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1.Introduction 
Blockchain architecture is based on distributed and 

decentralised technology used to store transaction 

records in blocks [1]. These blocks are linked to each 

other based on the value of the hash address 

(previous hash) generated through a cryptographic 

mechanism [2]. Blockchain technology has 

developed as an open ledger to record transactions in 

a distributed manner. New blocks will be created 

after the mining process is complete through the 

protocol consensus that requires each peer to verify 

transactions [3–5].  

 

 
*Author for correspondence 

The development of decentralised applications 

(DApp) has grown in popularity with the 

digitalisation of smart contracts, previously only 

utilised for cryptocurrency transactions, in the 

blockchain 2.0 Era. In the areas of health [6], 

decentralised voting [7], the internet of things (IoT) 

[8], and supply chain management [9], the use of 

DApp has expanded quickly and caught the attention 

of both industry and academics [10]. Nowadays, 

blockchain is a technological catalyst for the 

introduction of several new applications, such as non-

fungible tokens (NFT), metaverse, decentralised 

autonomous organisation (DAO), and decentralised 

finance (DeFi) [11].  

 

Research Article 

Abstract  
Blockchain 2.0 has revolutionized the domain by introducing blockchain as a decentralized application (DApp) 

development platform, previously recognized mainly in the cryptocurrency sphere. Consequently, the rise of DApp 

development has inadvertently camouflaged fraudulent activities within smart contracts, leading to substantial losses for 

investors. Implementing machine learning (ML) approaches can significantly enhance the efficacy of anomaly detection. 

However, many studies still grapple with selecting the most pertinent features to optimize anomaly detection levels. This 

challenge intensifies when managing the high-dimensional raw data extracted directly from the Ethereum blockchain 

network, which falls under the category of big data. Smart contracts, the core of blockchain that governs DApp logic, 

have increasingly become a haven for fraud. This study focuses on analyzing three primary characteristic components 

based on contract source code (operation code (opcode), application binary interface (ABI) code, and contract 

transaction) to develop anomaly detection models in smart contracts using an ensemble hybrid feature strategy. The 

approach involves two key stages: firstly, reducing the initial feature size through constant, quasi-constant, and variant 

validation; and secondly, identifying the most relevant feature set using the searching for uncorrelated list of variables 

(SULOV) method, grounded in the minimum redundancy maximum relevance (MRMR) principle. The anomaly detection 

model employs a voting ensemble technique, harnessing a dataset of the most pertinent features. The model's 

effectiveness is gauged by comparing its performance with individual models, including random forest (RF), k-nearest 

neighbor (KNN), decision tree (DT), linear discriminant analysis (LDA), and stochastic gradient descent (SGD). The 

findings indicate that the proposed model achieves superior anomaly detection levels, with a determination value 

measurement rate of 92.99%, outperforming individual classifiers using the 44 most relevant features while minimizing 

classification time. The model's efficiency is further corroborated through comparative analysis with previous studies and 

alternative methodologies using the same contract dataset. The proposed ensemble-based model significantly improves 

anomaly detection in contract source code analysis, employing a minimal and relevant set of features refined through the 

SULOV method. 
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Smart contracts are becoming more popular on the 

Ethereum network and have been introduced to solve 

the weaknesses discovered in Bitcoin [12]. In 

addition to the expansion of DApp development, 

Ethereum is the second-largest group in the world of 

cryptocurrencies through the Ether currency after 

Bitcoin [13], with a market capitalisation of around 

US$25 billion and had more than 67 million accounts 

in June 2019 [14]. Szabo [15] is credited with 

introducing the idea of smart contracts. The author 

described them as a set of digital agreement details 

that require members to abide by the terms of the 

agreement. Due to technological restrictions at the 

time, which demanded the deployment of security 

features through cryptographic protocols, this 

concept was abandoned. However, Satoshi Nakamoto 

originally created Bitcoin in 2008, and smart 

contracts re-emerged in popularity as a result of their 

adoption of Bitcoin technology. With the introduction 

of Ethereum and the increase in the usage of smart 

contracts, which apply programming script logic 

without requiring outside parties, Buterin [16, 17] has 

energised the development of DApp. 

 

Basically, the architecture of Ethereum consists of 

two types of accounts, namely externally owned 

accounts (EOA) and contract accounts (CA). The 

main function of EOA, which is controlled by a 

private key, is to transfer Ether between accounts. 

Meanwhile, the contract code fully controls CA and 

is responsible for deploying smart contracts. Both 

types of accounts are in hexadecimal format [18]. 

Each account consists of four attributes (Hash, 

Storage, Ether Balance, and Nonce). Nonce provides 

an overview of the quality of transactions between 

accounts or contracts. At the same time, the Ether 

Balance reveals the account balance in Wei units, 

while the hash is a hash code generated by the 

ethereum virtual machine (EVM), and storage 

represents the 256-bit hash resulting from the Merkle 

Root mechanism [19]. The Ethereum network 

consists of two types of transactions: normal 

transactions and internal transactions [20]. 

Furthermore, the user accounts initiate normal 

transactions, and internal transactions refer to 

transactions initiated by smart contracts. Internal 

transactions are also managed off-chain (no 

cryptographic signatures). However, there are some 

managed on-chain (not a part of the blockchain) that 

require a small amount of gas (Ethereum Gas) for the 

transaction fee (affecting address balances). 

Therefore, internal transactions, also known as 

messages, do not have a transaction hash compared to 

normal transactions. Thus, each normal transaction 

has more than one internal transaction referring to it. 

 

Smart contracts are exposed to threats of invasion 

and cybercrime to the point of causing huge losses to 

investors in particular. This is due to bugs in the 

contract, low quality of the source code, and no 

security assessment of the contract performed before 

production on the real network [21]. Among other 

causes are attitude as well as negligence by users, 

causing confidential information (private keys, for 

example) to be stolen, the nature of contracts that are 

automatic execution, and the lack of enforcement or 

regulatory mechanisms in managing blockchain 

applications. It is also due to the nature of blockchain 

users or accounts being anonymous (tracing 

behaviour becomes difficult) [22]. Smart contracts 

developed using the Solidity language are exposed to 

vulnerabilities like traditional programming 

languages (Java, C, and C++), and what differentiates 

them is that the contract's source code is unable to be 

modified after being produced into the blockchain 

network [23]. 

 

Other than that, weaknesses in smart contracts have 

provided hackers with the opportunity to manipulate 

the source code for the purpose of fraud or scams. 

User-oriented DApp developed through popular 

game applications such as Fomo three dimensions 

(3D) and Cryptokitties2 have provided wealth to 

early investors from the investment results of new 

investors [5]. This fraudulent activity is called a 

Ponzi scheme, and it also advertises its activities on 

bitcointalk.org as high-yield investment programmes 

(HYIP) or gambling games to trap new investors 

[24]. In addition, weaknesses in smart contracts 

caused the DAO attack in 2016 and Parity Wallet in 

2017, causing an estimated loss of over $400 million 

[2]. The attackers have stolen 3.5 million Ether, 

equivalent to US$45 million, due to the vulnerability 

in the DAO contract. Hence, fixing the vulnerability 

requires launching a hard fork, which is risky, even if 

it involves a low cost [23]. 

 

Therefore, an initial anomaly detection system in the 

blockchain network is critical to protecting against 

cybercrime. Since smart contracts have been the 

focus of intruders committing fraudulent activities, an 

analysis of abnormalities in the source code needs to 

be conducted. Consequently, a preliminary study 

creates a manual review of the source code accessed 

from etherscan.io for the open source contract 

(source code available) to identify source code 

behaviour that reflects ponzi scams [25]. A manual 
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structural analysis review of the source code was 

performed in a study by [26], who used the 

etherscam.io platform to access verified contracts to 

detect Ponzi schemes hiding in contracts. Although 

this study succeeded in detecting Ponzi schemes, the 

analysis was limited to the structure of the 

programme code. However, analysing the billions of 

non-open source contracts in the Ethereum network is 

challenging since the source code is unavailable. 

Therefore, it is impossible for a manual approach to 

analyse anomalies, considering that 77.3% of smart 

contracts are open source [27]. Manual anomaly 

identification also requires machine specifications 

such as large memory, a central processing unit 

(CPU), storage, and many human resources. It is also 

very prone to errors as humans conduct this process. 

Since most blockchain accounts are anonymous, 

detecting fraudulent activities becomes increasingly 

difficult and challenging [28]. In addition, the size of 

large-capacity blockchain data (categorised as big 

data) challenges researchers to determine the most 

relevant features that can produce an optimal 

detection level. Thus, the machine learning (ML) 

approach that is able to extract features from large 

data sets and is scalable is very suitable to be adapted 

together with blockchain technology to detect 

fraudulent activities [29, 30]. Therefore, a study by 

[31–33] has analysed the smart contract source code 

based on the ML approach to detect Ponzi schemes. 

Most recent studies have begun to explore artificial 

intelligence (AI) [34, 35] and deep learning (DL) [36, 

37] to detect anomalies in smart contracts. 

 

However, previous studies still faced several issues 

and challenges in producing an optimal anomaly 

detection level based on smart contract source code 

analysis. First, determining the characteristic 

components of smart contract source code analysis is 

not comprehensive. Most analyses only focus on one 

or two characteristic components of the source code 

(operation code (Opcode), transaction) through an 

individual analysis approach (not hybrid features) 

[38]. Second, extracting characteristics for contract 

source code components is difficult as it involves 

semantic code-based data (textual) and needs to be 

monitored to produce a better level of anomaly 

detection [39]. Third, identifying the most relevant 

features from the large original feature dimension is a 

challenging task as it determines the performance of 

the final model [40]. Fourth, the performance of 

smart contract anomaly analysis in previous studies is 

still at a moderate level. For example, the 95% 

precision rate and 69% recall rate [32] can still be 

improved by adapting the ensemble approach to 

overcome the weaknesses of individual models [41–

43]. Fifth, the problem of balancing the distribution 

of data labels on the data set interferes with the 

model's performance. For example, even though 

transactions on Ethereum exceed 3.8 billion, only 

2041 phishing accounts were successfully detected. 

This contributes to the production of overfitting and 

weak models [4]. 

 

This scenario motivates researchers to investigate 

feature hybrid approaches to analyse anomaly 

detection for all feature components associated with 

source code, namely Opcode, application binary 

interface (ABI) code, and transaction. Nevertheless, 

the source code characteristics, namely Opcode and 

application binary interface code (ABI code), are 

presented in a textual format. Consequently, it 

becomes necessary to employ extraction techniques 

and feature vectorisation transformations. The 

utilisation of a hybrid feature method generates a 

substantial feature size and necessitates feature 

selection approaches to identify the most pertinent 

features while maintaining optimal model 

performance. Ultimately, implementing a prediction 

model that can enhance the performance of the 

existing model is necessary. 

 

Hence, this study delineates fourth objective derived 

from the deficiencies and concerns identified in prior 

research. The primary aim of this study is to analyze 

the smart contract source code's behaviour for the 

purpose of anomaly detection. This analysis will be 

based on combining hybrid features, including 

Opcode, ABI code, and transaction data. The second 

purpose pertains to the execution of feature extraction 

and transformation methods on the source code, 

specifically the Opcode and ABI code, which 

encompasses textual information. The third purpose 

of this study is to implement feature filtering 

(reduction) and searching for an uncorrelated list of 

variables (SULOV) feature selection methods in 

order to identify and retain the most relevant 

characteristics. The fourth objective is to enhance the 

performance of the ultimate model by employing the 

voting ensemble technique. 

 

Generally, processes start with the initial feature 

reduction, which checks and verifies the quasi-

constant and variance thresholds. Consequently, the 

most relevant features (screening uncorrelated 

features) are determined from a large number of 

features in order to contribute to improving the 

performance of the final model using the SULOV 

technique (based on the minimum redundancy 
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maximum relevance (MRMR) approach). The final 

model is built based on the parameter input of the 

most relevant feature set to be trained and tested 

using the approach ensemble. As it is known, the 

ensemble approach can overcome the performance of 

weak classifier models [44] and avoid the occurrence 

of overfitting [45]. 

 

Therefore, the following procedures must be 

conducted in order to accomplish the study's 

objective and paper contribution: 1) Using a dataset 

of 1,904 Ponzi contracts derived from research [38]. 

2) Using the Etherscan.io application programming 

interface (API), create three different types of 

contract source code datasets (Opcode, ABI code, 

and contract-account transaction). 3) Collecting and 

converting text semantic data sets using vectorisation 

transformation techniques (N-Gram and term 

frequency-inverse document frequency (TF-IDF)). 4) 

Combining in an ensemble to create a hybrid feature 

composed of contract-account transactions, ABI 

code, and Opcode.5) Apply quasi-constant and 

variance analysis approaches for prefix feature 

reduction. 6) Employ the MRMR-based SULOV 

approach to identify the most pertinent features. 7) 

The ensemble voting method is used to develop the 

final model. 8) Analysing the findings by contrasting 

the ensemble model's performance with that of the 

individual model and the findings of other studies 

that used the same data set. The study's findings 

demonstrate that the voting ensemble model, which 

performed better than the individual classifier model, 

obtained an accuracy value of 92.99%. 

 

This study's structure is broken down into sections. 

The evaluation of earlier study findings is described 

in section 2. The proposed research methodology is 

thoroughly explained in section 3. Correspondingly, 

the analysis of the experimental study's outcomes is 

presented in section 4. The findings are explained and 

further discussed in section 5. The study 

recommendations, findings, and potential future 

studies are summarised in section 6. 

 

2.Literature review  
This section describes previous studies related to 

anomaly detection based on smart contract source 

code analysis. It is crucial to analyse prior research to 

expand our understanding of a field. A comparison of 

earlier studies on anomaly detection in smart 

contracts is provided in Table 1.  

 

Table 1 Previous study for anomaly detection in smart contracts 
References Description Dataset Features Model Limitations 

[46] Long short-term memory 

(LSTM)-based 

oversampling is used in 
Ponzi schemes detection 

approach based on 

oversampling-based (PSD-
OL), a method for smart 

contracts that detects Ponzi 

schemes. 

Ponzi Dataset from XBlock 

dataset 

(3,019 contracts- 2,851 
normal contracts, 168 Ponzi 

contracts) 

Transaction, 

Opcode 

LSTM Did not use relevant feature 

selection techniques. 

[38] Detection of normal and 
abnormal behaviour in a 

smart contract-based Ponzi 

scheme dataset. 

1,904 contracts (Ponzi label) 
from Etherscan.io 

Transaction  
Opcode, 

Source code  

Soft Voting 
Ensemble 

Did not use relevant feature 
selection techniques. Did not 

use the ABI Code format 

since the original source code 
is too complex and difficult to 

read and understand by 

humans. 

[5] Develop a Multi-view 

Cascade Ensemble model 

(MulCas) using the ML 

approach for Ponzi detection 

in a smart contract. Extract 

three features (bytecode, 
semantic, and developer) 

from two data sources 

(opcode, transaction) 

6,498 contracts (314 Ponzi 

contracts,6,184 normal 

contracts) from Etherscan.io 

Opcode, 

Transaction 

Ensemble Did not use relevant feature 

selection techniques. The 

source code needs to be 

compiled on a different 

version of the solidity 

compiler. 
 

[47] Introduce SourceP, a 

technique that uses data 

flow and pre-trained models 
to find smart Ponzi schemes 

on the Ethereum platform. 

Ponzi Dataset from XBlock 

dataset and collect 6,498 

(318 Ponzi contracts,6,180 
normal contracts) from 

Etherscan.io 

Opcode GraphCodeBert Did not use relevant feature 

selection techniques and 

ensemble learning approach. 
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References Description Dataset Features Model Limitations 

[23] Create sFuzz tools, an 

adaptive fuzzer for smart 

contracts on the Ethereum 
platform that targets those 

hard-to-cover branches 

using an American fuzzy lop 
(AFL) fuzzer and an 

effective, lightweight multi-

objective adaptive strategy. 

Smart contract code 

coverage analysis for the 

test suite 

Solidity code 

(sol files) 

AFL-based Did not use the feature 

filtering method and relevant 

feature selection techniques. 

[48] Present the convolutional-

based bidirectional gated 

recurrent Unit (CBGRU) 
model, a novel hybrid DL 

approach that carefully 

incorporates various word 
embeddings (Word2Vec, 

FastText) and DL 

techniques (LSTM, gated 
recurrent unit (GRU), 

bidirectional 

LSTM(BiLSTM), 
convolutional neural 

network(CNN), and 

BiGRU). 

SmartBugs Dataset-Wild 

from [49] contained 47,587 

real sol files 

Source code 

files 

(solidity) 

DL Did not use the feature 

filtering method and relevant 

feature selection techniques 
after feature extraction. 

[50] Purpose the Echidna smart 
contract fuzzer tools, an 

open-source tool that 

enables it to automatically 
generate tests to find 

assertion and custom 
property violations. 

VeriSmart benchmark, 
TetherToken 

Solidity code 
(sol files) 

property-based 
fuzzing 

(QuickCheck) 

Did not use the feature 
filtering method and relevant 

feature selection techniques. 

[51] Contained two parts (a 

sharing layer and a task-

specific layer)  
sharing layer: text-to-vector 

transformation 

task-specific layer: construct 
a classification model using 

CNN 

XBlock platform (149,363 

smart contracts) 

Opcode Classical CNN Did not use the feature 

filtering method and relevant 

feature selection techniques. 

[52] Propose a tool called 
SmartCheck that 

significantly enhances the 

detection of vulnerabilities 
linked to the DASP10 

categories of faulty 

randomisation, temporal 
manipulation, and access 

control. 

Two datasets of Solidity 
contracts with 208 tagged 

vulnerabilities and 47,518 

unique contracts were 
collected through Etherscan 

Solidity code 
(sol files) 

Based on 
DASP10 

categories 

Did not use the feature 
filtering method and relevant 

feature selection techniques. 

[2] Propose an ML model based 

on LightGBM and N-gram 
characteristics to identify 

honeypot contracts based on 

frequency opcodes. 

218,250 negative samples 

(non-honeypot contracts) 
and 616 positive samples 

(honeypot contracts) were 

obtained 

Opcode LightGBM Did not use the feature 

filtering method or ensemble 
learning approach and 

focused on opcode source 

code analysis without 

examining the behaviour 

contract transaction. 

[39] Propose a semantic-aware 
detection method for ML-

based detection of Ponzi 

schemes in Ethereum smart 
contracts. Semantic-aware 

detection approach for Ponzi 

(SADPonzi) using symbolic 
method 

1,395 well-labelled sample Opcode eXtreme 
gradient 

boosting 

(XGB), 
RF 

Did not use the feature 
filtering method, relevant 

feature selection techniques, 

and ensemble learning 
approach. 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)                                                                                                             

1557          

 

References Description Dataset Features Model Limitations 

[53] Propose an ordered 

boosting-based anti-leakage 

smart Ponzi scheme 
detection (Al-SPSD) model. 

Optimise using synthetic 

minority oversampling 
technique (SMOTE) and 

Optuna framework. 

Extract the contract from 

Google Big Query. 

(81 Ponzi,644 non Ponzi) 

Opcode Gradient 

boosting 

method 
(GBDT) 

Did not use the feature 

filtering method, relevant 

feature selection techniques, 
and ensemble learning 

approach. 

 

The present investigation, carried out by [46], has 

analysed the Ponzi scheme phenomenon within the 

context of smart contracts. The source code analysis 

relies on utilising CA characteristics and bytecode 

Opcode. This is achieved by introducing PSD-OL, an 

oversampling-based LSTM technique. Note that the 

LSTM model was trained using datasets provided by 

the XBlock public repository (3019 contracts). The 

study's findings indicate that the proposed model 

achieved a high accuracy value of 0.96 using the 

SMOTE technique. Nevertheless, the present study 

does not employ the feature selection technique to 

ascertain the most pertinent characteristics from the 

pool of 83 features (comprising opcode and 

transaction features) prior to training them using an 

LSTM model, which can potentially enhance the 

final model's overall performance. 

 

The aforementioned study by [38] examines 

anomalies in smart contracts by analysing three 

components of contract source code: Opcode, 

account features, and source code features. This 

analysis was performed using a hybrid approach that 

combines various features. A comprehensive dataset 

of 1,904 CAs was utilised to gather the necessary 

opcode data sets, account features, and source code. 

Moreover, the present study employs a soft ensemble 

voting methodology for the purpose of training 

models for contract anomaly detection. The 

investigation yielded an accuracy value of 0.88%, 

surpassing the previous study conducted by [32], 

which achieved an accuracy of 0.79% using the 

identical dataset. However, this study does not 

employ precise feature selection strategies to 

generate the most pertinent features that enhance the 

efficacy of the ultimate model. This study also 

utilises the original source code dataset, which 

exhibits a high level of complexity, semantic 

intricacy, and logical structure and presents 

challenges in terms of human readability and 

comprehension. The utilisation of ABI code is 

perceived as more appropriate for studying source 

code due to its inherent comprehensibility for human 

interpretation, facilitating the enhancement of 

anomaly prediction capabilities. 

Insufficient consideration was provided in the 

aforementioned study conducted by [5] to the 

sampling methodology employed for the data sets 

utilised, as well as an undue emphasis on the analysis 

of CA transactions. Consequently, the researcher 

introduced a theoretical framework known as the 

MulCas by analysing the source code (opcode and 

transaction) and expanding the existing dataset from 

the prior investigation, encompassing 6,498 CAs. 

This study extracts three new features (Opcode, 

semantic, and developer) from two data set sources 

(Opcode and transaction). Other than that, this study 

has contributed the largest contract data set (6,498 

contracts) from [31]. The study's findings indicate 

that the MulCas model, as described, achieves a 

recall value of 0.674, a precision of 0.951, and an F1-

score of 0.789. Note that these metrics demonstrate 

superior performance compared to the SadPonzi [39]. 

Analysis of contract source code in a hybrid way 

(opcode, transaction) through feature extraction has 

produced a large feature size or dimension. Thus, no 

relevant feature selection techniques are specified in 

this study to help improve model performance. 

 

The implementation of graph analysis utilising flow 

graph data to analyse Ponzi schemes within a 

contract has been carried out [47]. This approach 

involves constructing a classification model based on 

the aforementioned data. This methodology diverges 

from prior research endeavours focused on feature 

extraction when analysing the source code. The 

model, referred to as SourceP, has analysed the 

source code in opcode format. Moreover, the 

experimental findings have yielded an F1-score of 

90.7% and a recall of 87.2%. The findings from the 

comparative analysis with previous studies indicate 

that SourceP outperforms MulCas [5] and SadPonzi 

[39] in terms of recall, f1-score, and precision. The 

primary objective of this study is to examine the 

method of source code analysis based on individual 

characteristics, specifically opcode. The paper argues 

that the hybrid characteristic approach, which 

combines opcode with other characteristics such as 

source code, transaction, or account, has some 

limitations. Nevertheless, this study does not perceive 

the identification of pertinent attributes as a means to 
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enhance the performance of models, as its scope is 

limited to pre-training model creators. 

 

The researchers in [23] conducted a study wherein 

they devised a contract fraud detection tool named 

sFuzz, which was built around the multi-objective 

AFL fuzzer method. The efficacy of this tool has 

been evaluated by the development of a contract 

simulation encompassing a sample size exceeding 

4,000 contracts. The primary aim of Sfuzz is to do 

source code testing on contracts prior to their 

deployment on the Ethereum network to identify any 

potential flaws or vulnerabilities. Consequently, the 

present study employs Opcode source code to 

conduct an analysis aimed at achieving high code 

coverage. The experimental findings indicate that 

sFuzz exhibits notable reductions in processing times, 

superior effectiveness, and enhanced reliability 

compared to the current fuzzer. 

 

A study using a hybrid DL CBGRU model was 

discussed [48]. The study has analysed various word 

embedding techniques, including Word2Vec and 

FastText, and employed a range of DL 

methodologies, including LSTM, GRU, BiLSTM, 

CNN, and bidirectional gated recurrent unit 

(BiGRU). Moreover, the proposed hybrid technique 

utilises dataset-wild data sets, specifically 

SmartBugs, which are in the solidity format (sol 

files), to identify vulnerabilities in smart contracts. 

The experimental findings demonstrate that the 

CBGRU model effectively achieves an average 

accuracy rate of 93% when analysing vulnerabilities 

such as timestamp manipulation, infinite loop, and 

reentry. This study utilises an extraction methodology 

that combines two features without employing the 

feature filtering method or selecting the most relevant 

features to enhance the model's performance. 

 

Research conducted by [50] has devised a set of 

testing tools named Echidna, specifically designed 

for smart contracts. These tools are built upon the 

foundation of smart contract fuzzers. The efficacy of 

this tool has been evaluated through the use of ten 

commercially available security solutions in order to 

solicit comments pertaining to security, usability, and 

user experience. In addition, the primary objective of 

this work is to identify and address software defects 

in smart contracts during their first stages while 

ensuring that the processing performance remains at 

an appropriate level. The experimental findings 

indicate that Echidna demonstrates a detection 

capability for bugs within a time frame of less than 2 

minutes. However, Solfuzz, when utilising real 

tokens (namely Tether), requires a minimum of 15 

minutes or maybe longer. 

 

A study was undertaken by [51] to perform a 

semantic analysis of the source code of the contract. 

The study employed a text processing strategy known 

as word embedding in the bottom sharing layer, and 

DL techniques were utilised to create the model in 

the task-specific layer. Subsequently, the multi-task 

model, alternatively referred to as this technique, has 

demonstrated superior effectiveness in detecting 

fraudulent activities. The multi-task model is 

characterised by its cost-effectiveness, efficiency in 

terms of time, utilisation of human resources, and 

storage requirements compared to a single-task 

model. This study uses extracting Opcode data sets 

and labelling normal and abnormal using 

vulnerability tools. However, this study lacks the 

implementation of feature screening techniques and 

the selection of the most relevant features after going 

through the Opcode feature extraction process on the 

bottom screen using the word embedding method 

before the model is developed using CNN. 

 

The analytical tool Smartbug, developed by [52], 

tests and debug smart contracts. An analysis 

informed the development of this tool of Solidity 

source code (sol files), and it offers compatibility 

with a total of ten additional tools for integration 

purposes. The Smartbug detection repository contains 

a comprehensive collection of 143 annotated 

vulnerabilities, specifically focusing on 208 distinct 

vulnerabilities. The percentage range of 11% to 24% 

is determined by the decentralized application 

security project (DASP) 10 category, which 

encompasses time manipulation, access control, and 

faulty randomness. 

 

The investigation of honeypot identification in smart 

contracts was conducted by [2] with the examination 

of honeypot scheme detection. The present study 

examined the symbolic and contractual behaviour 

within the Opcode through analysis. Hence, N-gram 

(a text processing technique) and the light gradient-

boosting machine (LightGBM) algorithm were 

employed in constructing the detection model. The 

study's findings indicate that the utilisation of 

features, specifically unigram and bigram, effectively 

yields the F1-score (0.93) and area under the roc 

curve (AUC) (0.99) values in the context of detecting 

honeypots in smart contracts. One notable advantage 

of this study is its systematic execution of feature 

selection, extraction, undersampling, and feature 

significance procedures prior to the building of the 
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LightGBM model. The study could be enhanced by 

incorporating a feature filtering procedure with 

suitable methodologies and examining it within the 

framework of transaction behaviour. 

 

The heuristic-guided symbolic technique has been 

used by [39] to develop SADPonzi. This study uses 

the solidity dataset to analyse investor behaviour, 

such as money transfer transactions (semantic 

approach) and its relationship with other investors 

(other users). The effectiveness of SADPonzi was 

analysed with 3.4 million contracts and successfully 

detected ponzi schemes (835). The evaluation result 

for the SADPonzi approach produced 100% 

precision, recall, and f1-score compared to the TxML 

and OpcodeML approaches. This study focuses on 

the analysis of semantic information generated from 

the process of symbolic execution, Opcode and does 

not use feature filtering or the selection of the most 

relevant features. 

 

Correspondingly, a research investigation was 

conducted by [53] to examine the disparity in data 

sets pertaining to target classes through the analysis 

of contract source code (Opcode). The presence of 

imbalanced class distribution within the data has led 

to data leakage, resulting in a model exhibiting 

inferior performance. Therefore, this study has put 

out measures to mitigate data leaking using Al-SPSD 

methodology, which stands for Ponzi scheme 

detection using Ordered Boosting, has been designed 

to identify Ponzi scams within contracts by analysing 

the opcode source code. The study's findings indicate 

that Al-SPSD achieved a notable F1-score of 96%. 

The N-Gram approach is employed to extract opcode 

characteristics. In this work, an experiment was 

undertaken to ascertain the ideal value of n-gram 

(specifically, n = 1, 2, 3, or 4) that yields the 

maximum performance of the model. Nevertheless, 

the present study does not investigate the technique 

of feature filtering, the selection of the most pertinent 

features, or the utilisation of ensemble learning 

models. 

 

Based on the analysis of previous studies related to 

the detection of anomalies through the analysis of 

smart contract source code, it has been proven that 

most studies analyse one or two source code features 

using an individual or hybrid analysis approach. The 

observation also discovered that a hybrid analysis for 

the Opcode source code, ABI code, and transaction 

features has not yet been implemented. The source 

code feature of ABI code is easier to understand and 

read by humans compared to the original source code 

(solidity). Most studies also focus on the feature 

extraction and model development process, compared 

to the adaptation of methods for model optimisation, 

such as feature screening techniques and the selection 

of the most relevant features. 

 

3.Methods 

The proposed smart contract-based anomaly 

detection framework through the analysis of the three 

components of the contract source code (opcode, ABI 

code, and contract transaction) is explained in this 

section (Figure 1). This process started with data 

collection for three source code components (opcode, 

ABI code, and contract transaction) based on the 

ponzi dataset containing 1904 CA shared publicly by 

[38]. However, this data set does not provide data for 

source code (ABI code and opcode) as well as CA 

transactions. Thus, these three datasets are obtained 

through the Etherscan API in JavaScript Object 

Notation (JSON) format. These three raw data are 

read directly from Etherscan and stored in the My's 

Structured Query Language (MySQL) database 

through their respective tables to facilitate the feature 

extraction process in the pre-processing phase. 

However, the source code data (ABI code and 

Opcode) is textual-based, and the ML approach only 

operates optimally based on numerical data. 

Therefore, Opcode and ABI code must undergo a 

feature transformation process to produce numeric 

vector values through the N-Gram and TF-IDF. In 

general, these features are classified into two types of 

feature categories: code features (Opcode and ABI 

code) and account features (contract transactions). 

 

These three data sets are combined as an ensemble to 

form a main data set through a hybrid feature 

combination approach. Subsequently, this main data 

set, which has a large feature dimension, will reduce 

the number of features through the quasi-constant and 

variance validation methods. This feature set then 

goes through the process of selecting the most 

relevant features using the SULOV method by 

filtering uncorrelated list variables. This data set, 

which is the most revealing, is balanced using the 

SMOTE, as the distribution of data labelled Ponzi 

and non-Ponzi is unbalanced. The last phase is to 

train an anomaly detection model based on the 

ensemble approach using the data set parameter input 

resulting from the previous process. The anomaly 

prediction results in the output that determines 

whether the contract is normal (non-Ponzi) or 

abnormal (Ponzi). This research experiment was 

conducted using the Python (Jupyter) programming 
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languages, from the data collection phase to the development of the final model. 

 

 
Figure 1 Smart contract anomaly detection framework 

 

3.1Data gathering 

The source of the data set is a crucial aspect and 

requirement of the initial research phase. This study 

analyses the smart contract source code based on 

three components of the source code (Opcode, ABI 

code, and contract transaction) extracted directly 

from etherscan.io using a Ponzi dataset of 1,904 

labelled CA shared by [38]. This dataset containing 

1,904 CA was labelled with 1,599 as '0' (non-Ponzi) 

and 305 as '1' (Ponzi), as indicated in Table 2. 

 

Table 2 Ponzi contract dataset 

Contract account Target distribution Size 

 

1,904 

non-Ponzi 1,599 

Ponzi 305 

 

The provided dataset exclusively consists of 

categorised CA, specifically distinguishing between 

Ponzi and non-Ponzi accounts. It does not encompass 

datasets pertaining to source code components such 

as opcode, ABI code, and transaction information. 

Thus, the three characteristic components of the 

contract source code (Opcode, ABI code, and 

contract transaction) are extracted directly from 

Etherscan.io (blockchain explorer platform) using the 

API endpoint (using the API key obtained after 

registration at Etherscan.io) based on 1,904 CA 

labelled Ponzi and non-Ponzi (refer to Table 3). Note 

that this data crawling process has produced 1,904 

Opcodes, ABI codes, and normal transactions 

(external transactions). Normally, a Ponzi has a 

lifespan with a median rate of only 2.5 days before 

being blocked by Etherscan.io. Thus, the transaction 

for this CA is too minimal or zero [5]. Therefore, the 

data set containing the normal contract (labelled '0') 

always has new transactions and is constantly 

growing up to now. An example of transaction details 

for a normal contract address is 

'0x00000000219ab540356cBB839Cbe05303d7705Fa

' as in Figure 2. 

 

An instance of a Ponzi CA address, namely 

'0x1ce7986760ADe2BF0F322f5EF39Ce0DE3bd0C8

2B', has been in existence for a duration of 1,299 

days and has been subjected to a blocking action by 

Etherscan (see Figure 3). 

 

Table 3 Etherscan.io API endpoint for data crawling 

Features category Etherscan API endpoint 

Opcode http://etherscan.io/api?module=opcode&action=getopcode 

ABI code https://api.etherscan.io/api?module=contract&action=getsourcecode 

Contract transaction https://api.etherscan.io/api?module=account&action=txlist&address=xxx 
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Figure 2 The latest transaction of a normal contract 

 

 
Figure 3 The detailed transaction of the Ponzi contract 

 

Many prior research investigations, such as those 

conducted by [46, 54, 55], have employed the Python 

library (disassembler) to produce opcodes from 

bytecodes. Nevertheless, this approach is vulnerable 

since it introduces the possibility of encountering 

failure while executing the conversion from bytecode 

to opcode. Therefore, the approach of acquiring the 

opcode source code straight via the API channel 

proves to be more efficient as it leverages Etherscan's 

management of the bytecode-to-opcode conversion 

process. 

 

3.2Data Pre-processing 

In section 3.1 of the data collection, the researchers 

extracted three components of the source code 

dataset: Opcode, ABI code, and CA transaction 

history. These components were obtained from 

labelled CA specifically those categorised as either 

Ponzi or non-Ponzi. The retrieved data was then 

placed in separate tables within the MySQL database. 

The pre-processing phase serves as an initial stage in 

which the data set is extracted prior to its utilisation 

in subsequent processes. The determination of 

whether the CA is classified as normal (non-Ponzi) or 

abnormal (Ponzi) relies on an analysis of a dataset 

that has undergone multiple pre-processing stages. 
3.2.1Opcode features 

As explained in the previous section, the proposed 

framework is based on access through the Etherscan 

API to obtain opcodes (refer to Figure 4). This 

method is easier since the Etherscan engine 

automatically converts bytecode to Opcode. The 

conversion of bytecode to Opcode is crucial for 

anomaly analysis since the content of the bytecode 

format is incomprehensible to humans [38]. 

However, most previous studies performed the 

process of converting bytecode to Opcode through 

disassembler software developed using the Python 

library. Yellow Paper (Ethereum) provides tabular 

references for binary bytecode instructions in 
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mnemonic Opcode form. This conversion process 

starts with making the bytecode in the form of a 

token, and this token is converted to an opcode 

through a set of instructions. In general, an opcode 

consists of two main components: the mnemonic 

(opcode) and the operand (hexadecimal number 

type). Examples of mnemonic opcodes are "PUSH2", 

"MSTORE," and "CALDATASIZE." While 

hexadecimal operands are "0x00f7," "0x00," and 

"0x80". 

 

 
Figure 4 Bytecode to Opcode conversion 

 

In this section, the extraction of Opcode features 

consists of word mnemonics using feature extraction 

methods based on natural language processing 

(NLP). Therefore, within the framework of this 

proposal, a text analytical classification method has 

been used using the N-Gram (2, 3) method, which 

combines bigrams and trigrams to identify relevant 

word combinations. The latest Opcode feature set is 

produced after the removal process of words 

exhibiting high word frequency values (see Figure 

5). 

 
Figure 5 Pre-processing of opcode 

 
3.2.2ABI code features 

This study focuses on open-source contracts that have 

source code. According to [56], over 2 million 

Ethereum contracts are deployed on the Ethereum 

network; only about 1% have source code, and the 

rest are hidden source codes (contracts). Technically, 

the contract owner can decide whether to publish the 

contract source code so that the public can interact 

through the contract address or not publish. However, 

to increase the level of reliability, the contract owner 
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can publish the contract using the compiler (setting 

the version and flag) so that public users can 

independently verify it through the contract address. 

Through the user's transparent verification 

mechanism, using compiler information (version and 

flag), the source code can be generated and viewed 

publicly. Therefore, in this study, the ABI code is 

obtained through the API for contracts that have been 

verified only so that the source code can be obtained. 

Figure 6 displays the ABI code after the user verifies 

the contract. Meanwhile, Figure 5 illustrates that the 

ABI code is unable to be obtained since the user has 

not verified this contract. However, the real source 

code is not used in this study as it contains sentences 

or words that do not contribute to improving the 

model's performance and yield insignificant results. 

Comment statements like those in Figure 7 on the 

programme code discovered in the original source 

code do not provide a clear meaning in the model 

classification. As a result, the ABI code's content is 

more meaningful and clear than the original source 

code [57]. Nevertheless, a study by [38] used the 

original source code to be analysed in a hybrid way 

along with other source code components such as 

opcode and transaction contract. 

 

ABI code contains source code based on textual, 

semantic, and programme logic. Therefore, the ABI 

code needs to go through a text-cleaning process to 

remove symbols, blank spaces, numbers, bad 

characters, and non-English characters. The next step 

is the pre-processing process, which includes 

tokenising, stop words, and word reduction based on 

the dictionary (lemmatising) (see Figure 8). 

 
Figure 6 Contract source code verified 

 

 
Figure 7 Contract source code not verified 
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Figure 8 Pre-processing of ABI code 

 
3.2.3Account features 

Transaction recording in Ethereum occurs when a 

user transfers ether to another user's account through 

a contract, creates a new smart contract, and invokes 

a smart contract (function). Basically, Ethereum 

consists of three categories of transactions, namely 

external, internal, and token transactions (ethereum 

request for comment (ERC)-20 and ERC-721) (see 

Figure 9). These two main categories are external 

transactions (also called normal transactions) and 

internal transactions. The normal transaction is 

referred to as the recording of Ether (ETH) transfer 

transactions between external users or EOAs 

differently via wallet addresses. Note that internal 

transactions are off-chain (no transaction recording in 

Ethereum and no cryptographic signature). They 

affect the ETH balance after the normal transaction is 

recorded. Transactions related to symbolic digital 

assets are related to ERC-20 tokens (fungible tokens) 

and ERC-721 (non-fungible). These three transaction 

categories are accessed through the transaction tab in 

Etherscan.io, as portrayed in Figure 10. However, 

this study only focuses on anomaly analysis on 

external transactions since it involves interaction 

from EOA, including scammers, hackers, and 

intruders through verified contracts. 

 

The account feature refers to transaction analysis 

based on CA addresses labelled normal (Ponzi) or 

abnormal non-Ponzi). The raw data extracted directly 

from Etherscan through the API is stored in MySQL 

before it goes through the pre-processing phase. This 

phase filters features that contain null values (missing 

values) by replacing them with the median, removing 

features that have a zero variant value, removing 

features that are not applicable 

(ERC20_most_rec_token_type and ERC20_most sent 

token type), and removing duplicates on records (see 

Figure 11). 

 

 
Figure 9 Ethereum transaction category 
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Figure 10 Transaction tab in Etherscan blockchain explorer 

 

 
Figure 11 Pre-processing of account features 

 

3.3Features transformation 

The dataset (opcode and ABI code) obtained from 

Etherscan.io comprises programming code that 

exhibits semantic, code-based, and text-based 

characteristics. However, in order to train the model 

using the ML approach according to established best 

practices, it is necessary to accept input parameters of 

the numerical type. Consequently, it is necessary to 

subject two datasets of source code (opcode and ABI 

code) to the process of feature extraction using 

vectorisation techniques such as N-Gram and TF-

IDF. The TF-IDF method is a statistical method for 

determining the relevance of word groupings in a 

document [58]. The Python TfidfVectoriser function 

with token settings (char, word, ngram_range, 

max_features) is used to convert textual material to 

vector numbers. This technique is commonly used to 

analyse text-based data sets in order to discover 

phishing activities, abnormalities, fraud, and so on 

[59]. The TF-IDF approach, however, contains flaws 

such as extracted keywords with unclear meanings, 

misspellings, and so on. As a result, the pre-

processing phase is critical for reducing feature 

extraction mistakes and increasing the accuracy of 

the final model produced by the processes of text 

cleaning, normalisation, tokenising, lemmatising, and 

stop words described in the preceding section. 

 

The results of vectorisation in the generation of a 

vector value of numerical type lead to an expansion 

in the size of the feature dimension. Correspondingly, 

the feature vectorisation process has resulted in the 

data set dimensions of Opcode being (1904, 17309), 

ABI code being (1904, 10838), and contract 

transaction being (11722, 49). The research 

methodology employed involves examining the 

amalgamation of three distinct feature components 

inside a hybrid ensemble, resulting in the 

measurement of data dimensions (15530, 17356). 

Table 4 summarises the dimensions of rows and 

features for the three feature components. 

 

Table 4 Feature vectorisation transformation 

Features 

category 

Features  Feature extraction method Rows size Features size 

Code features Opcode TF-IDF with input (word, 
ngram_range=(2,3) and 

max_features=30000)  

1904 17309 

ABI code TF-IDF with input (character, 1904 10838 
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Features 

category 

Features  Feature extraction method Rows size Features size 

ngram_range=(2,3) and 

max_features=30000) 

Account features Transaction Account Behaviour 11722 49 

Hybrid features Opcode, ABI 

code and 

transaction 

Hybrid features 

 

15530 17356 

 

This scenario is based on the opcode data set (op), 

which has dimension J as follows: 

Op = {O1, O2,…….OJ }. 

Meanwhile, the ABI code data set (ab) produces a 

feature size L after the vectorisation transformation 

process. 

Ab = {A1, A2,…….AL }. 

The normal transaction dataset (Tx) for the contract 

yielded 49 features generated from the extraction 

process from etherscan.io. 

Tr = {T1, T2,…….T49 }. 

Therefore, the combination of the three components 

of the source code of this contract will produce a new 

data set (Co) as follows: 

Co =Op U Ab U Tr 

Co ={O1,O2,…….OJ … A1, A2,…….AL … 

T1,T2,…….T49 }. 

 

3.4Features reduction 

This study encompasses two primary phases of 

feature reduction for hybrid features, specifically 

opcode, ABI code, and transaction. These stages 

involve feature cleaning and feature filtering, 

including identifying and removing constant features 

and quasi-constant features (see Table 5). This 

strategy serves as a first way for screening features to 

reduce their number before proceeding with selecting 

the most relevant features using the proposed method 

and then creating the final anomaly detection model. 

The feature cleaning procedure is determined by the 

size of the feature dimension (15530, 17356), which 

is obtained by combining three feature categories: 

Opcode, ABI code, and transaction. The 

aforementioned procedure has effectively diminished 

the number of features by 10. This was achieved 

through several steps, including the replacement of 

missing data with median values, the elimination of 

features with zero variance, the removal of irrelevant 

features (namely, ERC20_most_rec_token_type and 

ERC20_most_sent token type), and the elimination of 

duplicate records. 

 

The feature filter step employs the constant features 

approach in order to detect values that remain 

consistent across the entire row of the dataset. These 

features are deemed unnecessary and are 

subsequently removed, as they do not contribute to 

the predictive performance of the model for the target 

variable. Consequently, by eliminating the constant 

features, a total of 875 features have been decreased 

from the initial count of 17,346 to 16,471. The 

subsequent filtering technique pertains to quasi-

constant features, which serve the purpose of 

identifying the predominant features within the 

dataset that do not contribute significantly to 

enhancing prediction accuracy. By employing this 

approach, a grand total of 201 features were 

effectively eliminated from the initial feature set, 

reducing its size from 16,471 to 16,270. 

 

Table 5 Basic features reduction for hybrid features 

Method Before Features 

Reduction 

After Features Reduction Total Features Reduction 

Features cleaning 17356 17346 10 

Constant features 17346 16471 875 

Quasi-constant features 16471 16270 201 

 

3.5Relevance features selection using SULOV 

The feature size (201 features) produced from the 

feature reduction step explained in the previous 

section is still too large, and the selection of the most 

relevant features is necessary to develop a more 

optimal detection model. There are some common 

questions faced by data scientists about identifying 

the most important or irrelevant features, and this 

step becomes more challenging if the feature size is 

too large. Another question is to identify features that 

are highly correlated to the point of causing 

redundancy and to be sure of the results of features 

that are truly performing or overfitting. 

 

Therefore, this study uses the SULOV for the 

selection of features of minimal size relevant to 
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maintaining optimal model performance. SULOV is a 

technique that inspires algorithms. MRMR became 

more popular after an article related to this algorithm 

was published by an Uber engineer in 2019 [60]. The 

MRMR algorithm targets minimal relevant features 

(not all relevant features) and optimal performance, 

while Boruta (also one of the best feature selection 

techniques) is capable of determining all relevant 

features. Therefore, usually, the size of features 

produced by SULOV is less than that of Boruta 

without removing the performance level at an optimal 

level. The SULOV technique consists of two distinct 

steps, referred to as phase 1 (SULOV) and phase 2 

(recursive XGBoost (XGB)), as depicted in Figure 

12. Phase 1 encompasses a series of procedures 

aimed at identifying pairs of features that exhibit a 

lack of correlation, as demonstrated by a high mutual 

information (MI) score. Pairs of characteristics 

exhibiting strong correlations were excluded due to 

their poor MI scores. 

 

 
Figure 12 SULOV method 

 

In phase 2, the uncorrelated feature set obtained from 

phase 1 is utilised to partition the data set (train, 

valid) by selecting the ten most significant feature 

sets (i.e., those with the highest level of relevance). 

This process is iterated five times. The iterative 

procedure will generate a set of five XGB models, 

each exhibiting a distinct assortment of 

characteristics based on their respective levels of 

relevance. Therefore, the generation of the most 

minimum and optimal set of features is achieved by 

combining the top 10 characteristics from the 5 XGB 

models and subsequently conducting a de-duplication 

process (see Figure 13). The present study has 

undertaken an experimental investigation with the 

most recent feature set comprising 201 features. The 

SULOV technique was employed to generate the 

final feature set that is most minimal and optimal to 

the research objectives. The experimental findings 

demonstrate the efficacy of the SULOV technique in 

reducing the number of features from 201 to 44, 

resulting in a final set of features deemed the most 

optimal (refer to Table 6). 

 

 
Figure 13 Filtering uncorrelated features using the SULOV method 
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Table 6 Relevance feature selection using the SULOV method 

Method Before SULOV method Feature reduction size Relevance features 

SULOV Method 201 157 44 

 

The aforementioned approach has yielded a total of 

44 sets of very pertinent features while 

simultaneously eliminating 157 features that exhibit a 

significant association out of the initial pool of 201 

features (refer to Table 7). 

 

Table 7 Final relevance features 

S. No. Relevance features S. No. Relevance features 

1 Total ERC20 tnxs 23 ERC20 uniq rec contract addr 

2 Time Diff between first and last (Mins) 24 ERC20 min val rec 

3 Number of Created Contracts 25 12604 

4 Unique Received From Addresses 26 11312 

5 Total Transactions (including tnx to create the contract) 27 ERC20 uniq sent addr 

6 Total Ether Balance 28 max value received  

7 Min val sent 29 7516 

8 7474 30 8136 

9 8225 31 11851 

10 358 32 Avg min between sent tnx 

11 Avg val received 33 min value received 

12 Avg min between received tnx 34 11790 

13 8758 35 ERC20 avg val sent 

14 3798 36 15721 

15 ERC20 max val rec 37 max val sent 

16 11045 38 11859 

17 4743 39 Unique Sent To Addresses 

18 Total Ether Received 40 avg val sent 

19 8660 41 min value sent to contract 

20 16920 42 ERC20 uniq sent addr.1 

21 6037 43 ERC20 total Ether sent contract 

22 16295 44 avg value sent to contract 

 

3.6Data preparation 

The subsequent step is partitioning the dataset in 

accordance with a 70:30 ratio. The divide resulted in 

a training data set containing 10,871 rows, while the 

remaining 4,656 rows were allocated to the testing 

data set (see Table 8). 

 

Table 8 Training and testing set data 

Training set data (70%) Testing set data (30%) 

(10871, 17346) (4659, 17346) 

 

The observation on class balance reveals an 

imbalance in the number of target classes (0,1), 

which, if left unaddressed, may lead to the 

development of a weak model characterised by 

overfitting. Consequently, the present study has 

implemented the SMOTE oversampling technique in 

order to generate synthetic data, achieving a balanced 

distribution of target classes. The aforementioned 

procedure results in an equal distribution of rows for 

both the training dataset, with 8,716 non-Ponzi and 

8,717 Ponzi instances, as well as the test dataset, with 

3,747 non-Ponzi and 3,748 Ponzi instances, as 

illustrated in Table 9. 

 

Table 9 SMOTE oversampling 

Set data Before SMOTE After SMOTE 

Training non-Ponzi: 8716 

Ponzi: 2155 

non-Ponzi: 8716 

Ponzi: 8717 

Testing non-Ponzi: 3747 

Ponzi: 912 

non-Ponzi: 3747 

Ponzi: 3748 
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3.7Ensemble learning 

ML classifiers exhibit diverse performance 

characteristics and limitations. The ensemble strategy 

is implemented to enhance the limitations of 

individual classifiers, resulting in a composite of 

more robust classifiers. Consequently, this study 

employs the most pertinent collection of attributes 

derived from the preceding procedure. An anomaly 

detection model was built using an ensemble model 

based on soft voting. Note that the model was trained 

on a labelled dataset consisting of two classes: 0 for 

non-Ponzi and 1 for Ponzi. The dataset included 44 

sets of important features. The study of the contract 

source code, as depicted in Figure 14, served as the 

basis for this model. Consequently, this study has 

introduced an ensemble soft voting methodology, 

where each classifier engages in a class voting 

procedure with one another. The ultimate forecast 

generated is derived from a methodology known as a 

weighted voting technique. The ensemble model that 

has been developed utilises a selection strategy 

wherein two classifiers are chosen from a pool of five 

classifiers, namely XGB, extra-tree classifier (ETC), 

bagging classifier, gradient boosting (GB) classifier, 

and random forest (RF). This selection process 

results in six different combinations of classifiers, 

which are then used as the estimator parameters for 

the voting classifier. Hence, the accuracy values 

obtained from the performance evaluation of the six 

combinations of classifiers serving as estimators are 

organised in a ranked manner. The technique outlined 

in this study suggests that the final model selection is 

determined by identifying the model with the highest 

ranking. 

The bagging classifier is a type of ensemble learning 

technique that is utilised for both classification and 

regression tasks. The classifier, known as Bootstrap 

Aggregating or Bagging, was initially proposed by 

Breiman in 1996 [61]. It effectively addresses the 

                                   . T           

                                                    

                                             

                                               bag(x) 

denoting the prediction function. 

 ̌bag (X)=argmaxk  ̌bag(X).   (1) 

Meanwhile, the GB model generates a new tree based 

on the updated   and Gk(x) values in the model (see 

Equation 2).  

         ∑                            
 
    

     (2) 

XGB is derived from the most recent iteration of 

gradient boosting, as seen in Equation 3. 

  (x)=    (x)+   (x)   (3) 

 

The ETC is an ML model that falls under the 

category of bagging, specifically bootstrap 

aggregation. It is built using RF and has the ability to 

mitigate changes within the dataset. Note that the 

subsequent explanation delineates the formulation of 

the ETC, which is derived from the base learner 

(   (x)) as depicted in Equation 4. 

         =             ∑   
   (       ) 

     (4) 

Therefore, the anomaly detection model employs the 

soft ensemble voting classifier technique to 

determine the ultimate classification as either normal 

(non-Ponzi) or abnormal (Ponzi). 

 

 
Figure 14 Voting ensemble prediction strategy 
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4.Results 
The experimental procedure employed in this 

investigation utilised a laptop computer equipped 

with particular technical parameters, including 32 

gigabytes of random access memory (RAM) powered 

by an Intel i7-7700 processor operating at a 

frequency of 2.8 gigahertz and requiring a minimum 

of 10 gigabytes of available disc space. In order to 

facilitate uninterrupted data crawling from 

etherscan.io using the API, it is imperative to have a 

reliable and high-speed internet connection. The 

dataset preparation for the three source code 

components, namely opcode, ABI code, and account 

transaction, is conducted using data obtained from 

the Etherscan API. This dataset is derived from the 

Ponzi dataset (account contract) as described in the 

referenced study [38]. Moreover, the present work 

commences with the initial stage of dataset 

preparation and proceeds towards constructing an 

anomaly detection model utilising the Python and 

Jupyter programming languages. The evaluation of 

the suggested model is conducted thoroughly, 

utilising eight assessment metrics: precision, recall, 

F1-score, accuracy, true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN). 

The specifics of this measurement metric are 

displayed in Table 10. 

 

Table 10 Metric measurement for performance analysis 

Metric 

measurement 

Definition Remarks 

True positive (TP) 
The observed class is "Ponzi," and the 

anticipated class is also "Ponzi." 

A high value that serves as an indicator of strong 

performance. 

False positive (FP) 
Actual is "non-Ponzi" but predicted "Ponzi" 

class 

Lower values are indicative of excellence in 

performance. 

True negative (TN) 
Actual is "non-Ponzi" and predicted 'non-

Ponzi' class 

A high value that serves as an indicator of strong 

performance. 

False negative (FN) 
Actual 'Ponzi' but predicted 'non-Ponzi' 

class 

Lower values are indicative of excellence in 

performance. 

Precision (P) TP /(TP+FP) 
A high level of precision is indicative of a model that 

generates a low number of FP. 

Recall (R) TP /(TP+FN) 
A low recall value suggests that the model produces a 

significant number of FN. 

F1-Score 2.P.R /(P+R) A high score is indicative of a strong performance. 

Accuracy (TP+TN) /(TP+TN+FP+FN) 
A high value that serves as an indicator of a strong 

performance. 

 

4.1Evaluation of proposed features 

This section provides an examination of the efficacy 

of the planned study in generating the most pertinent 

features. The performance of the anomaly detection 

level, as determined by the final model developed, is 

contingent upon the careful selection of optimal 

features. Hence, an evaluation is conducted to assess 

the efficacy of using the most pertinent features by 

comparing them to the complete set of features, as 

exhibited in Table 11. This evaluation is based on 

their accuracy and classification time performance. 

The findings of this experiment indicate that the 

utilisation of pertinent features, consisting of 44 

features, resulted in an accuracy rate of 92.99%. In 

comparison, including all features, totalling 17,346, 

yielded a slightly higher accuracy rate of 93.07%. 

The utilisation of pertinent features has exhibited a 

marginal decline, namely a loss of 0.08% compared 

to the achievement of 93.07% accuracy using all 

available features. This finding demonstrates that 

employing a set of 44 pertinent features yields nearly 

equivalent performance to utilising the complete set 

of features for anomaly identification. Other than 

that, the proposal to employ a subset of pertinent 

features holds greater importance in comparison to 

utilising the full feature set to analyse the 

classification time, encompassing both training and 

testing phases.  

 

Hence, it was observed that using pertinent features 

significantly reduces the classification time 

(comprising training and testing time) compared to 

the classification time required when using the 

complete feature set, as measured in milliseconds 

(ms). The use of the pertinent feature set necessitates 

a training duration of 3.87 ms, significantly smaller 

than the 70.04 ms required when using the complete 

feature set. The aforementioned situation is 

comparable to the testing time of 0.26 ms that arises 

from utilising a specific set of pertinent features. 

Note that this testing time is notably reduced 

compared to the 1.83 ms that results from employing 
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the complete set of features. The experiment's 

findings indicate that the selected set of features 

effectively detects anomalies by achieving high 

levels of accuracy. Additionally, this feature set 

optimises the time required for classification, 

resulting in time savings, reduced human resource 

utilisation, and lower processing costs during the 

training and testing phases. 

 

Table 11 Performance comparison: full features and proposed features 

Features approach Features size Accuracy (%) Training time (ms) Testing time (ms) 

Full Features 17346 93.07% 70.04 1.83 

Proposed Features 44 92.99% 3.87 0.26 

 

4.2Evaluation of proposed ensemble model 

The data set generated using the SULOV method 

serves as the input parameter for training the anomaly 

detection model employing the ensemble voting 

strategy. The building of the final model is 

determined by picking the optimal estimator voting 

combination from a set of six combinations: (XGB, 

ETC), (XGB, Bagging), (ETC, RF), (XGB, GB), 

(XGB, RF), and (GB, RF). Consequently, these 

combinations are rated based on their accuracy 

values, as provided in Table 12. 

 

Table 12 Performance analysis of ensemble voting estimator combinations 

S. No. Voting 

estimator 

Precision F1-

score 

Recall Accuracy TPR FPR False 

negative 

rate 

(FNR) 

TNR Ranking 

1 XGB, ETC 97.35 92.66 88.39 92.99 0.88 0.02 0.12 0.98 1 

2 
XGB, 

Bagging 
96.78 92.31 88.23 92.65 0.88 0.03 0.12 0.97 

2 

3 ETC, RF 97.32 91.36 86.1 91.86 0.86 0.02 0.14 0.98 4 

4 XGB, GB 96.19 91.99 88.15 92.33 0.88 0.03 0.12 0.97 3 

5 XGB, RF 92.98 89.27 85.86 89.69 0.86 0.06 0.14 0.94 5 

6 GB, RF 96.01 91.48 87.35 91.86 0.87 0.04 0.13 0.96 4 

 

The analysis of the estimator voting combination 

reveals that the combination of XGB and ETC 

exhibits the most favourable performance, achieving 

the greatest accuracy score of 92.99%. The 

combination of (XGB, Bagging) holds the second 

position, followed by (XGB, GB) in third place. 

Meanwhile, (ETC, RF) and (GB, RF) are tied for 

fourth place, while the combination of (XGB, RF) 

occupies the last spot. Based on the evaluation 

results, it can be concluded that the combination of 

XGB and ETC exhibits the highest performance 

among all the estimator voting combinations. This 

combination is ranked first and is recommended to be 

chosen as the final model. Moreover, the efficacy of 

the proposed model in detecting anomalies is 

evaluated by assessing its performance against 

different individual classifiers. This evaluation is 

conducted utilising eight key metrics for assessment, 

namely precision, recall, f1-score, accuracy, true 

positive rate (TPR), false positive rate (FPR), FN rate 

(FNR), and true negative rate (TNR). These metrics 

are presented in Table 13. 

 

Table 13 Comparative analysis of ensemble model performance with individual classifiers 

S. No. Approach Precision F1-Score Recall Accuracy TPR FPR FNR TNR 

1 RF 96.99 91.62 86.82 92.06 0.87 0.03 0.13 0.97 

2 
k-nearest neighbour 

algorithm (KNN) 
81.45 78.96 76.62 79.58 0.77 0.17 0.23 0.83 

3 DT 90.7 71.38 58.85 76.41 0.59 0.06 0.41 0.94 

4 LDA 61.58 70.82 83.32 65.67 0.83 0.52 0.17 0.48 

5 SGD 59.96 23.93 14.95 52.48 0.15 0.1 0.85 0.9 

6 Proposed Model 97.35 92.66 88.39 92.99 0.88 0.02 0.12 0.98 

 

The observation results indicate that the proposed 

model has demonstrated superior performance 

compared to the RF classifier. This conclusion is 

based on the evaluation of eight measurement 

metrics, where the proposed model achieved an 

accuracy value of 92.99%, surpassing the RF 

classifier's accuracy of 92.06%. These findings are 

visually represented in Figure 15, highlighting the 
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suggested model's position as the highest-performing 

model. Four classifiers, namely the KNN, decision 

tree (DT), linear discriminant analysis (LDA), and 

stochastic gradient descent (SGD) exhibited an 

accuracy value below 80%. The analytical findings 

demonstrate that the suggested model effectively 

achieves an optimal level of anomaly detection. 

The efficacy of the proposed model is further 

assessed by considering the rate of misclassification 

errors, as depicted in Figure 16. The analysis 

findings indicate that the suggested model has 

yielded the lowest FPR of 0.02 compared to 

alternative classifiers. In comparison to other 

classifiers, the proposed model demonstrates the 

lowest FNR value of 0.12. The misclassification error 

rate, namely the FPR and FNR, indicates the model's 

strength and ability to effectively detect anomalies. 

Hence, a lower misclassification error rate suggests 

that the created model is stronger and more optimal 

in its anomaly detection capabilities. 

 

 
Figure 15 Analysis of model performance based on metric measurement 

 

 
Figure 16 Misclassified error rate analyst (FPR, FNR) 

 

0

20

40

60

80

100

120

Precision F1-Score Recall Accuracy TPR FPR FNR TNR

V
a
lu

es
 

Performance measure 

RF

KNN

DT

LDA

SGD

Proposed Model

0.03 

0.17 

0.06 

0.52 

0.1 

0.02 

0.13 

0.23 

0.41 

0.17 

0.85 

0.12 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RF KNN DT LDA SGD Proposed

Model

V
a
lu

es
 

Classifier 

FPR

FNR



International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)                                                                                                             

1573          

 

4.3Comparison with existing works 

The efficacy of the suggested model is assessed by 

conducting a comparative analysis of the study's 

findings with those of prior studies utilising the most 

relevant features in the dataset, as depicted in Table 

14. The present comparative analysis reveals that the 

proposed model has achieved an accuracy rate of 

92.99%, exhibiting a notable improvement of 3.32% 

compared to the 89.67% reported in the prior study. 

Furthermore, the suggested model exhibits the 

highest recall value, achieving a rate of 92.66%, 

surpassing the 81.48% achieved by the prior model. 

However, a marginal decline was observed in the 

proposed model, achieving an accuracy of 0.09% and 

an F1-score of 0.35% compared to the preceding 

investigation. Nevertheless, in a comprehensive 

analysis, the proposed model demonstrated superior 

performance compared to the prior work, utilising the 

most relevant features in the dataset and 

demonstrating the potential for enhanced anomaly 

detection capabilities. 

 

Table 14 Comparative analysis of the performance of the proposed model with previous work 
References Feature Reduction Approach Algorithm Dataset  Precision Recall F1-Score Accuracy 

[38] 
Feature Importance XGB Ensemble Ponzi 

(1904) 

97.44% 81.48% 88.74% 89.67% 

Proposed 

Model 

Basic features reduction and relevance 

features using the SULOV Method 

Ensemble Ponzi 

(1904) 

97.35% 92.66% 88.39% 92.99% 

 

4.4Comparison with the boruta method 

The competitiveness aspect of the proposed study 

was tested using the Boruta feature selection 

technique. The Boruta technique was introduced by 

two researchers from the University of Warsaw 

(Witold and Miron) based on RF [62]. Therefore, an 

experiment was conducted by replacing the SULOV 

technique with Boruta, as displayed in Figure 17. 

 

 
Figure 17 Relevance features selection with Boruta 

 

The experimental results suggest that the Boruta 

technique used together with the proposed model 

produces an accuracy value of 92.89%, which is 

slightly lower compared to the 92.99% produced by 

the SULOV technique (see Table 15). The number of 

relevant features produced by Boruta is much higher 

(175 features) compared to SULOV (44 features). 

The size of 175 features generated by Boruta has 

caused the classification time (training time) to take a 

long time (21.16 ms) compared to SULOV (3.87 ms). 

This scenario demonstrates that the SULOV 

technique produces minimal and optimal features 

more and requires a shorter classification time than 

the Boruta technique. The result is a positive impact 

from the point of view of blockchain network 

anomaly detection performance through contract 

source code analysis. 

 

Table 15 Comparative analysis of the performance of the proposed model with Boruta Method 
Feature reduction approach Algorith

m 

Relevanc

e 

features 

Total 

features 

reductio

n 

Precisio

n 

Recall F1-

Score 

Accurac

y 

Trainin

g Time 

(ms) 

Testin

g 

Time 

(ms) 

Proposed model with Boruta Method Ensemble 175 26 97.04% 88.47 92.56
% 

92.89% 21.16 0.15 

Proposed model with SULOV 

Method 

Ensembl

e 

44 157 97.35% 92.66

% 

88.39

% 

92.99% 3.87 0.26 
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5. Discussion  
This analysis utilises a dataset generated by [38], 

comprising 1904 account contracts categorised as 

either ponzi (305) or non-ponzi (1,599). Most prior 

research endeavours continue to encounter the 

obstacle of ascertaining the most pertinent attributes 

for constructing anomaly detection models. The 

careful selection of appropriate characteristics 

significantly impacts the overall performance of the 

subsequent model that is to be constructed. In 

addition, the analysis of the contract source code now 

only examines specific aspects in isolation rather than 

considering a combination of features. However, it is 

important to note that the contract source code 

consists of three distinct components, namely 

opcode, ABI code, and contact transaction, all of 

which possess the potential for analysis. Furthermore, 

this work is centred on examining three source code 

components as hybrid ensemble characteristics to 

detect anomalies in smart contracts. The source code 

exhibits semantic and text-based formatting. 

Consequently, the procedure of vectorisation is 

employed to convert it into a numerical dataset, 

which can then be utilised for training the ML model. 

The resultant data set obtained through the process of 

feature vectorisation is merged to construct a hybrid 

ensemble data set including three distinct 

combinations of contract source code feature 

components. 

 

Hence, the primary objective of this study is to 

ascertain the optimal collection of features that 

should be recovered from a vast dataset comprising 

over 10,000 characteristics subsequent to 

amalgamating the three constituent elements of the 

source code. The attainment of this objective is 

accomplished by employing fundamental strategies 

for reducing features, such as constant-quasi and 

variance, and generating the most pertinent sets of 

features using the MRMR-based SULOV approach. 

The SULOV technique comprises two sequential 

stages. The initial stage involves identifying and 

eliminating highly correlated features, resulting in a 

refined set of uncorrelated features. Moreover, the 

subsequent stage employs the XGB Feature 

Importance method to generate a final set of relevant 

features, prioritised or ranked according to 

importance. The research methodology effectively 

decreases the number of features from 17,346 (all 

features) to the 44 most significant features. The 

utilisation of pertinent characteristics has a 

discernible effect on enhancing performance 

compared to performance achieved by employing the 

complete collection of features. 

 

The subsequent step involves constructing an 

ensemble model utilising soft voting, wherein input 

parameters (pertinent feature sets) are employed to 

train the model. This study employs a selection 

technique that involves six combinations of two 

classifiers functioning as voting estimators. Note that 

the final model is determined by selecting the 

combination with the highest-ranking order, which is 

determined based on the accuracy value. The model 

under consideration exhibited notable achievement in 

achieving the best accuracy value (92.99%) 

compared to a range of separate classifiers. In 

addition, the proposed model exhibited superior 

performance compared to the study [38], achieving 

an accuracy rate of 89.67% while utilising the 

identical dataset. The investigation of error 

misclassification rates, namely the FPR and FNR, 

indicates a comparatively low value compared to 

individual classifiers' performance. In general, the 

anomaly detection model generated in this study 

successfully achieves an ideal detection level, aided 

by utilising the most relevant features for model 

performance optimisation. The study's performance 

was evaluated by substituting the SULOV approach 

with Boruta inside the framework provided in this 

study. The experimental findings indicate that the 

SULOV technique effectively generates 44 pertinent 

characteristics while exhibiting superior accuracy 

performance compared to the Boruta technique, 

which yields 175 features. 

 

Hence, in order to apply the hybrid feature technique 

for detecting abnormalities in the blockchain network 

through the analysis of contract source code 

(including opcode, ABI code, and transaction), it is 

imperative to have access to a comprehensive 

labelled data source. This is essential for developing 

an effective detection model. In essence, source code 

and ABI code are distinct formats derived from a 

common origin. The source code encompasses 

several elements, such as a structured format, 

semantic meaning, programme logic, operands, 

conditional expressions, and remark tags, among 

others. Nevertheless, utilizing this source code for 

anomaly analysis proves inefficient due to its lack of 

coherent and comprehensible content, rendering it 

devoid of any discernible significance for human 

comprehension. The ABI code, similar to the API, is 

comprised of programme code that is designed to be 

easily comprehensible and legible to humans. 

Consequently, the ABI code is better suited for doing 

anomaly analysis in comparison to the source code. 
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However, a notable limitation of our study is the 

difficulty in obtaining raw data sets of ABI codes 

from the Etherscan blockchain explorer using the 

API. This phenomenon arises due to the Ethereum 

architecture's utilisation of the EVM for processing 

the compiled source code of the contract, as well as 

its acceptance of unpublished source code sourced 

from the Ethereum network. Consequently, the 

proportion of smart contracts deployed on the 

Ethereum network and providing source code is quite 

small. Nevertheless, the accessibility of the published 

source code on Ethereum is not immediate, as it 

necessitates users to undertake a verification process 

prior to its appearance on the network. The difficulty 

in acquiring the raw data set ABI code has had 

repercussions on the thoroughness of preparing other 

data sets, such as opcodes and transactions. This is 

due to their reliance on the same contract address, 

which introduces the potential for an uneven 

distribution of data sets. The utilisation of a limited 

dataset sample is prone to yield a model that exhibits 

elevated performance or overfitting. However, it is 

important to note that this model may not be ideal in 

actuality. The deployment of this model inside a real-

world implementation ecosystem may have 

implications for the accuracy and effectiveness of 

anomaly detection capabilities. Nevertheless, several 

research studies have employed solidity decompiler 

tools, such as pyevmasm [53] and evmdis, to 

undertake the reverse engineering of opcodes into 

source code. However, it is important to note that 

these endeavours are not without their limitations, as 

there exists a potential danger of failure during the 

conversion process. This failure may occur when the 

resulting source code format does not adhere to the 

original standard. Therefore, it is important to 

conduct comprehensive research or utilise highly 

reliable techniques in order to effectively convert the 

opcode format to the source code with greater 

accuracy than the original source code. 

 

The limitations of the study are also related to the 

architecture of Ethereum, which is divided into two 

chains (on-chain and off-chain). The term "on-chain 

data" pertains to data that is produced within the 

blockchain network itself. This encompasses many 

elements, such as accounts, transactions, and 

contracts, including those according to the ERC-20 

and ECR-721 standards. Off-chain data pertains to 

the transmission of data originating from external 

sources, which is then routed through the API 

channel to the smart contract within the blockchain 

network. This encompasses a wide range of data 

types, including but not limited to meteorological 

data, supply chain data, financial data, and any other 

data accessible through an API. In the practical 

implementation of DApp, a hybrid approach is often 

employed, including both off-chain and on-chain 

operations.Hence, the primary objective of this 

research is to concentrate on the identification of 

anomalies exclusively within on-chain data, with a 

specific emphasis on leveraging contract data 

analysis techniques. One of the data sets utilised in 

anomaly analysis of the contract source code 

comprises account transactions associated with the 

contract address. Nevertheless, the study has certain 

drawbacks as it primarily concentrates on the 

utilisation of external transaction data sets, 

specifically regular transactions, while neglecting to 

incorporate internal transaction data sets. The ledger 

on-chain captures external transaction data, mostly 

involving EOA associated with hacker groups who 

exploit smart contract manipulation. Internal 

transactions are initiated when a corresponding entry 

is made in the external transaction ledger, as viewed 

from an operational perspective. Nevertheless, the 

ledger does not document internal transactions that 

occur off-chain and impact the Ether balance. 

Consequently, investigating anomalies using the 

internal transaction dataset focuses on examining 

patterns of money transfers, balances, transactions, 

timestamps, and amounts. Therefore, for a more 

comprehensive examination of blockchain anomaly 

detection, it is imperative to consider both types of 

transactions in the investigation of this proposal. 

Nevertheless, it is essential to acknowledge that 

abnormalities or incursions can also manifest beyond 

the confines of the blockchain network, commonly 

referred to as off-chain occurrences. To enhance the 

comprehensiveness of this study, it would be 

advantageous to incorporate off-chain data sets. 

 

A complete list of abbreviations is summarised in 

Appendix I. 

 

6.Conclusion and future work 
Smart contracts play a vital role in the development 

of DApp on blockchain networks. The emergence of 

blockchain 3.0 has sparked a transformative shift in 

the realm of DApp, which emerged subsequent to the 

advent of smart contracts during the era of 

blockchain 2.0. The utilisation of blockchain 

technology has led to the transformation of Bitcoin 

transfer transactions into DApp, which offers 

enhanced security and reliability as an application 

platform. Nevertheless, smart contracts have emerged 

as a breeding ground for hackers involved in 

deceptive practices, including but not limited to ponzi 
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scams, honeypots, HYIP, phishing, and similar illicit 

activities. The impact is experienced by individuals 

or investors who have incurred substantial financial 

losses due to deceptive practices in bitcoin 

investment endeavours. Hence, implementing a 

robust fraud detection system that facilitates the 

timely identification of irregularities is of utmost 

significance. Therefore, integrating science data 

adaption solutions, AI, ML, and blockchain 

technology can potentially enhance the efficiency of 

anomaly detection systems. Applying ML techniques 

to analyse extensive datasets derived from the 

Ethereum network poses significant challenges. 

Performing manual analysis by individually 

examining transactions on Etherscan.io is unfeasible 

due to the significant time, financial, and human 

resource investments it necessitates, as well as the 

elevated risk of erroneous data analysis. 

 

Therefore, this study has explored the method of 

analysing the three components of the contract source 

code to detect anomalies in the contract. The contract 

source code component combines opcode, ABI code, 

and contract transactions to produce a hybrid feature 

set. Combining these three source code feature 

components has produced a feature size exceeding 10 

thousand features after going through the feature 

vectorisation transformation process based on TF-

IDF and N-Gram methods to produce vector number 

values to facilitate ML model processing. Since the 

dimensions of the features are too large, this study 

has proposed two main processes, namely the basic 

feature reduction method (constant-quasi and 

variance) and the SULOV method, to finalise the 

most relevant set of features. As a result, the 44 most 

relevant feature sets are generated from the full 

feature set (17,346) without lowering the 

performance level of the model. This set of relevant 

features becomes the input to train an ensemble 

model based on ensemble soft voting. The strategy in 

this study is the selection of combinations of 

classifiers that act as voting estimators to be selected 

as the final model based on the highest ranking 

(highest accuracy value). Correspondingly, the model 

produced successfully obtained the highest accuracy 

value (92.99%) compared to various other classifiers, 

and its performance was better than the results of 

other studies using the same data set. The analysis of 

blockchain data presents a significant problem due to 

the dynamic nature of the blockchain environment, 

which frequently undergoes modifications to enhance 

security measures, upgrade software versions, and 

other similar objectives. Consequently, modifying 

features inside the blockchain network leads to 

revising existing ML models, as the metadata set or 

features have undergone changes by adding or 

removing features. In addition, the hybrid technique, 

which involves integrating multiple source code 

feature components, creates an extensive feature set. 

Hence, this phenomenon underscores the necessity 

for advanced processing devices, including high-

capacity RAM, storage, and CPUs. 

 

Hence, one of the prospective areas of research in the 

future involves exploring alternative NLP techniques 

(FastText, Word2Vec, uni-gram, bi-gram, doc2vec, 

to name a few), apart from TF-IDF and N-Gram, for 

text-based processing in order to convert source code 

based on semantic code (text-based). A necessity 

arises to conduct a comparative examination of 

various strategies due to the fact that varying 

approaches yield disparate outcomes. Therefore, the 

optimal method choice will enhance the efficacy of 

the anomaly detection model by scrutinising the 

source code of smart contracts on Ethereum.  
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Appendix I 
S. No. Abbreviations Descriptions 

1 3D Three Dimensions 

2 ABI code Application Binary Interface Code 

3 AFL American Fuzzy Lop 

4 AI Artificial Intelligence 

5 
Al-SPSD 

Anti-Leakage Smart Ponzi Scheme 

Detection 

6 API Application Programming Interface 

7 AUC Area under the ROC Curve 

8 BiGRU Bidirectional Gated Recurrent Unit 

9 BiLSTM Bidirectional LSTM 

10 
CBGRU 

Convolutional-Based Bidirectional Gated 

Recurrent Unit 

11 CNN Convolutional Neural Network 

12 CPU Central Processing Unit 

13 DAO Decentralised Autonomous Organisation 

14 DApp Decentralised Application 

15 DASP Decentralized Application Security Project 

16 DeFi Decentralised Finance 

17 DL Deep Learning 

18 DT Decision Tree 

19 EOA Externally Owned Accounts 

20 ERC Ethereum Request for Comment 

21 ETC Extra-Tree Classifier 

22 ETH Ether 

23 EVM Ethereum Virtual Machine 

24 FN False Negative 

25 FNR False Negative Rate 

26 FP False Positive 

27 FPR False Positive Rate 

28 GB Gradient Boosting Classifier 

29 GBDT Gradient Boosting Method 

30 GRU Gated Recurrent Unit 

31 HYIP High-Yield Investment Programmes 

32 IoT Internet of Thing 

33 JSON JavaScript Object Notation 

34 KNN K-Nearest Neighbours Algorithm 

35 LDA Linear Discriminant Analysis 

36 LightGBM Light Gradient-Boosting Machine 

37 LSTM Long Short-Term Memory 

38 MI Mutual Information 

39 ML Machine Learning 

40 
MRMR 

Minimum Redundancy Maximum 

Relevance 

41 MS Milliseconds 

42 MulCas Multi-view Cascade Ensemble model 

43 MySQL My's Structured Query Language (MySQL) 

44 NFT Non-Fungible Token 

45 NLP Natural Language Processing 

46 Opcode Operation Code 

47 
PSD-OL 

Ponzi Schemes Detection Approach Based 

On Oversampling-Based 

48 RAM Random Access Memory 

49 RF Random Forest 

50 
SadPonzi 

Semantic-Aware Detection Approach for 

Ponzi 

51 SGD Stochastic Gradient Descent 

52 
SMOTE 

Synthetic Minority Oversampling 

Technique 

53 SULOV Searching for Uncorrelated List of Variables 

54 
TF-IDF 

Term Frequency - Inverse Document 

Frequency 

55 TN True Negative 

56 TNR True Negative Rate 

57 TP True Positive 

58 TPR True Positive Rate 

59 XGB eXtreme Gradient Boosting 

 

 

 

 

 


