
International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2023.10102331

1604

Deciphering the past: enhancing Assyrian Cuneiform recognition with

YOLOv8 object detection

Elaf A. Saeed
1*

, Ammar D. Jasim
1
 and Munther A. Abdul Malik

2

Department of System Engineering, College of Information Engineering, AL-Nahrain University, Baghdad, Iraq
1

Department of History, College of Literature, Baghdad University, Baghdad, Iraq
2

Received: 28-September-2023; Revised: 20-December-2023; Accepted: 22-December-2023

©2023 Elaf A. Saeed et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.Introduction
Writing systems were developed in Mesopotamia in

approximately 3200 BCE [1]. The writing system

was initially based on symbols that express things,

which are found in the Sumerian language. The

writing used in the Assyrian and Babylonian

languages appeared after symbolic writing went

through many stages of development [2]. Compared

to the hieroglyphic visual language, the cuneiform

system is more verbal and expressive and uses

distinct terminology to express specific meanings.

Many cuneiform tablets have been discovered,

amounting to more than 10,000 tablets located in the

International Museum and the Iraqi Museum, which

contains approximately 2,000 tablets [3, 4].

Cuneiform in Mesopotamia developed into the

Assyrian cuneiform language. Writing became read

from right to left, and symbols were engraved on

stone or clay tablets.

*Author for correspondence

Around 600 letters in the cuneiform alphabet, each

comprising one or more symbols. These wedge-

shaped symbols are arranged either horizontally,

vertically, or diagonally. As seen in Figure 1, the

letters and the symbols that go with them differ from

one character to the next in terms of their number,

placement, and orientation taken from the Museum of

Iraq [5, 6].

Figure 1 Assyrian cuneiform writing samples

Research Article

Abstract
Cuneiform writing offers insight into our distant past. Emerging in the latter part of the 4th millennium BCE, cuneiform

script is among the earliest known writing systems, alongside Egyptian hieroglyphs. It is believed to have originated with

the Sumerians in southern Mesopotamia. Used for nearly three thousand years, it was eventually replaced by more

accessible alphabet-based systems. Cuneiform texts were inscribed on various materials, but clay tablets were preferred

due to their availability. Over 500,000 cuneiform documents have been found, with many yet to be analyzed by

philologists. This highlights the need for effective methods to study the extensive cuneiform writings, traditionally

examined manually. Deciphering ancient tablets is time-consuming, requiring extensive expertise. Signs on Assyrian

cuneiform tablets were aimed to be detected in this study using the YOLOv8 object detection pretraining model. About 900

images of Assyrian tablets from the Iraq Museum were compiled and expanded to over 2000 through preprocessing and

augmentation. This led to the identification of 11 new Assyrian references, with a mean average precision (mAP) at 50%

of 82.7%, a precision of 71.3%, and a recall of 85.6% being achieved. The detection of cuneiform signs, as well as the

selection and pronunciation of the modern Assyrian dialect, was facilitated by this research, aiding researchers in reading

with a pre-trained model.

Keywords
Cuneiform writing, YOLOv8, Assyrian tablets, Philological analysis, Ancient script decipherment.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1605

There are very few translations of the cuneiform

language, so this problem must be solved using

modern technological techniques. However,

deciphering ancient clay tablets takes time, calling

for years of expertise. Therefore, many researchers

have worked in this field using different techniques

and strategies. Computer vision is a commonly used

and quickly developing technique for locating objects

in images. The effective utilization of machine

learning techniques for word spotting on cuneiform

datasets is typically constrained by the need for more

annotated training samples. Due to the substantial

volume of data needed, manually generating it is a

laborious operation for both two-dimensional (2D)

and three-dimensional (3D) datasets [7, 8].

Identifying individual characters is not problematic in

most writing systems; however, recognizing

cuneiform signs poses challenges for many reasons.

Whitespace between characters in many scripts

greatly facilitates detection by enabling the

separation of localization and classification into two

sequential phases. Nevertheless, cuneiform signs are

frequently engraved in close proximity to each other,

resulting in the need for their placement and

classification to be closely linked [9].

To assist Assyriologists in their study, our objective

is to streamline the process of deciphering cuneiform

scripts. Specifically, our objective is to develop a

cuneiform sign detector that provides the location of

a sign (included in a bounding box) and identifies its

sign pronunciation. Our objective is not to supplant

Assyriologists through the automated generation of

transliterations or translations but rather to assist

them by providing sign identification as an essential

component of deciphering cuneiform script.

Within the framework of cuneiform writing, methods

that rely on lines encounter difficulties caused by the

inclusion of an extra step for line recognition. This is

because lines are frequently impaired and challenging

to trace accurately due to gaps and misalignments. A

word-level method is not suitable since cuneiform

signs have several meanings and can be used in

various unclear ways to construct a word. in this

paper, our methodology employs a character-based

strategy, which yields a sign detector that directly

produces bounding boxes for each particular

cuneiform sign and adding a label represents the

pronunciation of the cuneiform sign by using

pretraining model. Sign-level bounding boxes are

essential for Assyriologists as they aid in

understanding the detector's decision-making process

[10].

The contribution of this paper is the creation of a

dataset, which was achieved by collecting more than

300 images of Neo-Assyrian tablets from the Iraqi

Museum. The model was trained to perform detection

using you only look once version 8 (YOLOv8).

Satisfactory results were achieved, and the Neo-

Assyrian signs were well recognized.

In this article, the literature on language detection and

the study of written languages using the cuneiform

writing system were reviewed in section 2. All

methods used for preparation and training were

discussed in section 3. Prediction results were

presented in section 4. The results were discussed in

section 5. The conclusion and future work were

outlined in section 6.

2.Literature review
A mechanism has been devised to facilitate the daily

responsibilities of Assyrian scholars. To achieve a

transformation invariant function, one can calculate

the volumes of many concentric spheres that intersect

the volume below the surface of the 3D model at

each location [12]. The feature vector represents the

function due to its multiscale approach. The system,

known as GigaMesh, can automatically extract

characters by classifying these feature vectors using

auto-correlation. It only requires one parameter,

which is the approximated line width (wedge)

measured in millimeters. The utilization of cutting-

edge 3D technology in conjunction with GigaMesh

yields a resilient and expeditious workflow for a

diverse array of cuneiform panels, particularly those

that pose challenges for human processing.

An innovative approach was presented to translating

ancient writing by employing artificial neural

network (ANN) technology [13]. The multi-layer

perceptron (MLP) neural network has effectively

converted images of Sumerian cuneiform signs into

their corresponding English characters. Nevertheless,

there is a limitation on the quantity of data that may

be used for photographs. This proposed methodology

has achieved an exceptional level of accuracy,

reaching a benchmark of 100%. This method enables

expedient and precise comprehension of Sumerian

cuneiform symbols for explorers and researchers. A

minimum error value of 0.0009999 was achieved.

The fundamental constituents were identified,

specifically the strokes, of cuneiform symbols

depicted in photos of ancient cuneiform tablets [14].

The purpose is to facilitate efficient optical character

recognition (OCR) using contemporary computer

Elaf A. Saeed et al.

1606

vision methods. One notable distinction between our

technique and previous methodologies is our

utilization of 2D photographs rather than 3D models.

This choice is motivated by the abundance of

publicly accessible web archives containing a far

more significant number of 2D images. Rusakov et

al. [15] the software was developed with the purpose

of enabling the highlighting of stroke characters

through the use of convolutional image filtering

techniques. These edge filters are frequently

employed to reduce the background of desirable

objects and emphasize their edges. The properties of

Hough transformation [8], specifically lines and their

orientation, were utilized. The neural network

architectures YOLOv5 and Detecto were created to

accurately identify and locate horizontal strokes in

cuneiform tablet pictures that are partitioned into

squares measuring 416×416 pixels. The classifier

utilizing the Detecto algorithm achieves a

commendable accuracy of 90.5% but with a 25%

incidence of false positive predictions. Conversely,

the classifier employing the YOLOv5 algorithm

exhibits a lesser level of accuracy when applied to the

cuneiform data.

This study introduces an automated method for

creating training samples through the utilization of

generative adversarial networks for domain

adaptation [15]. This method facilitates the transition

between the visual representations of hand-drawn

cuneiform autographs and 2D projections of 3D-

scanned cuneiform tablets without relying on any

classification data. By following this approach,

highly favourable outcomes are attained. The

findings indicate that the utilization of picture

generation enhances the average performance,

increasing the mean average precision (mAP) from

85.7% to 89.4%. An increase of 5.9% (from 78.9% to

86.8%) might be attained in the scenario of spotting

all tablets. This method is restricted to the

transmission of images from one to another.

A deep-learning-based sign detector was presented to

accurately identify and categorize cuneiform signs in

photographs of clay tablets [16]. A weakly

supervised strategy was suggested, which involved

aligning tablet images with their associated

transliterations in order to identify the location of

transliterated signs inside the tablet image. These

localized signs were then used instead of annotations

to retrain the sign detector. Deep learning

necessitates substantial quantities of training data

comprising bounding boxes encompassing cuneiform

signs, which are not readily accessible and incur

significant expenses when procuring the cuneiform

script. In order to address this issue, we employ pre-

existing transliterations, which provide a detailed

depiction of the tablet's content using the Latin script

on a sign-by-sign basis. While the method

demonstrates some effectiveness in weakly guided

scenarios, the performance of the cuneiform sign

detector can be significantly improved with a limited

amount of annotations. We analyze this detector on a

vast collection of clay tablets dating back to the Neo-

Assyrian period.

However, in this study, an attribute representation is

established using the Gottstein-System [17]. The

objective is to break down signs based on wedge

typology and facilitate a logical representation for

classes of signs while also allowing these

representations to be shared among physically

comparable cuneiform signs. The purpose of adapting

it was to describe wedge expressions and establish

the query-by-expression (QbX) retrieval scenario.

Our technique can represent questions for an open-set

retrieval scenario, which is superior to searches based

on sign identifications (IDs). In addition, the

Gottstein-System utilizes phrases to indicate wedge

crossings or position relations visually. By following

this approach, favourable outcomes are attained.

This paper presents novel algorithms for achieving

consistent results in the recognition of cuneiform

symbols [18]. The algorithms focus on addressing

issues such as problem spots and writing lines by

utilizing statistical skewness measures, image

morphology, and distance transform concepts.

Additionally, the algorithms involve selecting an

appropriate binarization method and removing

writing lines and spots. This study discusses the

limitations of iterative approaches when the colour

histogram is in the dark interval. It also explores the

selection of the thresholding value between the

Niblack and Sauvola methods based on the Skewness

measure. The issue associated with this proposed

algorithm pertains to the chosen threshold value. The

less mean square error (MSE) that was reached is

12.62 for 110.89 cuneiform symbols' length.

Various methodologies have been documented for

the identification and detection of cuneiform symbols

on both 2D and 3D depictions. In 2012, Mara [19]

presented a methodology for extracting 2D vector

illustrations from 3D cuneiform images. Building

upon Howe's part-structured inkball models [20],

Bogacz et al. [21] analyzed these spline graphs from

[19] in order to align them with cuneiform signs.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1607

They used a similarity metric that relied on graph

representations. Additionally, in their study [22], the

authors showcased the utilization of spline graphs as

structural attributes for pattern matching. Massa et al.

[23] pursued a comparable objective and elucidated a

technique for extracting graph representations from

2D cuneiform paintings. The authors introduced a

method in [22] that utilizes part-structured models to

identify cuneiform signs by segmentation. In addition

to the graph-based feature representations, Rothacker

et al. [24] introduced a technique that utilizes a bag-

of-features (BoF) approach relying on SIFT-

Descriptors. In this case, the segmentation-free

identification of cuneiform signs is achieved by

incorporating hidden markov models (HMMs) into a

patch-based (sliding window) method.

Rath and Manmatha [25] introduced a popular

historical document word detection approach. They

used a word segmentation of document pictures.

Encoded word pictures included projection profiles

and ink backdrop transitions. Dynamic time warping

calculated feature representation similarity. Recent

breakthroughs in computer vision influenced word-

spotting algorithms. These methods usually adapt

automatically to the issue domain.

Rusiñol et al. [26] employed BoF representations for

segmentation-free word detection. BoF describes

local document image areas as orderless feature

collections. This method has two key benefits.

Unsupervised BoF estimation from sample data.

Thus, designing features requires no manual work.

This is useful since historical document collections

vary in script appearance. Since no script spatial

placement assumptions are needed, BoF

representations can be used segmentation-free. This

is very useful for historical document analysis. Dense

writing, inhomogeneous spacings, and document

degenerations make word-level heuristic

segmentation difficult.

The polygon approximation method was

demonstrated as an effective technique for extracting

features [27]. It has been compared to the elliptic

Fourier descriptor method in recognition tasks and

has shown high accuracy results. This was achieved

by using a support vector machine classifier with

multiple classes and relying on its discriminative

functions. The application of this study involves the

utilisation of two Datasets. The initial Dataset

comprises 320 photographs of cuneiform sign

patterns, which are used to assess the most effective

method for feature extraction. The second dataset

comprises 240 images depicting cuneiform letters,

which are used to assess the performance of the

recognition system. The training dataset for the

agents consists of four 2D triangular patterns.

This research examines the process of automatically

transcribing phonological information from

transliterated corpora [28]. The phonological

transcription of Akkadian offers a linguistically

attractive means of representing the language. This

transcription is standardized based on the

grammatical characteristics of a certain dialect and

clearly displays the Akkadian equivalents for

Sumerian logograms. Due to the absence of inflection

markers for logograms in cuneiform language, the

inflected form must be deduced from the context of

the phrase. This is the initially recorded endeavour to

transcribe Akkadian automatically. By employing a

context-aware neural network model, it is possible to

achieve near-human performance in automatically

transcribing syllabic tokens with a recall rate of 96%

at 3. However, transcribing logograms proves to be

more complex, with a recall rate of 82% at 3.

Allusion was made to a cohort of studies that

employed an identical methodology. Additionally, an

alternative iteration of YOLO, along with various

other techniques like image processing and computer

vision, were employed to successfully extract

cuneiform signs, identify them, translate them into

different languages, and transcribe their

pronunciation. The ideas that have been developed

aim to streamline the process of reading and

translating cuneiform symbols, with the goal of

assisting both scholars and enthusiasts. However, the

current level of research still needs to be substantial

enough to realize our study objectives fully.

3.Methods
3.1Methodology of Yolov8

Object detection is currently regarded as one of the

most challenging and popular areas in computer

vision [29, 30]. There are two types of object

detectors: two-stage and single-stage [31, 32]. Single-

stage detectors aim to identify objects in one step by

targeting all spatial region proposal changes with a

more accessible architecture. In contrast, two-stage

detectors focus on a selected region proposals

approach through a more advanced design.

Additionally, the introduction of YOLO has

significantly increased detection accuracy, often

surpassing that of two-stage detectors [33, 34].

Elaf A. Saeed et al.

1608

In its modified form, the most recent YOLO model,

known as YOLOv8, can perform tasks like object

detection, image categorization, and instance

segmentation. Ultralytics, the creator of the

significant and industry-defining YOLOv5 model,

also developed YOLOv8. YOLOv8 features many

architectural modifications and enhancements over

YOLOv5, improving the developer experience. The

performance of the object detector is evaluated using

inference time and detection accuracy. This study

aims to examine various metrics to assess the

effectiveness of different YOLO versions and model

sizes on the common objects in context (COCO)

dataset. YOLOv8 has various sub-versions that differ

in speed and the number of parameters. The

YOLOv8n (nano) version has fewer parameters and

is slower than other versions, such as small (s),

medium (m), large (l), and x-large (x).

After replacing the Cross-Stage Partial layer

(CSPLayer) with the C2f module, YOLOv8 now has

a backbone comparable to YOLOv5. The C2f

module, standing for cross-stage partial bottleneck

with two convolutions, enhances identification

accuracy by merging contextual and high-level

features. YOLOv8 introduces an anchor-free model

with a decoupled head that processes objectness,

classification, and regression tasks independently,

allowing each branch to focus on its specific task and

thereby improving model accuracy. The output layer

of YOLOv8 activates the objectness score using the

sigmoid function, which indicates the likelihood of

the bounding box containing an object. It also

employs the softmax function to represent object

probabilities across different classes. For calculating

loss, YOLOv8 utilizes binary cross-entropy for

classification and combines complete Intersection

over Union (CIoU) and Distribution Focal Loss

(DFL) for bounding box loss, significantly enhancing

object detection, particularly for small objects.

Additionally, the semantic segmentation model

YOLOv8-Seg is available. This model, unlike the

traditional YOLO architecture, employs a

CSPDarknet53 feature extractor and the C2f module

as its backbone, followed by two segmentation heads

that predict semantic segmentation masks for the

input images. Like YOLOv8, it includes five

detection modules and a prediction layer, and despite

being fast and efficient, YOLOv8-Seg has achieved

top scores in object detection and semantic

segmentation benchmarks.

YOLOv8 can be executed via the command line

interface (CLI) or installed as a Python package

manager (PIP) package. It also offers numerous

integrations for labeling, training, and deploying,

making it a versatile tool for various object detection

and image processing tasks.

When tested on the Microsoft common objects in

context (MS COCO) dataset test-dev 2017,

YOLOv8x achieved an average precision (AP) of

53.9% using a picture size of 640 pixels. This

represents an improvement over YOLOv5, which

achieved an AP of 50.7% with the same input size.

Additionally, YOLOv8x demonstrated a speed of 280

frames per second (FPS) on an NVIDIA A100 with

TensorRT.

3.2The architecture of the proposed model

Figure 2 shows the intelligent proposed model using

the YOLOv8x pretraining object detection model.

The user provides data in labeled images, and pre-

processing is done to resize the images to 640×640

px, Auto-orient, Auto-adjust contrast, and Tile. Also,

provide augmentation to images (Rotation,

Brightness, Mosaic, and Bounding Box Rotation).

Data is delivered to the Yolov8x object detection

algorithm for training and validation after pre-

processing.

The accuracy, precision, and recall of the output from

the yolov8 of different versions of split, pre-

processing, and augmented algorithms are compared.

The two primary results from Yolo are the bounding

box and class prediction. A third output has been

added: to pronounce the name of the signs (category

name) discovered and identified in the image. Every

image's predicted class for the objects found will be a

string, such as "NU." The Google text-to-speech

(gTTS) [44] package can then be used to submit the

written description to the Google written-to-speech

application programming interface (API). Figure 3

shows the flowchart for the entire proposed model

architecture.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1609

Figure 2 The proposed model block diagram

Start

Image Labelled

With 11

Categories

resize the images to 640x640 px,

Auto-orient, Auto-adjust

contrast, and Tile

resize the images to 640x640 px,

Auto-orient, Auto-adjust

contrast, and Tile

Step of Training, Validation,

and prediction

The accuracy

prediction

NO

Yes

gTTS API

Sign Names Detections

End
Accuracy of

pronunciation

N
O

Training Data Preprocessing Augmentation

Yolov8xText-To-Speech

Figure 3 The proposed model flowchart

3.3Challenges of cuneiform sign detection

When working with Yolo, one of the biggest

challenges faced is collecting data, which is not

available and ready online.

 White space between characters in scripts greatly

facilitates detection by enabling the separation of

localization and classification into two sequential

processes. Nevertheless, cuneiform symbols are

frequently engraved without gaps between

adjacent symbols, resulting in their localization

and classification being interconnected [45].

 The challenge is heightened by the fact that there

are over 900 distinct sign code classes with similar

characteristics. This is because most cuneiform

signs are made up of a small number of wedge

shapes (lying, standing, and diagonal) that are

arranged in different ways. As a result, many sign

code classes have a high degree of similarity to

each other. Conversely, cuneiform signs belonging

to the same sign code class can exhibit significant

differences in their visual representation when

written by various scribes (considerable intra-class

variance)[28].

 Throughout thousands of years, numerous tablets

have been destroyed, which further complicates

the discovery of signs. The damage manifests in

diverse forms, including surface damage, cracks,

holes, and missing components. Frequently, tablets

necessitate reassembly from fragmented

components[46]

 Cuneiform script is composed of 3D wedges

inscribed onto the surface of 3D clay tablets. Due

to our reliance on 2D images of clay tablets, the

Elaf A. Saeed et al.

1610

recognition of individual signals is affected by

lighting and visual distortions[47].

 Writing on soft clay tablets results in the distortion

of previously written signs due to the influence of

nearby signs. The phenomenon of plastic

deformation is exclusive to the cuneiform script

and adds to the challenge of differentiating

between signs, as wedges may become

indiscernible during the writing process[45].

 Conventional methods in computer vision and

machine learning for object detection necessitate

substantial quantities of supervised data.

Regarding the identification of signs, this entails

the annotation of ten thousand bounding boxes

around cuneiform signs. Due to the implicit nature

of sign identification performed by Assyriologists,

there is a lack of available bounding box

annotations[13].

3.4Dataset creation
3.4.1Dataset collection

Many manually annotated input photos were required

to train high-quality models. For accurate detection

of each class, approximately 1500 images were

recommended [48]. A collection of pictures of

Assyrian tablets located in the Iraqi Museum was

compiled. Pictures were taken of 14 Assyrian tablets,

inscribed on stone. The challenges faced during data

collection included: firstly, the need for clearer

cuneiform signs due to the age and damage of the

tablets. Secondly, the small number of tablets found,

prompting a search for additional pictures in the Iraqi

Museum to improve the dataset. Thirdly, the presence

of very small and overlapping cuneiform tablets

made labeling difficult. To obtain a larger amount of

labeled data, the dataset size was either expanded or

data augmentation techniques were employed to

enhance the dataset's volume, thereby increasing the

model's capacity for accurate identification. Figure 4

displayed some pictures of the Assyrian tablets.

Figure 4 Some pictures of Neo-Assyrian tablets

3.4.2Dataset labelling

After reviewing the gathered images, the most

prevalent indications in the sentences were selected.

The form and pronunciation of these 11 Neo-

Assyrian signs, which were found to be more

common than others, are displayed in Table 1. When

describing signs, the sign name is written as a label.

To facilitate reading, the signs are represented in

well-known English letters or other languages. For

instance, the sign () is pronounced similarly to A,

and the remaining signs () are pronounced similarly

to MAN.

Table 1 The Neo-assyrian signs with signs name

S. No. Neo-assyrian sign Sign name

1 AN

2 ̂A

3 MAN

4 A

5

Di

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1611

6 E

7 EN

8

NA

9 NU

10 BI

11 RI

3.4.3Dataset pre-processing and augmentation

The YOLOv8 complicated solution, built by

Ultralytics, can be accessed on the GitHub platform.

[49]. The system comprises a proficiently trained

neural network with accompanying scripts for

training and detecting. The requirement for square

input photographs accompanied by labels in .txt

format is essential. The dataset was annotated, pre-

processed, and augmented by using the Roboflow

platform. The dataset consists of 882 labeled images

with 5114 annotations. We used the resize image

(640×640 pixel), auto-orient, auto-adjust constraint,

and tile (2×2) preprocessing. Then, rotation (-15° -

+15°), brightness (-25% - +25 %), Mosaic, and

bounding box rotation (-15° - +15°) augmentation.

For preprocessing, the auto-orient feature adjusts the

pixel direction in the image, leading to altered

orientations of objects. This is beneficial for

detecting targets in rotated images. Implementing

automatic constraints enhances the neural network's

ability to understand object nature. Edge detection is

a crucial principle in computer vision, applicable to

classification, object identification, or segmentation,

as it enhances the clarity of edges by amplifying

contrasts between neighboring pixels. The Tile(2×2)

function splits images into smaller sections, using a 2

rows and 2 columns split to improve accuracy on

small objects. Resizing images to 640×640 pixels

adapt them to the accepted input size for YOLOv8.

Data augmentation enhances the semantic variety of a

dataset. It often involves applying random rotations,

altering the object's position within the frame, and is

crucial for accurately updating bounding boxes in

object detection. Adjusting brightness introduces

variations in image luminosity, aiding model

adaptability to different lighting conditions and

camera setups. Mosaics, created by merging four

source photos, help preserve object scale, combine

classes for comprehensive training, and vary the

number of objects in the images, enhancing the

model's performance in complex scenarios.

Bounding box augmentation modifies the content

within source image bounding boxes, creating new

training data more aligned with the problem's specific

conditions. Figure 5 displays images with their

corresponding labels post-training and the results

post-validation, illustrating the appearance after

preprocessing and augmentation.
3.4.4Dataset splitting

The dataset was split into different ratios (three

versions (V) of splitting) of training, validation, and

testing, as shown in Table 2.

Train

Validation

Figure 5 The pictures with the labels that are trained on and validation results

Different ratios were chosen for training and testing.

Firstly, this is because the data set is unbalanced. The

number of labels for each class is not equal, and there

are differences in large numbers. This is only to

Elaf A. Saeed et al.

1612

improve training and add more images to the few

classes. We have a small number of images in

relation to the number of classes because in order for

the training to be highly accurate, each class must

have at least 1500, and this is not available. The

number of annotations for each class, A=1,289,

SHA=843, NI=575, E=502, AN=496, MAN 438,

NU=285, RI=267, EN=224, BI=118, and DI=77.

Table 2 Dataset split

Version No. Train –val-test # of all images Pre-processing Augmentation

1 2388 - 224 – 116 2728 1- Auto-orient.

2- Resize (640×640 pixel)
3- Auto-adjust contrast.

1- Rotation.

2- Brightness.

3- Mosaic.

4- Bounding Box Rotation. 2 2247 - 87 - 46 2380 1- Tile.

2- Auto-orient.

3- Auto-adjust contrast.
3 1854 – 176 - 88 2118

4.Results
4.1Training and evaluation
4.1.1Dataset training

YOLOv8 exclusively employs training scripts

designed to shuffle the dataset. To export predicted

photographs and labels as files, display them, and use

them outside of prediction notebooks, modifying the

script is necessary. The YOLOv8 architecture was

trained on Google Collaboratory using the Compute

Unified Device Architecture (CUDA) programming

language for 100 and 50 epochs, respectively.

Training occurred on a Tesla T4 Graphical

Processing Unit (GPU) with 40 multiprocessors and a

total RAM capacity of 15109 MB. The total time

taken for training over 100 epochs ranged from 2 to

3.5 hours, while for 50 epochs, the training duration

was approximately 1.5 hours.
4.1.2Evaluation

The best outcome for version (V) two was achieved

with 50 epochs, yielding a mAP at 50% (mAP50) of

82.7%, a mAP from 50% to 90% (mAP50-90) of

61.3%, a precision of 71.319%, and a recall of

85.647%. The most favorable evaluation results after

training are presented in Table 3.

Table 3 The best evaluation results after training
V Epochs mAP50 mAP50-

90

Precision Recall

1 100 63.6% 45.115% 75.62% 58.66%

2 50 82.7% 61.2% 71.319% 85.647%

3 100 76.5% 53.7% 71.74% 79.412%

The confusion matrix is used to assess the results of a

test. It is arranged with predicted classes on the y-

axis and actual classes on the x-axis. This matrix

determines the model's accuracy by comparing the

results obtained after training and testing [50]. For

this purpose, platforms such as Google Collaboratory

or Kaggle's open Python environments were utilized.

The performance of each architectural design was

evaluated using standardized metrics such as

precision P (Equation 1), recall R (Equation 2), and

F-measure F (Equation 3).

 (1)

 (2)

 (3)

Where:

True positives (TP) refer to instances where strokes

were correctly recognized.

FP = false positives (predicted strokes that don't

actually occur).

FN = false negatives (accurate strokes weren't

discovered).

The AP metric is built on precision-recall metrics,

handles several object categories, and uses

intersection over union (IoU) to define a positive

prediction.

Several measures are not just crucial for YOLOv8

but also have wide applicability across various object

identification models.

 IoU: is a metric that calculates the degree of

overlap between a predicted bounding box and a

ground truth bounding box. It has a crucial

function in assessing the precision of object

localization.

 The AP: The metric calculates the integral of the

precision-recall curve, yielding a singular number

that summarises the precision and recall

performance of the model.

 mAP: is a metric that expands on the concept of

AP by computing the average AP values across

various object classes. This is advantageous in

situations when multiple classes of objects need to

be detected, as it allows for a thorough assessment

of the model's effectiveness.

 Precision and Recall: Precision measures the ratio

of true positives to all positive predictions,

evaluating the model's ability to minimize false

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1613

positives. Crucial when reducing the number of

false detections is an objective. Conversely, Recall

quantifies the ratio of correctly identified positive

cases out of all the actual positive instances,

assessing the model's capability to identify all

occurrences of a specific class.

 The F1-score is calculated as the harmonic mean

of precision and recall, offering a well-balanced

evaluation of a model's performance by

considering both false positives and false

negatives.

mAP50 refers to the mAP, which is computed by

evaluating the IoU at a threshold of 0.50. It quantifies

the accuracy of the model by solely evaluating the

detections that are deemed "easy." mAP50-95 refers

to the average value of the mAP, which is computed

by considering several IoU thresholds ranging from

0.50 to 0.95. It provides a thorough perspective on

the model's performance across various levels of

detection difficulty.

These measurements provide information about

precision and recall at various IoU levels and for

objects of varying sizes. The results of the second

copy, which had the highest result, were indicated.

 The F1-score curve illustrates the F1 score at

different thresholds. An analysis of this curve can

provide valuable information about the model's

trade-off between incorrect positive predictions

and incorrect negative predictions across various

thresholds. Figure 6 shows the F1-score curve for

V2.

Figure 6 F1-score curve for V2

An average of 80% is the typical result for all object

detection. However, an unbalanced F1-score

indicates a disparity between precision and recall.

The precision curve demonstrates the precision

values at various thresholds. Varying the threshold

reveals how accuracy fluctuates along this curve.

Figure 7 depicts the precision – confidence curve,

with the average result being 1.00 at a threshold of

1.000. As a crucial tool for visualizing classification

problems, the precision-recall curve highlights the

trade-offs between these two metrics at different

thresholds, becoming particularly vital when dealing

with unequal classes.

Figure 8 presents the precision-recall curve for V2,

where the average results at mAP50 for all classes

reach 0.827. Figure 9 displays the recall curve for

V2, showing a decrease in results as the threshold

between the prediction and the ground truth

increases. At a zero threshold, the average result for

all classes is 0.92.

Figure 10 displays the confusion matrix for three

versions of the split dataset. The prediction error rate,

including FP and FN, frequently occurs in signals

with a limited number of annotations. For instance,

the number of annotations for each tag includes DI at

77 and the largest, tag A, at 1289. In the first version,

BI had the highest percentage of incorrectly

identified signals at 55%, with 45% identified

correctly. In the second version, DI had the highest

percentage of incorrectly identified signals at 75%,

with correct identifications (true positives, TP) at

25%. In the third version, BI again had the highest

percentage of incorrect signals at 55%, with TPs at

45%. Tag A recorded the highest percentage of

correct identifications due to having the most

Elaf A. Saeed et al.

1614

annotations, with TPs at 88%, 87%, and 88% for the

respective versions. The FP and FN rates were 11%,

13%, and 11%, respectively.

YOLO object detection employs three loss functions

as shown in Figure 11: box-loss (the regression value

of the bounding box, MSE), obj-loss (the confidence

of object losses), and cls-loss (the classification loss,

cross-entropy). The validation box-loss, cls-loss, and

df1-loss for the three versions were V1: 1.2078,

1.3489, 1.633; V2: 0.97018, 0.79408, 1.2563; and

V3: 1.1075, 0.89497, 1.1982, respectively.

Modifications in hyperparameters or other factors can

influence the model's performance, potentially

increasing or decreasing the results.

Different learning rates, batch sizes, and other

hyperparameters are employed to find a better

ensemble and enhance performance. Occasionally,

increasing the number of training epochs may not

provide sufficient time for the model to learn the

dataset's features. It is crucial that dataset annotations

are accurate and properly formatted, as incorrect or

misclassified data can detrimentally affect

performance. In this paper, the best performance was

achieved by maintaining the default parameters.

Figure 7 The precision - confidence curve for V2

Figure 8 The precision-recall curve for V2

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1615

Figure 9 The recall-confidence curve for V2

Several frequently adjusted hyperparameters in

Ultralytics YOLO are:

The learning rate is a parameter that controls the

amount of the step taken at each iteration when

approaching the minimum of the loss function. The

batch size refers to the quantity of photos that are

concurrently processed during a forward pass. An

epoch refers to a single iteration where all the

training instances are sent forward and backward

through the model. Architecture details, such as the

number of channels, levels, types of activation

functions, etc.

Elaf A. Saeed et al.

1616

Figure 10 Confusion Matrix for three versions (V) of the split dataset

 Version 1

Version 2

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1617

Version 3

Figure 11 The Loss, mAP, precision, and recall results for three versions

4.2Prediction results

We see that the results are accurate whenever the

image is high resolution and the signs are

unmistakable. The accuracy begins to decline as the

clarity of the image decreases, and the size of the

signs becomes smaller. The image in Figure 12

below is far away, and the signs are minor; after

testing the V1, we see that not all signals detection

but some of the signals are not detected. All results

are excellent in the detection and labelling of the

signals. The best result in version two is

mAP50=82.7%.

a. Version 1 Prediction

b. Version 2 Prediction

Elaf A. Saeed et al.

1618

c. Version 3 Prediction

Figure 12 a) V1 b) V2 and c) V3 prediction results

5.Discussion
Other research initiatives focusing on similar topics,

specifically the identification of items from

photographs using comparable frameworks, have

reported notable results.

Ghosh et al. achieved a high accuracy rate of 96.46%

in recognizing Bangladeshi signs using models

developed on the MobileNet platform [51].

Hamplová et al. [14] attained a classification

accuracy of 98.21% for 2000 Palmyrene letters per

class by employing a custom convolutional neural

network (CNN) architecture composed of 4

Convolutional/Max Pooling blocks. This study's

contribution included compiling a dataset from the

Iraqi Museum. Unlike previous research where

images were sourced from the British Museum

website or other sites without providing a dataset for

a specific cuneiform language or dialect, this effort

aimed at both collection and development for later

use. The development utilized the latest algorithm

from YOLO, specifically its eighth version created in

2023, which is regarded as one of the most accurate

versions to date.

Some of the study implications are as under:
 The identification of the Assyrian signs was

conducted with precision, achieving a mAP50

score of 82%. The identification process

confirmed the presence of the Assyrian signs,

which are consistent with the previously displayed

images. The limited number of plates at the

museum hindered the generation of robust data

sets, resulting in a low level of precision in the

obtained results. Furthermore, we have obtained

highly favourable outcomes by employing the

advanced yolov8x algorithm, which will be further

enhanced in future research. Precision is the

measure of the model's ability to detect true

instances accurately, and it effectively reduces

erroneous detections by 71%. The recall rate

achieved a significant 86%, which is crucial for

assessing the model's ability to recognize genuine

objects accurately.

 These results are considered very good in terms of

the number of images in the dataset and the

explanatory signs for each Assyrian sign. The

number of annotations for signs is unbalanced.

Some signs are frequently repeated and have many

annotations and other signs that are repeated

infrequently and have few annotations. As for the

number of images, it is also unbalanced, as

mentioned previously. For each class, the

minimum should be 1,500 images or more for the

results to be accurate.

 The findings suggest that close-up photos were

used to determine the tags, and clear tags were

found to be more precise compared to distant and

small tags. Some results showed identifications

that closely resembled the original marks, either in

appearance or due to erosion that made them

similar to the desired mark.

 There are many limitations encountered, including

unclear signs, damaged panels, some panels

exposed to environmental conditions that led to

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1619

part of them being damaged, and the number of

panels that are currently provided. There are many

signs, up to 900 different categories of sign

symbols with similar characteristics, making it

difficult to distinguish them. Cuneiform writings

often lack spaces between signs, and this also

makes it difficult for us to identify the signs.

 To undertake and advance such research, it is

imperative to gather unambiguous, high-resolution

datasets and an ample quantity of photographs. We

highly suggest further enhancing the outcomes by

experimenting with alternative methods to identify

any indicators that could potentially enhance the

results using this particular dataset.

 Many studies have used other methods to identify

signs, some of which use image processing by

identifying the edges of signs. Remarkable

outcomes were attained, and the symbols were

recovered from ancient inscriptions. Other studies

were conducted using other versions of YOLO and

identifying the signs only (i.e., separating them

from each other only) to facilitate reading the

tablets. One of the studies was conducted using

yolov5 achievable outcomes were attained, with a

correct identification rate of 74%.

A complete list of abbreviations is shown in

Appendix I.

6.Conclusion and future work
The YOLOv8 neural network architecture was

designed to classify and locate strokes of Assyrian

cuneiform signs in images of cuneiform tablets

segmented into 640×640 pixels. The classifier based

on YOLOv8x achieves an accuracy of 82.7%, a

precision of 71.319%, and a recall of 85.647%. The

success rate of YOLOv8x can be further increased by

incorporating additional tagged images with a variety

of characteristics, such as differing lighting, colors,

and shadows, as well as by applying more advanced

augmentation techniques.

In the future, efforts will be made to enhance

accuracy by utilizing various neural network

topologies, including region-based convolutional

neural networks (RCNN) with selective search,

which often achieve higher detection rates.

Additionally, tuning of neural network topologies,

including RCNN, will be initiated to attain the

highest accuracy and facilitate better comparisons

with newly labeled data.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

Author’s contribution statement
Elaf A. Saeed and Munther A. Abdul Malik:

Collaborated with an expert in cuneiform, to gather data

and identify cuneiform symbols in order to initiate the

training, Writing – review and editing. Elaf A. Saeed and
Ammar D. Jasim: Collaborated with preparing the data set

through labelling and training the model, Writing – review

and editing.

References
[1] Rahma AM, Saeid AA, Hussien MJ. Recognize

assyrian cuneiform characters by virtual dataset. In 6th

international conference on information and

communication technology and accessibility 2017 (pp.

1-7). IEEE.

[2] Abitbol R, Shimshoni I, Ben-dov J. Machine learning

based assembly of fragments of ancient papyrus.

Journal on Computing and Cultural Heritage. 2021;

14(3):1-21.

[3] Alstola T, Zaia S, Sahala A, Jauhiainen H, Svärd S,

Lindén K. Aššur and his friends: a statistical analysis

of neo-Assyrian texts. Journal of Cuneiform Studies.

2019; 71(1):159-80.

[4] Luo J, Hartmann F, Santus E, Barzilay R, Cao Y.

Deciphering undersegmented ancient scripts using

phonetic prior. Transactions of the Association for

Computational Linguistics. 2021; 9:69-81.

[5] Sahala A. Contributions to computational

Assyriology. Doctoral Dissertation, University of

Helsinki. 2021.

[6] Snyder B, Barzilay R, Knight K. A statistical model

for lost language decipherment. In proceedings of the

48th annual meeting of the association for

computational linguistics 2010 (pp. 1048-1057).

Association for Computational Linguistics.

[7] Fisseler D, Weichert F, Müller G, Cammarosano M.

Towards an interactive and automated script feature

analysis of 3D scanned cuneiform tablets. Scientific

Computing and Cultural Heritage. 2013:16-7.

[8] Mara H, Krömker S. Vectorization of 3D-characters

by integral invariant filtering of high-resolution

triangular meshes. In 12th international conference on

document analysis and recognition 2013 (pp. 62-6).

IEEE.

[9] https://mimno.github.io/Mallet/index. Accessed 06

October 2023.

[10] Anderson SE, Levoy M. Unwrapping and visualizing

cuneiform tablets. IEEE Computer Graphics and

Applications. 2002; 22(6):82-8.

[11] https://github.com/ultralytics/ultralytics. Accessed 06

October 2023.

[12] Mara H, Krömker S, Jakob S, Breuckmann B.

GigaMesh and gilgamesh: –3D multiscale integral

invariant cuneiform character extraction. In

proceedings of the 11th international conference on

virtual reality, archaeology and cultural heritage 2010

(pp. 131-8). ACM.

https://mimno.github.io/Mallet/index
https://github.com/ultralytics/ultralytics

Elaf A. Saeed et al.

1620

[13] Hamdany AH, Omar-nima RR, Albak LH. Translating

cuneiform symbols using artificial neural network.

Telkomnika (Telecommunication Computing

Electronics and Control). 2021; 19(2):438-43.

[14] Hamplová A, Franc D, Pavlíček J, Romach A, Gordin

S. Cuneiform reading using computer vision

algorithms. In proceedings of the 5th international

conference on signal processing and machine learning

2022 (pp. 242-5).

[15] Rusakov E, Brandenbusch K, Fisseler D, Somel T,

Fink GA, Weichert F, et al. Generating cuneiform

signs with cycle-consistent adversarial networks. In

proceedings of the 5th international workshop on

historical document imaging and processing 2019 (pp.

19-24). ACM.

[16] Dencker T, Klinkisch P, Maul SM, Ommer B. Deep

learning of cuneiform sign detection with weak

supervision using transliteration alignment. Plos one.

2020; 15(12):1-21.

[17] Rusakov E, Somel T, Fink GA, Müller GG. Towards

query-by-eXpression retrieval of cuneiform signs. In

17th international conference on frontiers in

handwriting recognition 2020 (pp. 43-8). IEEE.

[18] Saeid AA, Rahma AM, Hussien MJ. Cuneiform

tablets image preprocessing proposed algorithms

techniques for pattern recognition. Iraqi Journal of

Science. 2018:1326-38.

[19] Mara H. Multi-scale integral invariants for robust

character extraction from irregular polygon mesh data

(Doctoral dissertation). 2012.

[20] Howe NR. Part-structured inkball models for one-shot

handwritten word spotting. In 12th international

conference on document analysis and recognition

2013 (pp. 582-6). IEEE.

[21] Bogacz B, Gertz M, Mara H. Cuneiform character

similarity using graph representations. 20th computer

vision winter workshop 2015 (pp. 1-8).

[22] Bogacz B, Howe N, Mara H. Segmentation free

spotting of cuneiform using part structured models. In

15th international conference on frontiers in

handwriting recognition 2016 (pp. 301-6). IEEE.

[23] Massa J, Bogacz B, Krömker S, Mara H. Cuneiform

detection in vectorized raster images. 21st Computer

Vision Winter Workshop 2016 (pp. 1-9).

[24] Rothacker L, Fisseler D, Müller GG, Weichert F, Fink

GA. Retrieving cuneiform structures in a

segmentation-free word spotting framework. In

proceedings of the 3rd international workshop on

historical document imaging and processing 2015 (pp.

129-36). ACM.

[25] Rath TM, Manmatha R. Word spotting for historical

documents. International Journal of Document

Analysis and Recognition. 2007; 9:139-52.

[26] Rusiñol M, Aldavert D, Toledo R, Lladós J. Efficient

segmentation-free keyword spotting in historical

document collections. Pattern Recognition. 2015;

48(2):545-55.

[27] Saeid AA, Rahma AM. Cuneiform symbols

recognition by support vector machine (SVM). Journal

of AL-Qadisiyah for Computer Science and

Mathematics. 2019; 11(1).

[28] Sahala A, Silfverberg M, Arppe A, Lindén K.

Automated phonological transcription of Akkadian

cuneiform text. In proceedings of the 12th conference

on language resources and evaluation 2020. European

Language Resources Association (ELRA).

[29] Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X,

et al. Deep learning for generic object detection: a

survey. International Journal of Computer Vision.

2020; 128:261-318.

[30] Everingham M, Van GL, Williams CK, Winn J,

Zisserman A. The pascal visual object classes (VOC)

challenge. International Journal of Computer Vision.

2010; 88:303-38.

[31] Ren S, He K, Girshick R, Sun J. Faster R-CNN:

towards real-time object detection with region

proposal networks. Advances in Neural Information

Processing Systems. 2015.

[32] Redmon J, Farhadi A. Yolov3: an incremental

improvement. arXiv preprint arXiv:1804.02767. 2018.

[33] Diwan T, Anirudh G, Tembhurne JV. Object detection

using YOLO: challenges, architectural successors,

datasets and applications. Multimedia Tools and

Applications. 2023; 82(6):9243-75.

[34] Lin TY, Dollár P, Girshick R, He K, Hariharan B,

Belongie S. Feature pyramid networks for object

detection. In proceedings of the conference on

computer vision and pattern recognition 2017 (pp.

2117-25). IEEE.

[35] https://roboflow.com/model/yolov8. Accessed 06

October 2023.

[36] Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, et al. A

survey of deep learning-based object detection. IEEE

Access. 2019; 7:128837-68.

[37] Jiang P, Ergu D, Liu F, Cai Y, Ma B. A review of

Yolo algorithm developments. Procedia Computer

Science. 2022; 199:1066-73.

[38] Li Z, Peng C, Yu G, Zhang X, Deng Y, Sun J. Detnet:

a backbone network for object detection. arXiv

preprint arXiv:1804.06215. 2018.

[39] Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D.

Distance-IoU loss: faster and better learning for

bounding box regression. In proceedings of the AAAI

conference on artificial intelligence 2020 (pp. 12993-

3000).

[40] Li X, Wang W, Wu L, Chen S, Hu X, Li J, et al.

Generalized focal loss: learning qualified and

distributed bounding boxes for dense object detection.

Advances in Neural Information Processing Systems.

2020; 33:21002-12.

[41] Terven J, Cordova-esparza D. A comprehensive

review of YOLO: from YOLOv1 and beyond. arXiv

2023. arXiv preprint arXiv:2304.00501. 2023.

[42] Tamang S, Sen B, Pradhan A, Sharma K, Singh VK.

Enhancing covid-19 safety: exploring yolov8 object

detection for accurate face mask classification.

International Journal of Intelligent Systems and

Applications in Engineering. 2023; 11(2):892-7.

https://roboflow.com/model/yolov8

International Journal of Advanced Technology and Engineering Exploration, Vol 10(109)

1621

[43] Lin TY, Maire M, Belongie S, Hays J, Perona P,

Ramanan D, et al. Microsoft coco: common objects in

context. In computer vision–ECCV 2014: 13th

European conference, Zurich, Switzerland, 2014 (pp.

740-55). Springer International Publishing.

[44] Lee Y, Kim T, Lee SY. Voice imitating text-to-speech

neural networks. arXiv preprint arXiv:1806.00927.

2018.

[45] Gordin S, Gutherz G, Elazary A, Romach A, Jiménez

E, Berant J, et al. Reading Akkadian cuneiform using

natural language processing. PloS one. 2020;

15(10):1-16.

[46] Gutherz G, Gordin S, Sáenz L, Levy O, Berant J.

Translating Akkadian to English with neural machine

translation. PNAS nexus. 2023; 2(5):1-10.

[47] Jauhiainen T, Jauhiainen H, Alstola T, Lindén K.

Language and dialect identification of cuneiform texts.

arXiv preprint arXiv:1903.01891. 2019.

[48] Cho J, Lee K, Shin E, Choy G, Do S. How much data

is needed to train a medical image deep learning

system to achieve necessary high accuracy? arXiv

preprint arXiv:1511.06348. 2015.

[49] Huang Z, Li L, Krizek GC, Sun L. Research on traffic

sign detection based on improved YOLOv8. Journal of

Computer and Communications. 2023; 11(7):226-32.

[50] Ahmad T, Ma Y, Yahya M, Ahmad B, Nazir S, Haq

AU. Object detection through modified YOLO neural

network. Scientific Programming. 2020; 2020:1-10.

[51] Ghosh T, Abedin MM, Chowdhury SM, Tasnim Z,

Karim T, Reza SS, et al. Bangla handwritten character

recognition using MobileNet V1 architecture. Bulletin

of Electrical Engineering and Informatics. 2020;

9(6):2547-54.

Elaf A. Saeed serves as a systems and

control engineer at the University of

Al-Nahrain, College of Information

Engineering, in Iraq. Her expertise

spans control, Embedded Systems,

Artificial Intelligence, IoT, and Web

Design. Recognized for her

programming talent, Elaf has authored

eleven books published by Lambert Academic.

Distinguished as the top student throughout her B.Sc.

studies, she also brings four years of teaching experience to

her role. Currently, she is pursuing her research as a

master's student.

Email: elafe1888@gmail.com

Dr. Ammar D. Jasim is an Assistant

Professor at the College of Information

Engineering, Al-Nahrain University,

Iraq. He earned a Ph.D. in information

engineering with a specialization in

networks. His research interests

encompass Networks,

Communications, Security, and

Artificial Intelligence. Currently, he leads the Information

System Department at Al-Nahrain University, Iraq.

Additionally, he supervises several Ph.D. students in their

research endeavors.

Email: ammar.alaythawy@nahrainuniv.edu.iq

Dr. Munther A. Abdul Malik is

affiliated with the University of

Baghdad, College of Arts, specializing

in Archaeological and Assyriology

studies. His expertise lies in reading,

translating, and transliterating

cuneiform texts. His research focuses

on Sumerian, Akkadian, Babylonian,

and Assyrian civilizations, and he is proficient in

translating texts from all these ancient cultures. Munther

actively participates in excavations at Sippar and Assur and

has completed numerous training courses in archaeology

and modern technical surveys.

Email: munther@coart.uobaghdad.edu.iq

Appendix I

S. No. Abbreviation Description

1 2D Two-Dimensional

2 3D Three-Dimensional

3 ANN Artificial Neural Network

4 API Application Programming

Interface

5 AP Average Precision

6 BCE Before the common era

7 BoF Bag-of-Features

8 CIOU Complete Intersection Over

Union

9 CLI Command Line Interface

10 CNN Convolutional Neural Network

11 COCO Common Objects in Context

12 CSP Cross Stage Partial

13 CSPLayer Cross-Stage Partial Layer

14 CUDA Compute Unified Device

Architecture

15 DFL Distribution Focal Loss

16 FPS Frames Per Second

17 GPU Graphical User Interface

18 gTTS Google Text-to-Speech

19 HMMs Hidden Markov Models

20 IDs Sign Identifications

21 IOU Intersection Over Union

22 mAP Mean Average Precision

23 MLP Multi-Layer Perceptron

24 MSE Mean Square Error

25 MS COCO Microsoft Common Objects in

Context

26 QbX Query-by-Expression

27 OCR Optical Character Recognition

28 PIP Package Manager for Python

29 RCNN Region-Based Convolutional

Neural Networks

30 YOLO You Only Look Once

31 YOLOV8 You Only Look Once Version 8

