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1.Introduction 
Writing systems were developed in Mesopotamia in 

approximately 3200 BCE [1]. The writing system 

was initially based on symbols that express things, 

which are found in the Sumerian language. The 

writing used in the Assyrian and Babylonian 

languages appeared after symbolic writing went 

through many stages of development [2]. Compared 

to the hieroglyphic visual language, the cuneiform 

system is more verbal and expressive and uses 

distinct terminology to express specific meanings. 

Many cuneiform tablets have been discovered, 

amounting to more than 10,000 tablets located in the 

International Museum and the Iraqi Museum, which 

contains approximately 2,000 tablets [3, 4]. 

Cuneiform in Mesopotamia developed into the 

Assyrian cuneiform language. Writing became read 

from right to left, and symbols were engraved on 

stone or clay tablets. 

 

 
*Author for correspondence 

Around 600 letters in the cuneiform alphabet, each 

comprising one or more symbols. These wedge-

shaped symbols are arranged either horizontally, 

vertically, or diagonally. As seen in Figure 1, the 

letters and the symbols that go with them differ from 

one character to the next in terms of their number, 

placement, and orientation taken from the Museum of 

Iraq [5, 6]. 

 

 
Figure 1 Assyrian cuneiform writing samples 

Research Article 

Abstract  
Cuneiform writing offers insight into our distant past. Emerging in the latter part of the 4th millennium BCE, cuneiform 

script is among the earliest known writing systems, alongside Egyptian hieroglyphs. It is believed to have originated with 

the Sumerians in southern Mesopotamia. Used for nearly three thousand years, it was eventually replaced by more 

accessible alphabet-based systems. Cuneiform texts were inscribed on various materials, but clay tablets were preferred 

due to their availability. Over 500,000 cuneiform documents have been found, with many yet to be analyzed by 

philologists. This highlights the need for effective methods to study the extensive cuneiform writings, traditionally 

examined manually. Deciphering ancient tablets is time-consuming, requiring extensive expertise. Signs on Assyrian 

cuneiform tablets were aimed to be detected in this study using the YOLOv8 object detection pretraining model. About 900 

images of Assyrian tablets from the Iraq Museum were compiled and expanded to over 2000 through preprocessing and 

augmentation. This led to the identification of 11 new Assyrian references, with a mean average precision (mAP) at 50% 

of 82.7%, a precision of 71.3%, and a recall of 85.6% being achieved. The detection of cuneiform signs, as well as the 

selection and pronunciation of the modern Assyrian dialect, was facilitated by this research, aiding researchers in reading 

with a pre-trained model. 
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There are very few translations of the cuneiform 

language, so this problem must be solved using 

modern technological techniques. However, 

deciphering ancient clay tablets takes time, calling 

for years of expertise. Therefore, many researchers 

have worked in this field using different techniques 

and strategies. Computer vision is a commonly used 

and quickly developing technique for locating objects 

in images. The effective utilization of machine 

learning techniques for word spotting on cuneiform 

datasets is typically constrained by the need for more 

annotated training samples. Due to the substantial 

volume of data needed, manually generating it is a 

laborious operation for both two-dimensional (2D) 

and three-dimensional (3D) datasets [7, 8]. 

Identifying individual characters is not problematic in 

most writing systems; however, recognizing 

cuneiform signs poses challenges for many reasons. 

Whitespace between characters in many scripts 

greatly facilitates detection by enabling the 

separation of localization and classification into two 

sequential phases. Nevertheless, cuneiform signs are 

frequently engraved in close proximity to each other, 

resulting in the need for their placement and 

classification to be closely linked [9]. 

 

To assist Assyriologists in their study, our objective 

is to streamline the process of deciphering cuneiform 

scripts. Specifically, our objective is to develop a 

cuneiform sign detector that provides the location of 

a sign (included in a bounding box) and identifies its 

sign pronunciation. Our objective is not to supplant 

Assyriologists through the automated generation of 

transliterations or translations but rather to assist 

them by providing sign identification as an essential 

component of deciphering cuneiform script. 

 

Within the framework of cuneiform writing, methods 

that rely on lines encounter difficulties caused by the 

inclusion of an extra step for line recognition. This is 

because lines are frequently impaired and challenging 

to trace accurately due to gaps and misalignments. A 

word-level method is not suitable since cuneiform 

signs have several meanings and can be used in 

various unclear ways to construct a word. in this 

paper, our methodology employs a character-based 

strategy, which yields a sign detector that directly 

produces bounding boxes for each particular 

cuneiform sign and adding a label represents the 

pronunciation of the cuneiform sign by using 

pretraining model. Sign-level bounding boxes are 

essential for Assyriologists as they aid in 

understanding the detector's decision-making process 

[10]. 

The contribution of this paper is the creation of a 

dataset, which was achieved by collecting more than 

300 images of Neo-Assyrian tablets from the Iraqi 

Museum. The model was trained to perform detection 

using you only look once version 8 (YOLOv8). 

Satisfactory results were achieved, and the Neo-

Assyrian signs were well recognized. 

 

In this article, the literature on language detection and 

the study of written languages using the cuneiform 

writing system were reviewed in section 2. All 

methods used for preparation and training were 

discussed in section 3. Prediction results were 

presented in section 4. The results were discussed in 

section 5. The conclusion and future work were 

outlined in section 6. 

 

2.Literature review 
A mechanism has been devised to facilitate the daily 

responsibilities of Assyrian scholars. To achieve a 

transformation invariant function, one can calculate 

the volumes of many concentric spheres that intersect 

the volume below the surface of the 3D model at 

each location [12]. The feature vector represents the 

function due to its multiscale approach. The system, 

known as GigaMesh, can automatically extract 

characters by classifying these feature vectors using 

auto-correlation. It only requires one parameter, 

which is the approximated line width (wedge) 

measured in millimeters. The utilization of cutting-

edge 3D technology in conjunction with GigaMesh 

yields a resilient and expeditious workflow for a 

diverse array of cuneiform panels, particularly those 

that pose challenges for human processing. 

 

An innovative approach was presented to translating 

ancient writing by employing artificial neural 

network (ANN) technology [13]. The multi-layer 

perceptron (MLP) neural network has effectively 

converted images of Sumerian cuneiform signs into 

their corresponding English characters. Nevertheless, 

there is a limitation on the quantity of data that may 

be used for photographs. This proposed methodology 

has achieved an exceptional level of accuracy, 

reaching a benchmark of 100%. This method enables 

expedient and precise comprehension of Sumerian 

cuneiform symbols for explorers and researchers. A 

minimum error value of 0.0009999 was achieved. 

 

The fundamental constituents were identified, 

specifically the strokes, of cuneiform symbols 

depicted in photos of ancient cuneiform tablets [14]. 

The purpose is to facilitate efficient optical character 

recognition (OCR) using contemporary computer 
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vision methods. One notable distinction between our 

technique and previous methodologies is our 

utilization of 2D photographs rather than 3D models. 

This choice is motivated by the abundance of 

publicly accessible web archives containing a far 

more significant number of 2D images. Rusakov et 

al. [15] the software was developed with the purpose 

of enabling the highlighting of stroke characters 

through the use of convolutional image filtering 

techniques. These edge filters are frequently 

employed to reduce the background of desirable 

objects and emphasize their edges. The properties of 

Hough transformation [8], specifically lines and their 

orientation, were utilized. The neural network 

architectures YOLOv5 and Detecto were created to 

accurately identify and locate horizontal strokes in 

cuneiform tablet pictures that are partitioned into 

squares measuring 416×416 pixels. The classifier 

utilizing the Detecto algorithm achieves a 

commendable accuracy of 90.5% but with a 25% 

incidence of false positive predictions. Conversely, 

the classifier employing the YOLOv5 algorithm 

exhibits a lesser level of accuracy when applied to the 

cuneiform data. 

 

This study introduces an automated method for 

creating training samples through the utilization of 

generative adversarial networks for domain 

adaptation [15]. This method facilitates the transition 

between the visual representations of hand-drawn 

cuneiform autographs and 2D projections of 3D-

scanned cuneiform tablets without relying on any 

classification data. By following this approach, 

highly favourable outcomes are attained. The 

findings indicate that the utilization of picture 

generation enhances the average performance, 

increasing the mean average precision (mAP) from 

85.7% to 89.4%. An increase of 5.9% (from 78.9% to 

86.8%) might be attained in the scenario of spotting 

all tablets. This method is restricted to the 

transmission of images from one to another. 

 

A deep-learning-based sign detector was presented to 

accurately identify and categorize cuneiform signs in 

photographs of clay tablets [16]. A weakly 

supervised strategy was suggested, which involved 

aligning tablet images with their associated 

transliterations in order to identify the location of 

transliterated signs inside the tablet image. These 

localized signs were then used instead of annotations 

to retrain the sign detector. Deep learning 

necessitates substantial quantities of training data 

comprising bounding boxes encompassing cuneiform 

signs, which are not readily accessible and incur 

significant expenses when procuring the cuneiform 

script. In order to address this issue, we employ pre-

existing transliterations, which provide a detailed 

depiction of the tablet's content using the Latin script 

on a sign-by-sign basis. While the method 

demonstrates some effectiveness in weakly guided 

scenarios, the performance of the cuneiform sign 

detector can be significantly improved with a limited 

amount of annotations. We analyze this detector on a 

vast collection of clay tablets dating back to the Neo-

Assyrian period. 

 

However, in this study, an attribute representation is 

established using the Gottstein-System [17]. The 

objective is to break down signs based on wedge 

typology and facilitate a logical representation for 

classes of signs while also allowing these 

representations to be shared among physically 

comparable cuneiform signs. The purpose of adapting 

it was to describe wedge expressions and establish 

the query-by-expression (QbX) retrieval scenario. 

Our technique can represent questions for an open-set 

retrieval scenario, which is superior to searches based 

on sign identifications (IDs). In addition, the 

Gottstein-System utilizes phrases to indicate wedge 

crossings or position relations visually. By following 

this approach, favourable outcomes are attained. 

 

This paper presents novel algorithms for achieving 

consistent results in the recognition of cuneiform 

symbols [18]. The algorithms focus on addressing 

issues such as problem spots and writing lines by 

utilizing statistical skewness measures, image 

morphology, and distance transform concepts. 

Additionally, the algorithms involve selecting an 

appropriate binarization method and removing 

writing lines and spots. This study discusses the 

limitations of iterative approaches when the colour 

histogram is in the dark interval. It also explores the 

selection of the thresholding value between the 

Niblack and Sauvola methods based on the Skewness 

measure.  The issue associated with this proposed 

algorithm pertains to the chosen threshold value. The 

less mean square error (MSE) that was reached is 

12.62 for 110.89 cuneiform symbols' length. 

 

Various methodologies have been documented for 

the identification and detection of cuneiform symbols 

on both 2D and 3D depictions. In 2012, Mara [19] 

presented a methodology for extracting 2D vector 

illustrations from 3D cuneiform images. Building 

upon Howe's part-structured inkball models [20], 

Bogacz et al. [21] analyzed these spline graphs from 

[19] in order to align them with cuneiform signs. 
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They used a similarity metric that relied on graph 

representations. Additionally, in their study [22], the 

authors showcased the utilization of spline graphs as 

structural attributes for pattern matching. Massa et al. 

[23] pursued a comparable objective and elucidated a 

technique for extracting graph representations from 

2D cuneiform paintings. The authors introduced a 

method in [22] that utilizes part-structured models to 

identify cuneiform signs by segmentation. In addition 

to the graph-based feature representations, Rothacker 

et al. [24] introduced a technique that utilizes a bag-

of-features (BoF) approach relying on SIFT-

Descriptors. In this case, the segmentation-free 

identification of cuneiform signs is achieved by 

incorporating hidden markov models (HMMs) into a 

patch-based (sliding window) method. 

 

Rath and Manmatha [25] introduced a popular 

historical document word detection approach. They 

used a word segmentation of document pictures. 

Encoded word pictures included projection profiles 

and ink backdrop transitions. Dynamic time warping 

calculated feature representation similarity. Recent 

breakthroughs in computer vision influenced word-

spotting algorithms. These methods usually adapt 

automatically to the issue domain.  

 

Rusiñol et al. [26] employed BoF representations for 

segmentation-free word detection. BoF describes 

local document image areas as orderless feature 

collections. This method has two key benefits. 

Unsupervised BoF estimation from sample data. 

Thus, designing features requires no manual work. 

This is useful since historical document collections 

vary in script appearance. Since no script spatial 

placement assumptions are needed, BoF 

representations can be used segmentation-free. This 

is very useful for historical document analysis. Dense 

writing, inhomogeneous spacings, and document 

degenerations make word-level heuristic 

segmentation difficult. 

 

The polygon approximation method was 

demonstrated as an effective technique for extracting 

features [27]. It has been compared to the elliptic 

Fourier descriptor method in recognition tasks and 

has shown high accuracy results. This was achieved 

by using a support vector machine classifier with 

multiple classes and relying on its discriminative 

functions. The application of this study involves the 

utilisation of two Datasets. The initial Dataset 

comprises 320 photographs of cuneiform sign 

patterns, which are used to assess the most effective 

method for feature extraction. The second dataset 

comprises 240 images depicting cuneiform letters, 

which are used to assess the performance of the 

recognition system. The training dataset for the 

agents consists of four 2D triangular patterns. 

 

This research examines the process of automatically 

transcribing phonological information from 

transliterated corpora [28]. The phonological 

transcription of Akkadian offers a linguistically 

attractive means of representing the language. This 

transcription is standardized based on the 

grammatical characteristics of a certain dialect and 

clearly displays the Akkadian equivalents for 

Sumerian logograms. Due to the absence of inflection 

markers for logograms in cuneiform language, the 

inflected form must be deduced from the context of 

the phrase. This is the initially recorded endeavour to 

transcribe Akkadian automatically.  By employing a 

context-aware neural network model, it is possible to 

achieve near-human performance in automatically 

transcribing syllabic tokens with a recall rate of 96% 

at 3. However, transcribing logograms proves to be 

more complex, with a recall rate of 82% at 3. 

 

Allusion was made to a cohort of studies that 

employed an identical methodology. Additionally, an 

alternative iteration of YOLO, along with various 

other techniques like image processing and computer 

vision, were employed to successfully extract 

cuneiform signs, identify them, translate them into 

different languages, and transcribe their 

pronunciation. The ideas that have been developed 

aim to streamline the process of reading and 

translating cuneiform symbols, with the goal of 

assisting both scholars and enthusiasts. However, the 

current level of research still needs to be substantial 

enough to realize our study objectives fully. 

 

3.Methods 
3.1Methodology of Yolov8  

Object detection is currently regarded as one of the 

most challenging and popular areas in computer 

vision [29, 30]. There are two types of object 

detectors: two-stage and single-stage [31, 32]. Single-

stage detectors aim to identify objects in one step by 

targeting all spatial region proposal changes with a 

more accessible architecture. In contrast, two-stage 

detectors focus on a selected region proposals 

approach through a more advanced design. 

Additionally, the introduction of YOLO has 

significantly increased detection accuracy, often 

surpassing that of two-stage detectors [33, 34]. 
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In its modified form, the most recent YOLO model, 

known as YOLOv8, can perform tasks like object 

detection, image categorization, and instance 

segmentation. Ultralytics, the creator of the 

significant and industry-defining YOLOv5 model, 

also developed YOLOv8. YOLOv8 features many 

architectural modifications and enhancements over 

YOLOv5, improving the developer experience. The 

performance of the object detector is evaluated using 

inference time and detection accuracy. This study 

aims to examine various metrics to assess the 

effectiveness of different YOLO versions and model 

sizes on the common objects in context (COCO) 

dataset. YOLOv8 has various sub-versions that differ 

in speed and the number of parameters. The 

YOLOv8n (nano) version has fewer parameters and 

is slower than other versions, such as small (s), 

medium (m), large (l), and x-large (x). 

 

 

After replacing the Cross-Stage Partial layer 

(CSPLayer) with the C2f module, YOLOv8 now has 

a backbone comparable to YOLOv5. The C2f 

module, standing for cross-stage partial bottleneck 

with two convolutions, enhances identification 

accuracy by merging contextual and high-level 

features. YOLOv8 introduces an anchor-free model 

with a decoupled head that processes objectness, 

classification, and regression tasks independently, 

allowing each branch to focus on its specific task and 

thereby improving model accuracy. The output layer 

of YOLOv8 activates the objectness score using the 

sigmoid function, which indicates the likelihood of 

the bounding box containing an object. It also 

employs the softmax function to represent object 

probabilities across different classes. For calculating 

loss, YOLOv8 utilizes binary cross-entropy for 

classification and combines complete Intersection 

over Union (CIoU) and Distribution Focal Loss 

(DFL) for bounding box loss, significantly enhancing 

object detection, particularly for small objects. 

 

Additionally, the semantic segmentation model 

YOLOv8-Seg is available. This model, unlike the 

traditional YOLO architecture, employs a 

CSPDarknet53 feature extractor and the C2f module 

as its backbone, followed by two segmentation heads 

that predict semantic segmentation masks for the 

input images. Like YOLOv8, it includes five 

detection modules and a prediction layer, and despite 

being fast and efficient, YOLOv8-Seg has achieved 

top scores in object detection and semantic 

segmentation benchmarks. 

 

YOLOv8 can be executed via the command line 

interface (CLI) or installed as a Python package 

manager (PIP) package. It also offers numerous 

integrations for labeling, training, and deploying, 

making it a versatile tool for various object detection 

and image processing tasks. 

 

When tested on the Microsoft common objects in 

context (MS COCO) dataset test-dev 2017, 

YOLOv8x achieved an average precision (AP) of 

53.9% using a picture size of 640 pixels. This 

represents an improvement over YOLOv5, which 

achieved an AP of 50.7% with the same input size. 

Additionally, YOLOv8x demonstrated a speed of 280 

frames per second (FPS) on an NVIDIA A100 with 

TensorRT. 

 

3.2The architecture of the proposed model 

Figure 2 shows the intelligent proposed model using 

the YOLOv8x pretraining object detection model. 

The user provides data in labeled images, and pre-

processing is done to resize the images to 640×640 

px, Auto-orient, Auto-adjust contrast, and Tile. Also, 

provide augmentation to images (Rotation, 

Brightness, Mosaic, and Bounding Box Rotation).  

Data is delivered to the Yolov8x object detection 

algorithm for training and validation after pre-

processing. 

  

The accuracy, precision, and recall of the output from 

the yolov8 of different versions of split, pre-

processing, and augmented algorithms are compared.  

The two primary results from Yolo are the bounding 

box and class prediction. A third output has been 

added: to pronounce the name of the signs (category 

name) discovered and identified in the image. Every 

image's predicted class for the objects found will be a 

string, such as "NU." The Google text-to-speech 

(gTTS) [44] package can then be used to submit the 

written description to the Google written-to-speech 

application programming interface (API). Figure 3 

shows the flowchart for the entire proposed model 

architecture. 
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Figure 2 The proposed model block diagram 
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Figure 3 The proposed model flowchart 

 

3.3Challenges of cuneiform sign detection 

When working with Yolo, one of the biggest 

challenges faced is collecting data, which is not 

available and ready online. 

 White space between characters in scripts greatly 

facilitates detection by enabling the separation of 

localization and classification into two sequential 

processes. Nevertheless, cuneiform symbols are 

frequently engraved without gaps between 

adjacent symbols, resulting in their localization 

and classification being interconnected [45]. 

 The challenge is heightened by the fact that there 

are over 900 distinct sign code classes with similar 

characteristics. This is because most cuneiform 

signs are made up of a small number of wedge 

shapes (lying, standing, and diagonal) that are 

arranged in different ways. As a result, many sign 

code classes have a high degree of similarity to 

each other. Conversely, cuneiform signs belonging 

to the same sign code class can exhibit significant 

differences in their visual representation when 

written by various scribes (considerable intra-class 

variance)[28]. 

 Throughout thousands of years, numerous tablets 

have been destroyed, which further complicates 

the discovery of signs. The damage manifests in 

diverse forms, including surface damage, cracks, 

holes, and missing components. Frequently, tablets 

necessitate reassembly from fragmented 

components[46] 

 Cuneiform script is composed of 3D wedges 

inscribed onto the surface of 3D clay tablets. Due 

to our reliance on 2D images of clay tablets, the 
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recognition of individual signals is affected by 

lighting and visual distortions[47]. 

 Writing on soft clay tablets results in the distortion 

of previously written signs due to the influence of 

nearby signs. The phenomenon of plastic 

deformation is exclusive to the cuneiform script 

and adds to the challenge of differentiating 

between signs, as wedges may become 

indiscernible during the writing process[45]. 

 Conventional methods in computer vision and 

machine learning for object detection necessitate 

substantial quantities of supervised data. 

Regarding the identification of signs, this entails 

the annotation of ten thousand bounding boxes 

around cuneiform signs. Due to the implicit nature 

of sign identification performed by Assyriologists, 

there is a lack of available bounding box 

annotations[13]. 

 

3.4Dataset creation 
3.4.1Dataset collection 

 

Many manually annotated input photos were required 

to train high-quality models. For accurate detection 

of each class, approximately 1500 images were 

recommended [48]. A collection of pictures of 

Assyrian tablets located in the Iraqi Museum was 

compiled. Pictures were taken of 14 Assyrian tablets, 

inscribed on stone. The challenges faced during data 

collection included: firstly, the need for clearer 

cuneiform signs due to the age and damage of the 

tablets. Secondly, the small number of tablets found, 

prompting a search for additional pictures in the Iraqi 

Museum to improve the dataset. Thirdly, the presence 

of very small and overlapping cuneiform tablets 

made labeling difficult. To obtain a larger amount of 

labeled data, the dataset size was either expanded or 

data augmentation techniques were employed to 

enhance the dataset's volume, thereby increasing the 

model's capacity for accurate identification. Figure 4 

displayed some pictures of the Assyrian tablets. 

 

 

 

 
Figure 4 Some pictures of Neo-Assyrian tablets 

 
3.4.2Dataset labelling 

After reviewing the gathered images, the most 

prevalent indications in the sentences were selected. 

The form and pronunciation of these 11 Neo-

Assyrian signs, which were found to be more 

common than others, are displayed in Table 1. When 

describing signs, the sign name is written as a label. 

To facilitate reading, the signs are represented in 

well-known English letters or other languages. For 

instance, the sign ( ) is pronounced similarly to A, 

and the remaining signs ( ) are pronounced similarly 

to MAN. 

 

Table 1 The Neo-assyrian signs with signs name 

S. No. Neo-assyrian sign Sign name 

1  AN 

2   ̂A 

3  MAN 

4  A 

5 
 

Di 
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6  E 

7  EN 

8 
 

NA 

9  NU 

10  BI 

11  RI 

 
3.4.3Dataset pre-processing and augmentation 

The YOLOv8 complicated solution, built by 

Ultralytics, can be accessed on the GitHub platform. 

[49]. The system comprises a proficiently trained 

neural network with accompanying scripts for 

training and detecting. The requirement for square 

input photographs accompanied by labels in .txt 

format is essential. The dataset was annotated, pre-

processed, and augmented by using the Roboflow 

platform. The dataset consists of 882 labeled images 

with 5114 annotations. We used the resize image 

(640×640 pixel), auto-orient, auto-adjust constraint, 

and tile (2×2) preprocessing. Then, rotation (-15° - 

+15°), brightness (-25% - +25 %), Mosaic, and 

bounding box rotation (-15° - +15°) augmentation.  
 
For preprocessing, the auto-orient feature adjusts the 

pixel direction in the image, leading to altered 

orientations of objects. This is beneficial for 

detecting targets in rotated images. Implementing 

automatic constraints enhances the neural network's 

ability to understand object nature. Edge detection is 

a crucial principle in computer vision, applicable to 

classification, object identification, or segmentation, 

as it enhances the clarity of edges by amplifying 

contrasts between neighboring pixels. The Tile(2×2) 

function splits images into smaller sections, using a 2 

rows and 2 columns split to improve accuracy on 

small objects. Resizing images to 640×640 pixels 

adapt them to the accepted input size for YOLOv8. 

 

Data augmentation enhances the semantic variety of a 

dataset. It often involves applying random rotations, 

altering the object's position within the frame, and is 

crucial for accurately updating bounding boxes in 

object detection. Adjusting brightness introduces 

variations in image luminosity, aiding model 

adaptability to different lighting conditions and 

camera setups. Mosaics, created by merging four 

source photos, help preserve object scale, combine 

classes for comprehensive training, and vary the 

number of objects in the images, enhancing the 

model's performance in complex scenarios. 

 

Bounding box augmentation modifies the content 

within source image bounding boxes, creating new 

training data more aligned with the problem's specific 

conditions. Figure 5 displays images with their 

corresponding labels post-training and the results 

post-validation, illustrating the appearance after 

preprocessing and augmentation. 
3.4.4Dataset splitting 

The dataset was split into different ratios (three 

versions (V) of splitting) of training, validation, and 

testing, as shown in Table 2. 

 

 

Train 

 

Validation 

 
Figure 5 The pictures with the labels that are trained on and validation results 

 

Different ratios were chosen for training and testing. 

Firstly, this is because the data set is unbalanced. The 

number of labels for each class is not equal, and there 

are differences in large numbers. This is only to 
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improve training and add more images to the few 

classes. We have a small number of images in 

relation to the number of classes because in order for 

the training to be highly accurate, each class must 

have at least 1500, and this is not available. The 

number of annotations for each class, A=1,289, 

SHA=843, NI=575, E=502, AN=496, MAN 438, 

NU=285, RI=267, EN=224, BI=118, and DI=77. 

 

Table 2 Dataset split 

Version No. Train –val-test # of all images Pre-processing Augmentation 

1 2388 - 224 – 116 2728 1- Auto-orient. 

2- Resize (640×640 pixel) 
3- Auto-adjust contrast. 

1- Rotation. 

2- Brightness. 

3- Mosaic. 

4- Bounding Box Rotation. 2 2247 - 87 - 46 2380 1- Tile. 

2- Auto-orient. 

3- Auto-adjust contrast. 
3 1854 – 176 - 88 2118 

 

4.Results 
4.1Training and evaluation 
4.1.1Dataset training 

YOLOv8 exclusively employs training scripts 

designed to shuffle the dataset. To export predicted 

photographs and labels as files, display them, and use 

them outside of prediction notebooks, modifying the 

script is necessary. The YOLOv8 architecture was 

trained on Google Collaboratory using the Compute 

Unified Device Architecture (CUDA) programming 

language for 100 and 50 epochs, respectively. 

Training occurred on a Tesla T4 Graphical 

Processing Unit (GPU) with 40 multiprocessors and a 

total RAM capacity of 15109 MB. The total time 

taken for training over 100 epochs ranged from 2 to 

3.5 hours, while for 50 epochs, the training duration 

was approximately 1.5 hours. 
4.1.2Evaluation 

The best outcome for version (V) two was achieved 

with 50 epochs, yielding a mAP at 50% (mAP50) of 

82.7%, a mAP from 50% to 90% (mAP50-90) of 

61.3%, a precision of 71.319%, and a recall of 

85.647%. The most favorable evaluation results after 

training are presented in Table 3. 

 

Table 3 The best evaluation results after training 
V Epochs mAP50 mAP50-

90 

Precision Recall 

1 100 63.6% 45.115% 75.62% 58.66% 

2 50 82.7% 61.2% 71.319% 85.647% 

3 100 76.5% 53.7% 71.74% 79.412% 

 

The confusion matrix is used to assess the results of a 

test. It is arranged with predicted classes on the y-

axis and actual classes on the x-axis. This matrix 

determines the model's accuracy by comparing the 

results obtained after training and testing [50]. For 

this purpose, platforms such as Google Collaboratory 

or Kaggle's open Python environments were utilized. 

The performance of each architectural design was 

evaluated using standardized metrics such as 

precision P (Equation 1), recall R (Equation 2), and 

F-measure F (Equation 3). 

  
  

       
    (1) 

    
  

       
    (2) 

           
     

     
   (3) 

 

Where: 

True positives (TP) refer to instances where strokes 

were correctly recognized. 

FP = false positives (predicted strokes that don't 

actually occur). 

FN = false negatives (accurate strokes weren't 

discovered). 

The AP metric is built on precision-recall metrics, 

handles several object categories, and uses 

intersection over union (IoU) to define a positive 

prediction. 

 

Several measures are not just crucial for YOLOv8 

but also have wide applicability across various object 

identification models. 

 IoU: is a metric that calculates the degree of 

overlap between a predicted bounding box and a 

ground truth bounding box. It has a crucial 

function in assessing the precision of object 

localization. 

 The AP: The metric calculates the integral of the 

precision-recall curve, yielding a singular number 

that summarises the precision and recall 

performance of the model. 

 mAP: is a metric that expands on the concept of 

AP by computing the average AP values across 

various object classes. This is advantageous in 

situations when multiple classes of objects need to 

be detected, as it allows for a thorough assessment 

of the model's effectiveness. 

 Precision and Recall: Precision measures the ratio 

of true positives to all positive predictions, 

evaluating the model's ability to minimize false 
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positives. Crucial when reducing the number of 

false detections is an objective. Conversely, Recall 

quantifies the ratio of correctly identified positive 

cases out of all the actual positive instances, 

assessing the model's capability to identify all 

occurrences of a specific class. 

 The F1-score is calculated as the harmonic mean 

of precision and recall, offering a well-balanced 

evaluation of a model's performance by 

considering both false positives and false 

negatives. 

 

mAP50 refers to the mAP, which is computed by 

evaluating the IoU at a threshold of 0.50. It quantifies 

the accuracy of the model by solely evaluating the 

detections that are deemed "easy." mAP50-95 refers 

to the average value of the mAP, which is computed 

by considering several IoU thresholds ranging from 

0.50 to 0.95. It provides a thorough perspective on 

the model's performance across various levels of 

detection difficulty. 

 

These measurements provide information about 

precision and recall at various IoU levels and for 

objects of varying sizes. The results of the second 

copy, which had the highest result, were indicated.  

 

 The F1-score curve illustrates the F1 score at 

different thresholds. An analysis of this curve can 

provide valuable information about the model's 

trade-off between incorrect positive predictions 

and incorrect negative predictions across various 

thresholds. Figure 6 shows the F1-score curve for 

V2. 

 

 
Figure 6 F1-score curve for V2 

 

An average of 80% is the typical result for all object 

detection. However, an unbalanced F1-score 

indicates a disparity between precision and recall. 

 

The precision curve demonstrates the precision 

values at various thresholds. Varying the threshold 

reveals how accuracy fluctuates along this curve. 

Figure 7 depicts the precision – confidence curve, 

with the average result being 1.00 at a threshold of 

1.000. As a crucial tool for visualizing classification 

problems, the precision-recall curve highlights the 

trade-offs between these two metrics at different 

thresholds, becoming particularly vital when dealing 

with unequal classes. 

 

Figure 8 presents the precision-recall curve for V2, 

where the average results at mAP50 for all classes 

reach 0.827. Figure 9 displays the recall curve for 

V2, showing a decrease in results as the threshold 

between the prediction and the ground truth 

increases. At a zero threshold, the average result for 

all classes is 0.92. 

 

Figure 10 displays the confusion matrix for three 

versions of the split dataset. The prediction error rate, 

including FP and FN, frequently occurs in signals 

with a limited number of annotations. For instance, 

the number of annotations for each tag includes DI at 

77 and the largest, tag A, at 1289. In the first version, 

BI had the highest percentage of incorrectly 

identified signals at 55%, with 45% identified 

correctly. In the second version, DI had the highest 

percentage of incorrectly identified signals at 75%, 

with correct identifications (true positives, TP) at 

25%. In the third version, BI again had the highest 

percentage of incorrect signals at 55%, with TPs at 

45%. Tag A recorded the highest percentage of 

correct identifications due to having the most 
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annotations, with TPs at 88%, 87%, and 88% for the 

respective versions. The FP and FN rates were 11%, 

13%, and 11%, respectively. 

 

YOLO object detection employs three loss functions 

as shown in Figure 11: box-loss (the regression value 

of the bounding box, MSE), obj-loss (the confidence 

of object losses), and cls-loss (the classification loss, 

cross-entropy). The validation box-loss, cls-loss, and 

df1-loss for the three versions were V1: 1.2078, 

1.3489, 1.633; V2: 0.97018, 0.79408, 1.2563; and 

V3: 1.1075, 0.89497, 1.1982, respectively.  

Modifications in hyperparameters or other factors can 

influence the model's performance, potentially 

increasing or decreasing the results.  

 

Different learning rates, batch sizes, and other 

hyperparameters are employed to find a better 

ensemble and enhance performance. Occasionally, 

increasing the number of training epochs may not 

provide sufficient time for the model to learn the 

dataset's features. It is crucial that dataset annotations 

are accurate and properly formatted, as incorrect or 

misclassified data can detrimentally affect 

performance. In this paper, the best performance was 

achieved by maintaining the default parameters. 

 

 
Figure 7 The precision - confidence curve for V2 

 

 
Figure 8 The precision-recall curve for V2 
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Figure 9 The recall-confidence curve for V2 

 

Several frequently adjusted hyperparameters in 

Ultralytics YOLO are: 

The learning rate is a parameter that controls the 

amount of the step taken at each iteration when 

approaching the minimum of the loss function. The 

batch size refers to the quantity of photos that are 

concurrently processed during a forward pass. An 

epoch refers to a single iteration where all the 

training instances are sent forward and backward 

through the model. Architecture details, such as the 

number of channels, levels, types of activation 

functions, etc. 
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Figure 10 Confusion Matrix for three versions (V) of the split dataset 

 

 
          Version 1 

 
Version 2 
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Version 3 

Figure 11 The Loss, mAP, precision, and recall results for three versions 

 

4.2Prediction results 

We see that the results are accurate whenever the 

image is high resolution and the signs are 

unmistakable. The accuracy begins to decline as the 

clarity of the image decreases, and the size of the 

signs becomes smaller. The image in Figure 12 

below is far away, and the signs are minor; after 

testing the V1, we see that not all signals detection 

but some of the signals are not detected. All results 

are excellent in the detection and labelling of the 

signals. The best result in version two is 

mAP50=82.7%.  

 

 
a. Version 1 Prediction 

 
b. Version 2 Prediction 
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c. Version 3 Prediction 

Figure 12 a) V1 b) V2 and c) V3 prediction results 

 

5.Discussion 
Other research initiatives focusing on similar topics, 

specifically the identification of items from 

photographs using comparable frameworks, have 

reported notable results. 

 

Ghosh et al. achieved a high accuracy rate of 96.46% 

in recognizing Bangladeshi signs using models 

developed on the MobileNet platform [51]. 

 

Hamplová et al. [14] attained a classification 

accuracy of 98.21% for 2000 Palmyrene letters per 

class by employing a custom convolutional neural 

network (CNN) architecture composed of 4 

Convolutional/Max Pooling blocks. This study's 

contribution included compiling a dataset from the 

Iraqi Museum. Unlike previous research where 

images were sourced from the British Museum 

website or other sites without providing a dataset for 

a specific cuneiform language or dialect, this effort 

aimed at both collection and development for later 

use. The development utilized the latest algorithm 

from YOLO, specifically its eighth version created in 

2023, which is regarded as one of the most accurate 

versions to date. 

 

Some of the study implications are as under: 
 The identification of the Assyrian signs was 

conducted with precision, achieving a mAP50 

score of 82%. The identification process 

confirmed the presence of the Assyrian signs, 

which are consistent with the previously displayed 

images. The limited number of plates at the 

museum hindered the generation of robust data 

sets, resulting in a low level of precision in the 

obtained results. Furthermore, we have obtained 

highly favourable outcomes by employing the 

advanced yolov8x algorithm, which will be further 

enhanced in future research. Precision is the 

measure of the model's ability to detect true 

instances accurately, and it effectively reduces 

erroneous detections by 71%. The recall rate 

achieved a significant 86%, which is crucial for 

assessing the model's ability to recognize genuine 

objects accurately. 

 These results are considered very good in terms of 

the number of images in the dataset and the 

explanatory signs for each Assyrian sign. The 

number of annotations for signs is unbalanced. 

Some signs are frequently repeated and have many 

annotations and other signs that are repeated 

infrequently and have few annotations. As for the 

number of images, it is also unbalanced, as 

mentioned previously. For each class, the 

minimum should be 1,500 images or more for the 

results to be accurate. 

 The findings suggest that close-up photos were 

used to determine the tags, and clear tags were 

found to be more precise compared to distant and 

small tags. Some results showed identifications 

that closely resembled the original marks, either in 

appearance or due to erosion that made them 

similar to the desired mark. 

 There are many limitations encountered, including 

unclear signs, damaged panels, some panels 

exposed to environmental conditions that led to 
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part of them being damaged, and the number of 

panels that are currently provided. There are many 

signs, up to 900 different categories of sign 

symbols with similar characteristics, making it 

difficult to distinguish them. Cuneiform writings 

often lack spaces between signs, and this also 

makes it difficult for us to identify the signs. 

 To undertake and advance such research, it is 

imperative to gather unambiguous, high-resolution 

datasets and an ample quantity of photographs. We 

highly suggest further enhancing the outcomes by 

experimenting with alternative methods to identify 

any indicators that could potentially enhance the 

results using this particular dataset. 

 Many studies have used other methods to identify 

signs, some of which use image processing by 

identifying the edges of signs. Remarkable 

outcomes were attained, and the symbols were 

recovered from ancient inscriptions. Other studies 

were conducted using other versions of YOLO and 

identifying the signs only (i.e., separating them 

from each other only) to facilitate reading the 

tablets. One of the studies was conducted using 

yolov5 achievable outcomes were attained, with a 

correct identification rate of 74%. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future work 
The YOLOv8 neural network architecture was 

designed to classify and locate strokes of Assyrian 

cuneiform signs in images of cuneiform tablets 

segmented into 640×640 pixels. The classifier based 

on YOLOv8x achieves an accuracy of 82.7%, a 

precision of 71.319%, and a recall of 85.647%. The 

success rate of YOLOv8x can be further increased by 

incorporating additional tagged images with a variety 

of characteristics, such as differing lighting, colors, 

and shadows, as well as by applying more advanced 

augmentation techniques. 

 

In the future, efforts will be made to enhance 

accuracy by utilizing various neural network 

topologies, including region-based convolutional 

neural networks (RCNN) with selective search, 

which often achieve higher detection rates. 

Additionally, tuning of neural network topologies, 

including RCNN, will be initiated to attain the 

highest accuracy and facilitate better comparisons 

with newly labeled data. 
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Appendix I 

S. No. Abbreviation Description 

1 2D Two-Dimensional 

2 3D Three-Dimensional 

3 ANN Artificial Neural Network 

4 API Application Programming 

Interface 

5 AP Average Precision 

6 BCE Before the common era 

7 BoF Bag-of-Features 

8 CIOU Complete Intersection Over 

Union 

9 CLI Command Line Interface 

10 CNN Convolutional Neural Network 

11 COCO Common Objects in Context 

12 CSP Cross Stage Partial 

13 CSPLayer Cross-Stage Partial Layer 

14 CUDA Compute Unified Device 

Architecture 

15 DFL Distribution Focal Loss 

16 FPS Frames Per Second 

17 GPU Graphical User Interface 

18 gTTS Google Text-to-Speech 

19 HMMs Hidden Markov Models 

20 IDs Sign Identifications 

21 IOU Intersection Over Union 

22 mAP Mean Average Precision 

23 MLP Multi-Layer Perceptron 

24 MSE Mean Square Error 

25 MS COCO Microsoft Common Objects in 

Context 

26 QbX Query-by-Expression 

27 OCR Optical Character Recognition 

28 PIP Package Manager for Python 

29 RCNN Region-Based Convolutional 

Neural Networks 

30 YOLO You Only Look Once 

31 YOLOV8 You Only Look Once Version 8 

  

 

 

 


