

2022; 147:1-12.

[62] Farhana N, Firdaus A, Darmawan MF, Ab RMF.

Evaluation of Boruta algorithm in DDoS detection.

Egyptian Informatics Journal. 2023; 24(1):27-42.

Sabri Hisham earned his Bachelor's

degree in computer science (Industrial

Computing) from Universiti Teknologi

Malaysia (UTM) in 2001 and his

Master's degree in software engineering

from Universiti Malaysia Pahang

(UMP) in 2014. He is currently a PhD

student at Universiti Sultan Zainal

Abidin's Department of Computer Science in the Faculty of

Computing and Informatics at Terengganu, Malaysia. He is

also the Head of Infostructure at Universiti Malaysia

Pahang's Information and Technology Department. He is

also a Blockchain Solidity Smart Contract and Ethereum

Expert and certified professional. Blockchain, Bitcoin, ML,

IoT, Mobile Apps, Web Applications, SCADA, and

Telemetry Systems are among his current research

interests.

Email: sabrihisham@ump.edu.my

Prof Mokhairi Makhtar earned his

PhD in 2012 from the University of

Bradford in the United Kingdom. He is

currently a Professor at Universiti

Sultan Zainal Abidin (UniSZA) in

Terengganu, Malaysia, in the

Department of Computer Science.

Machine Learning, Ensemble Method,

Data Mining, Soft Computing, Timetabling and

Optimisation, Natural Language Processing, E-Learning,

and Deep Learning are some of his current research

interests.

Email: mokhairi@unisza.edu.my

Mr Azwa Abdul Aziz earned a degree

in computer science in 2002 from

Malaysia's Universiti Teknologi Mara.

He completed his studies at the

Bachelor's level and graduated from

Universiti Teknologi Mara (UiTM),

Malaysia, in 2004. Then, in 2010, he

earned a master's degree in computer

science from Malaysia's University of Malaysia

Terengganu (UMT). He is recently a lecturer at the

Department of Computer Science at Sultan Zainal Abidin

University in Terengganu, Malaysia. Included in his

research interests are Big Data Analytics, Text Mining,

Business Intelligence, and Machine Learning.

Email: azwaaziz@ unisza.edu.my

Appendix I
S. No. Abbreviations Descriptions

1 3D Three Dimensions

2 ABI code Application Binary Interface Code

3 AFL American Fuzzy Lop

4 AI Artificial Intelligence

5
Al-SPSD

Anti-Leakage Smart Ponzi Scheme

Detection

6 API Application Programming Interface

7 AUC Area under the ROC Curve

8 BiGRU Bidirectional Gated Recurrent Unit

9 BiLSTM Bidirectional LSTM

10
CBGRU

Convolutional-Based Bidirectional Gated

Recurrent Unit

11 CNN Convolutional Neural Network

12 CPU Central Processing Unit

13 DAO Decentralised Autonomous Organisation

14 DApp Decentralised Application

15 DASP Decentralized Application Security Project

16 DeFi Decentralised Finance

17 DL Deep Learning

18 DT Decision Tree

19 EOA Externally Owned Accounts

20 ERC Ethereum Request for Comment

21 ETC Extra-Tree Classifier

22 ETH Ether

23 EVM Ethereum Virtual Machine

24 FN False Negative

25 FNR False Negative Rate

26 FP False Positive

27 FPR False Positive Rate

28 GB Gradient Boosting Classifier

29 GBDT Gradient Boosting Method

30 GRU Gated Recurrent Unit

31 HYIP High-Yield Investment Programmes

32 IoT Internet of Thing

33 JSON JavaScript Object Notation

34 KNN K-Nearest Neighbours Algorithm

35 LDA Linear Discriminant Analysis

36 LightGBM Light Gradient-Boosting Machine

37 LSTM Long Short-Term Memory

38 MI Mutual Information

39 ML Machine Learning

40
MRMR

Minimum Redundancy Maximum

Relevance

41 MS Milliseconds

42 MulCas Multi-view Cascade Ensemble model

43 MySQL My's Structured Query Language (MySQL)

44 NFT Non-Fungible Token

45 NLP Natural Language Processing

46 Opcode Operation Code

47
PSD-OL

Ponzi Schemes Detection Approach Based

On Oversampling-Based

48 RAM Random Access Memory

49 RF Random Forest

50
SadPonzi

Semantic-Aware Detection Approach for

Ponzi

51 SGD Stochastic Gradient Descent

52
SMOTE

Synthetic Minority Oversampling

Technique

53 SULOV Searching for Uncorrelated List of Variables

54
TF-IDF

Term Frequency - Inverse Document

Frequency

55 TN True Negative

56 TNR True Negative Rate

57 TP True Positive

58 TPR True Positive Rate

59 XGB eXtreme Gradient Boosting

