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1.Introduction 
Photovoltaic (PV) systems represent a promising 

renewable energy technology with the potential to 

decrease greenhouse gas emissions and mitigate 

climate change impacts. These systems produce 

electrical energy by converting solar irradiance. 

However, despite significant technological 

advancements, the conversion efficiency of these 

electrical generators remains relatively low, even 

under optimal environmental conditions [1–3]. 

Extensive research has been conducted to minimize 

losses across all components of PV systems. Despite 

these efforts, limitations in harnessing available power 

persist, primarily due to environmental conditions, 

inverter efficiency, and the algorithms that control the 

direct current to direct current (DC-DC) converters 

tasked with tracking the maximum power point (MPP) 

of the system. [4]. The non-linear and dynamic nature 

of the power-voltage characteristic in PV systems 

requires sophisticated maximum power point tracking 

(MPPT) algorithms. 

 
*Author for correspondence 

These algorithms vary based on factors like cost, 

efficiency, response time, required information, and 

the ability to track the global maximum power point 

(GMPP) during partial shading or rapidly changing 

environmental conditions, as well as the complexity of 

implementation. Traditional methods, such as Perturb 

and Observe (P&O), face limitations in convergence 

speed, oscillations around the MPP, and accuracy, 

especially when environmental conditions fluctuate 

[5, 6].  

 

The current research paper is motivated by the 

inefficiencies and challenges identified in the existing 

literature. While various MPPT algorithms have been 

proposed, they differ significantly in terms of their 

efficiency, convergence time, complexity, and 

adaptability to changing environmental conditions. 

Most notably, they struggle with oscillations and 

prolonged time to converge to the GMPP, especially 

in scenarios like partial shading [7]. While the grey 

wolf optimization (GWO) algorithm demonstrates a 

promising exploratory nature and quick convergence 

capabilities, it is susceptible to persistent oscillations 
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around the GMPP, affecting its practical application 

[8]. The goal of this research is to provide an improved 

GWO algorithm-based MPPT command that 

minimizes oscillations around the GMPP and shortens 

the tracking time needed to reach the GMPP compared 

to utilizing the traditional GWO method alone [9], 

since the generated duty cycle oscillates around the 

desired point even after reaching the maximum power 

because the aspect of this algorithm resides in the 

effect of deviation of the MPP to explore large 

possibilities when searching for other local optimums 

better than the current position [10]. The key 

contributions of this study lie in the introduction of the 

ameliorated GWO-based MPPT algorithm, 

specifically tailored to tackle partial shading effects, 

increase power extraction, and significantly reduce 

oscillations and convergence time to reach the GMPP. 

 

This research paper is structured as follows: Section 1 

provides an introduction, including the background 

and challenges associated with PV systems, the 

motivation for this research, and the objectives. 

Section 2 offers a literature review of PV systems and 

MPPT algorithms. Section 3 discusses the proposed 

GWO-based MPPT algorithm and its improvements 

over traditional GWO. Section 4 presents the 

simulation results, while Section 5 explores into 

discussions. Finally, Section 6 concludes the paper and 

discusses prospects of this research. 

 

2.Literature review  
PV systems play a fundamental role in harnessing 

solar energy for electricity generation, providing a 

sustainable and environmentally friendly power 

source. Comprised primarily of PV panels assembled 

to form a PV field, these systems generate electricity 

directly from sunlight. However, as the system is 

operational only during daylight hours, batteries are 

incorporated to store excess energy, ensuring a 

consistent power supply even in the absence of 

sunlight. To prevent overcharging and deep 

discharging of the batteries, a charge regulator is 

employed. In applications where alternating current is 

required, an inverter is integrated to convert the direct 

current generated by the PV system into alternative 

current (AC) [11, 12].Connecting the load directly to 

the PV array forces the PV array to operate at a point 

determined by the load's power demand. However, this 

operating point often deviates from the MPP,   the 

point where the PV array delivers its maximum power 

[13]. This discrepancy arises from the PV array's 

nonlinear power-voltage characteristic, which is 

influenced by two primary factors: irradiance and 

temperature. To ensure the PV system operates at its 

optimal point, a DC-DC converter, specifically a boost 

converter, is employed between the load and the PV 

field. This boost converter imposes the MPP voltage 

on the load, effectively aligning the PV array's 

operating point with the MPP [14]. While the MPP 

shifts dynamically in response to changing 

environmental conditions, necessitating prompt 

tracking, MPPT controllers address this challenge by 

generating a duty cycle based on real-time power 

measurements, enabling the control of the boost 

converter to maximize power output and reach the 

MPP. The PV system implemented in this study is 

depicted in Figure 1. 

 

 
Figure 1 Schematic representation of the employed 

PV system 

 

In this paper, a 250-watt polycrystalline module was 

utilized from Tata Power Solar Systems manufacturer, 

whose detailed specifications are provided in Table 1. 

To emulate partial shaded conditions  (PSC), three PV 

panels from the same model detailed in Table 1 were 

arranged in a three-series PV panel configuration. This 

arrangement ensures that each PV module receives a 

different irradiance level, allowing us to observe the 

performance of the MPPT technique under PSC. The 

irradiance levels applied to the PV modules in the 

three series PV panel configuration are 1000 W/m², 

700 W/m², and 500 W/m², while the temperature is 

maintained at a constant 25°C. 

 

Figure 2 and Figure 3 illustrate the characteristic 

curves of the three series PV panel   configurations 

under standard test conditions  (STC) and PSC, 

respectively. These figures clearly demonstrate the 

impact of partial shading, as evidenced by the presence 

of three distinct MPPs.  
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Table 1 TP250MBZ PV module parameters under STC 
Value System parameter 

249 W Maximum power 

60 cells Cell per module 

36.8 V Open-circuit voltage (Voc) 

8.83 A Short circuit current (Isc) 

30 V The voltage at MPP (Vmpp) 

8.3 A Current at MPP (Impp) 

Tata Power Solar Systems Manufacturer 

TP250MBZ Model number 

 

 
                                                                                  (a) 

 
                                                                                    (b) 

Figure 2 The current-voltage (I-V) (a) and power-voltage (P-V) (b) curves of the PV array under standard test 

conditions 
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                                                                       (a) 

 
                                                                      (b) 

Figure 3 The current-voltage (I-V) (a) and power-voltage (P-V) (b) curves of the PV array under partial shading 

(1000W/m2 - 700W/m2 - 500W/m2) 

 

To improve the performance of PV systems, the goal 

was to develop and optimize a MPPT controller 

algorithm designed to mitigate the effects of 

fluctuating weather conditions on the characteristics of 

the PV array. The effectiveness of an MPPT controller 

is generally assessed by its ability to quickly reach the 

MPP, reduce oscillations around the MPP, and 

maintain tracking accuracy despite changing 

environmental conditions. PV systems are frequently 

exposed to a variety of climatic circumstances, 

including partial shading, which decreases the 

instantaneous performance of PV modules by 

exposing them to irregular irradiance levels caused by 

things like cloud cover, building shadows, or bird 

droppings [7]. Therefore, making the PV array operate 

at the MPP is crucial in maximizing power output and 

optimizing system efficiency. Conventional MPPT 

techniques, such as P&O, incremental conductance 

(IncCond), and hill-climbing, have gained widespread 

adoption due to their straightforward implementation 

and low computational requirements [15–17]. P&O 

iteratively adjusts the operating voltage and observes 

the resulting power changes, while IncCond relies on 

the slope of the power-voltage curve to determine the 

direction of perturbation. While these methods 

demonstrate effectiveness in many scenarios, they 
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exhibit inherent limitations, including persistent 

oscillations around the MPP, slow convergence to the 

MPP, and reduced tracking accuracy under rapidly 

changing environmental conditions, especially when 

partial shading occurs. These methods are trapped 

easily in the local MPPs [18, 19]. The shortcomings of 

conventional MPPT techniques have motivated 

research into more sophisticated MPPT algorithms. 

Fuzzy logic control (FLC) has garnered attention for 

its inherent adaptability to changing environmental 

conditions, demonstrating superior tracking accuracy 

compared to traditional methods but FLC achieves 

slower convergence to the GMPP and might get stuck 

in a local maximum instead [20, 21]. Likewise, 

artificial neural network (ANN) hold promises due to 

their self-learning and adaptive capabilities, enabling 

precise tracking under fluctuating solar radiation and 

temperature conditions but still being inefficient in 

terms of convergence speed, oscillation, and 

complexity in implementation. The performance of 

ANNs heavily relies on the quality and quantity of the 

training data, then insufficient or inaccurate data can 

lead to slow convergence, inaccurate tracking, and 

potential instability and also can lead to over-

sensitivity to noise and lead to unwanted oscillations 

around the GMPP [22, 23]. 

 

Recent advancements in MPPT algorithms have 

incorporated metaheuristic optimization techniques, 

expanding the scope of MPPT control. Particle swarm 

optimization (PSO), artificial bee colony (ABC), ant 

colony optimization (ACO), and genetic algorithms 

(GA) have all shown promise in global optimization, 

effectively addressing the dynamic and nonlinear 

properties of photovoltaic systems However many 

metaheuristic methods rely on randomness in their 

search process, leading to non-deterministic 

convergence behavior, and also their performances are 

sensitive to their control parameters and configuration 

[23–29]. Inspired by the hunting strategies of grey 

wolves, GWO has emerged as a promising technique, 

demonstrating efficient and robust optimization 

capabilities well-suited for MPPT applications [8, 30–

32]. Also, the convergence of MPPT algorithms and 

machine learning has yielded innovative approaches 

that enhance the adaptability and learning capabilities 

of MPPT systems. Support vector machines (SVMs) 

and reinforcement learning   (RL) have emerged as 

promising techniques in this domain. These techniques 

utilize historical data and real-time observations to 

dynamically adjust the operating point, enabling 

efficient operation under diverse operating conditions 

[33–36]. Despite significant advancements in MPPT 

algorithms, challenges remain. The implementation of 

these algorithms may present difficulties due to their 

intrinsic complexity, and the selection of the 

appropriate algorithm is dependent upon various 

aspects, including hardware restrictions, 

environmental circumstances, and system design. 

Furthermore, future research should prioritize the 

enhancement of current algorithms, the development 

of hybrid methodologies, and the resolution of 

computational demands associated with advanced 

techniques. Before attacking the next phase of this 

work, let's discuss the motivation behind selecting the 

GWO algorithm for enhancing the MPPT controller. 

The GWO algorithm offers several advantages that 

make it well-suited for this application: 

 Simplicity of implementation: The GWO 

algorithm is characterized by its straightforward 

implementation, making it readily adaptable to 

various MPPT controller architectures. 

 Ease of parameter adjustment: Modifying the 

GWO algorithm's parameters is relatively simple, 

allowing for fine-tuning the algorithm's 

performance to match specific system 

requirements. 

 Efficient optimization with minimal 

information: The GWO algorithm exhibits the 

remarkable ability to optimize a problem using a 

minimal amount of information, making it well-

suited for real-time MPPT applications. 

 Extensive literature support: The GWO 

algorithm has gathered significant attention in the 

research community, with a substantial number of 

articles published on its application and 

advancements. This extensive literature base 

provides a wealth of knowledge and guidance for 

utilizing the GWO algorithm effectively. 

 

The output voltage of a PV array is typically lower 

than the voltage required for most applications. This 

necessitates the use of DC-DC converters to raise the 

voltage of the PV array to the desired level. Among 

the various DC-DC converter topologies, boost 

converters have emerged as a preferred choice due to 

their simplicity, high efficiency, and wide range of 

input voltage capabilities. Boost converters play an 

essential role in PV systems by enabling efficient 

power conversion from the low voltage output of PV 

arrays to the higher voltage levels required for grid 

connection or direct use by various electrical 

appliances, as shown in Equation 1 [14, 37, 38]. 

𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛

1−𝐷
    (1) 

Where Vin is the input voltage, Vout is the output 

voltage and D is the duty cycle generated by the MPPT 

controller. 
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The boost converter operates by storing energy during 

the on-state of a switching element, a metal-oxide-

semiconductor field-effect transistor (MOSFET) as an 

example, and then transferring this stored energy to the 

output load during the off-state, resulting in a voltage 

boost.  The boost converter, Figure 4, employed in this 

paper was designed based on the specifications 

outlined in Table 2: 

 

 
Figure 4 Boost converter with MOSFET N-Channel controlled by duty cycle generated from MPPT controller 

 

Table 2 Table of specifications for the employed boost 

converter 
Value Parameter 

Boost converter Type 

680 µF Cin 

330 µF Cout 

10 mH L 

50 KHz fsw 

1Kw Maximum Power  

 

3.Methods: ameliorated GWO algorithm-

based MPPT 

The GWO technique is a swarm-based metaheuristic 

that takes cues from grey wolves' hunting patterns and 

hierarchical organization. These animals are renowned 

for their effective hunting tactics in packs [31]. In 

general, it is an iterative stochastic algorithm designed 

to solve difficult optimization problems in which an 

efficient classic method is not known perfectly. It 

manipulates one or more solutions in search of the 

optimum. The GWO's interest comes from its ability 

to avoid local optima by using a population of points 

as a search method. The successive iterations make it 

pass from a bad solution to an optimal one; the 

algorithm stops after having reached a stopping 

criterion, generally to reach the specified number of 

iterations or the required precision. One of the 

advantages of this algorithm is its aptitude to optimize 

a problem with a minimum of information or 

parameters, giving a fast approximation of the global 

optimum [10, 31, 39]. 

 

3.1Mathematical modelling 

Grey wolves are recognized as predatory animals that 

tend to reside within a well-organized group of 

typically 5 to 12 wolves, commonly referred to as a 

pack. The entire pack adheres to a highly rigorous 

dominance hierarchy; the Alpha comes at the top of 

the pyramid, and they are responsible for making 

decisions, followed by the Beta, who reinforces the 

command; under the Beta comes the Delta; and the rest 

of the wolves at the bottom of the pyramid are called 

Omega. Apart from their hierarchical social structure, 

grey wolves follow a specific hunting technique 

consisting of three primary phases when hunting in 

groups: the first step is tracking the prey, the second 

step involves surrounding the prey until it ceases its 

movement, and the last step is attacking toward the 

prey [10, 31, 39]. 

 

To construct the mathematical representation of the 

social hierarchy of grey wolves, we will assign Alpha 

as the optimum and designate Beta and Delta as the 

second and third best results. Accordingly, all other 

solutions will be compiled by Omega. The 

optimization progression in the GWO algorithm is 

guided by Alpha, Beta, and Delta, with Omega 

following their lead. In the current paper, we consider 

Alpha as the duty cycle, which gives the GMPP, Beta, 

and Delta the duty cycles that help to a better position 

around the possible GMPP point, while Omega 

updates its duty cycle according to Alpha, Beta, and 

Delta, so that will be placed randomly in a point closer 

to the GMPP [13]. 

 

Practically, grey wolves possess the capability to 

identify the precise location of their prey and 

subsequently encircle it. During the hunt, the alphas, 

betas, and deltas lead, with the omega following their 

lead. However, in abstract searches, we don’t know the 

prey’s position or the optimum in advance, so to 

emulate the hunting instincts of grey wolves, we adopt 
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the premise that the alphas, betas, and deltas possess a 

greater understanding of where the potential prey 

might be situated. As a result, we retain the top three 

solutions achieved and compel the remaining search 

agents to adjust their positions in line with the best 

agents' positions using the specified Equations 2 to 8 

above: 

𝑑𝑎𝑙𝑝ℎ𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = |𝐶1

⃗⃗⃗⃗ .𝑋𝑎𝑙𝑝ℎ𝑎(𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋(n)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  (2) 

𝑑𝑏𝑒𝑡𝑎
⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ .𝑋𝑏𝑒𝑡𝑎(𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋(𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  (3) 

𝑑𝑑𝑒𝑙𝑡𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |𝐶3

⃗⃗⃗⃗ .𝑋𝑑𝑒𝑙𝑡𝑎(𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋(𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  (4) 

𝑋1
⃗⃗⃗⃗  = |𝑋𝑎𝑙𝑝ℎ𝑎 (𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴1

⃗⃗⃗⃗  . 𝑑𝑎𝑙𝑝ℎ𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  (5) 

𝑋2
⃗⃗⃗⃗  = |𝑋𝑏𝑒𝑡𝑎 (𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴2

⃗⃗ ⃗⃗ . 𝑑𝑏𝑒𝑡𝑎
⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  |  (6) 

𝑋3
⃗⃗⃗⃗  = |𝑋𝑑𝑒𝑙𝑡𝑎 (𝑛)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴3

⃗⃗ ⃗⃗ . 𝑑𝑑𝑒𝑙𝑡𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  (7) 

𝑋 (𝑛 + 1) =
5.𝑋1⃗⃗⃗⃗  ⃗+3.𝑋2⃗⃗⃗⃗  ⃗+2.𝑋3⃗⃗⃗⃗  ⃗

10
   (8) 

 

where n denoting the present iteration, 𝐴  and 𝐶  are 

vectors of random coefficients calculated respectively  

by the Equations 9 and 10, 𝑋𝑎𝑙𝑝ℎ𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑛)  , 𝑋𝛽

⃗⃗ ⃗⃗  (𝑛)  and 

𝑋𝛿
⃗⃗ ⃗⃗  (𝑛) are respectively the duty cycle vector of alphas, 

betas, and deltas for the present iteration, 𝑋 (𝑛) is the 

duty cycle vector of grey wolf for the succeeding 

iteration, 𝑑𝑎𝑙𝑝ℎ𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   , 𝑑𝑏𝑒𝑡𝑎

⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗    and 𝑑𝑑𝑒𝑙𝑡𝑎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ are the distance 

between the current optimal position and the current 

position. 

 

The vectors 𝐴𝑘
⃗⃗ ⃗⃗   and 𝐶 𝑘 are considered as follows: 

𝐴𝑘
⃗⃗ ⃗⃗  = 2. 𝑎 . 𝑟1⃗⃗⃗  − 𝑎     (9) 

𝐶 𝑘 = 2. 𝑟2⃗⃗⃗      (10) 

 

Where k= {1;2;3}, and over the iterations, while 𝑟1⃗⃗⃗   and 

𝑟2⃗⃗⃗    are randomized vectors within the given interval 

(0.1) and the vector 𝑎   undergoes exponential decay, 

starting from 2 and decreasing to 0 as shown in 

Equation 11:  

‖𝑎 ‖ = 2. 𝑒
−2.3.𝑛

𝑀     (11) 

 

Where n denoting the present iteration, M the 

maximum iteration count. As it can be observed from 

these equations, the grey wolf is capable of updating 

its location depending on the location of the prey and 

its previous location, via changing parameters 𝐴  and 

𝐶 ; By taking into consideration the randomized 

vectors 𝑟1⃗⃗⃗   and 𝑟2⃗⃗⃗  , the grey wolf can access any location 

within the neighborhood of its target prey. 

  

Figure 5 demonstrates how a search agent adjusts its 

position by referencing alpha, the superior search 

agent. It is noticeable that the end position would be 

within a random location in the circle designated by 

the alpha, beta, and delta locations in the search area. 

The next step is attacking the prey, in which there are 

two phases: the exploitation phase and the exploration 

phase. In the first one, grey wolves conclude their hunt 

by assaulting the prey when it ceases to move. The 

mathematical modeling of this approach is based on 

the gradual decrease of the magnitude of vector 𝑎  , 
which starts at 2 and decreases to 0 during the 

iterations. As the vector 𝐴  𝑙𝑖𝑒𝑠 within the interval (-2a, 

2a), a grey wolf's position can shift to any point 

between its current location and the prey, given that 

the random values of 𝐴  are within the interval (-1, 1). 

Hence, when |𝐴|⃗⃗ ⃗⃗  ⃗ ≤ 1 grey wolves are obliged to attack 

the prey. 

 

During the exploration phase, grey wolves disperse to 

explore for prey and then unite to hunt it down. To 

mathematically represent this dispersion, we use 𝐴 

arbitrary values greater than 1 or less than -1, which 

compel grey wolves to move away from their prey. 

This facilitates the GWO algorithm in searching for an 

optimal global solution [12]. 

 

 
Figure 5 The position of omega is adjusted based on 

the places of alpha, beta, and delta wolves  

 

3.2GWO algorithm application on MPPT  

The primary objective of employing the GWO 

algorithm is to maximize the output power of the PV 

array. To achieve this goal, the duty cycle 'D' is 

considered the key variable that will be manipulated to 

modify the output power. The objective function is 

defined as the maximization of P(D) while ‘D’ adheres 

to the specified duty cycle constraints D min ≤ D ≤ D 

max, where Dmin and Dmax represent the duty cycle 

limits. The flowchart illustrating the ameliorated 

GWO algorithm is presented in Figure 6. The 

flowchart outlines the algorithm's primary steps, 

which include: 

 

a1 
C1 

a2 
C2 

a3 

C3 

R 

α β 

δ 

ω 

Estimated position of prey 

dα 

dβ 

dδ 
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 Initialization: Initializing the number of agents 

with MSA=16, as well as the random value of the 

duty cycles (AlphaDC, BetaDC, DeltaDC) between 

Dmin = 0,02 and Dmax = 0.98, and the maximum 

iteration to Maximum_Iteration = 20. 

 Evaluate the MPP's position: Measure and 

compare the power for each agent 

(Random_DutyCycle_table), and assign Dalpha 

(AlphaDC), Dbeta (BetaDC) and Ddelta (DeltaDC) to 

the best duty cycles with the highest power from 

Ppv_maximum_table; 

 Update of duty cycle positions: The duty cycle 

values are updated according to Equations 5. 6 and 

7, with dalpha, dbeta and ddelta designating the distances 

of duty cycles Dalpha (AlphaDC), Dbeta (BetaDC) and 

Ddelta (DeltaDC) from the MPP. Then power is 

recalculated for the new duty cycle table. 

 Stop criterion: The algorithm stops when the 

maximum iteration has been reached or an optimal 

duty cycle has reached the GMPP and the variation 

of power is still smaller than the defined ratio in 

Equation 12. 

 Algorithm reset: The algorithm starts again if the 

power obtained decreases  or increases by a 

predefined ratio, as exposed in Equation 12, or if the 

number of iterations has reached its maximum.  
|P(dalpha)−Ppv |

P(dapha )
≥ 4%   (12) 

 

4.Results  
This section introduces the MATLAB/Simulink 

model developed to assess the effectiveness of the 

proposed ameliorated GWO-based MPPT algorithm 

given in Figure 7. This model contains three series PV 

modules, voltage and current sensors, a boost 

converter, and a variable resistive load. The MOSFET 

is controlled by the pulse width modulation (PWM) 

signal generated by the proposed algorithm. 

The experimental setup for this research involves a 

comprehensive integration of hardware and software 

components. The hardware configuration includes a 

Dell workstation computer with an 11th Gen Intel(R) 

Core (TM) i5-11500H Processor (64 bits) running 

Windows 11 (64 bits). Additionally, a specific model 

of the PV array, tailored to the research objectives and 

outlined in Table 1, is employed. The hardware setup 

further incorporates a boost converter, as detailed in 

Table 2, and a variable resistive load. This hardware 

configuration is complemented by sophisticated 

software tools, with MATLAB/Simulink serving as 

the primary computational environment. The selection 

of MATLAB/Simulink is motivated by its robust 

simulation capabilities, providing a conducive 

platform for modeling and analyzing the dynamic 

behavior of the PV system under diverse operating 

conditions. The integration of this hardware-software 

framework enables a meticulous examination of the 

proposed MPPT algorithm's performance, facilitating 

a detailed evaluation of its efficacy and adaptability 

within the specified parameters. 

 

 
Figure 6 Flowchart of the Ameliorated GWO 

algorithm applied to MPPT 
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Figure 7 Simulink model of the PV system with Ameliorated GWO-based MPPT 

 

The simulation was performed with a three-series PV 

panel subject to three configurations patterns. The first 

pattern is a uniform irradiation of 1000 W/m2 on the 

three PV panels as shown in Figure 8, the second 

pattern is a variety of irradiations on each PV module, 

respectively 1000 W/m2, 700 W/m2 and 500 W/m2 as 

shown in Figure 9, and the third pattern is a variety of 

irradiations on each PV module, respectively 1000 

W/m2, 700 W/m2 and 1000 W/m2 as shown in Figure 

10(a), with a constant temperature at 25°C. Under 

STC, the MPP reaches 746.97 W, while under PSC, 

the GMPP reaches 414.23 W (Figure 3 (b)) in the first 

case, and 572, 95 W in the second case (Figure 10 (b)). 

 

The achievements illustrated in Figures 8(a), 9(a), 

10(a), and 11(a) represent a notable advancement in 

the domain of MPPT algorithms. These achievements 

not only align with the current trend of optimizing 

tracking curves, but also demonstrably surpass them 

by achieving faster convergence times, improved 

accuracy, and significantly reduced oscillations. The 

proposed ameliorated GWO-based MPPT algorithm 

has demonstrated remarkable performance, achieving 

the MPP and the GMPP within a short time frame of 

approximately 0.21 seconds, coupled with an 

impressive accuracy rate of 99.75% in STC and, 

respectively, 0.48 seconds, coupled with an accuracy 

rate of 99.59% in PSC for the second pattern and a 

tracking time of approximately 0.31 seconds, coupled 

with an impressive accuracy rate of 99.55% in PSC for 

the third pattern. Figure 8 (b), Figure 9 (b) and Figure 

10 (c) show the duty cycle evolution behind these 

tracking curves. To assess the response of our GWO-

based MPPT algorithm under rapid irradiance 

fluctuations, a transition from STC to PSC was 

simulated, and the resulting power-voltage curves (a) 

and duty cycle evolution (b) are presented in Figure 

11. 

 

 
                                                                       (a) 
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                                                                       (b) 

Figure 8 Tracking curves of power (a) and duty cycle (b) evolution under STC with Ameliorated GWO-based MPPT 

 
                                                                        (a) 

 
Figure 9 Tracking curves of power (a) and duty cycle (b) evolution under PSC (1000W/m2 - 700W/m2 - 500W/m2) 

using Ameliorated GWO-based MPPT 
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                                                                        (a) 

 
                                                                        (b) 

 
                                                                         (c) 

Figure 10 The (I-V) and (P-V) curves (a) and tracking curves of power (b) and duty cycle (c) of the PV array under 

PSC (1000W/m2 - 700W/m2 - 1000W/m2) using Ameliorated GWO-based MPPT 
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                                                                        (a) 

 
                                                                         (b) 

Figure 11Tracking curves of power (a) and duty cycle (b) evolution under the transition from the first to the second 

pattern irradiation using Ameliorated GWO-based MPPT 

 

5.Discussion 
The achievement marked by the ameliorated GWO 

algorithm is a noteworthy improvement over existing 

MPPT techniques, which often require more time to 

converge to the GMPP and might not consistently 

attain such high levels of accuracy and minimal 

oscillation. The ability of this algorithm to rapidly 

converge to the GMPP holds great promise for 

enhancing the efficiency of PV systems, particularly 

in scenarios where rapid fluctuations in solar 

irradiance occur, such as during cloudy conditions or 

other dynamic environmental factors. 

 

The ameliorated GWO-based MPPT algorithm 

exhibits significant advancements in the field of 

MPPT algorithms, as evidenced by its ability to 

achieve GMPP within a very short time and with high 

accuracy rates under both STC and PSC. This 

performance aligns with the findings of recent 

research that highlights the potential of metaheuristic 

optimization techniques like GWO in enhancing the 

performance of MPPT algorithms. 

 

To contextualize these results, a comparative analysis 

with recent relevant studies in the literature is 

essential. Recent advancements in MPPT algorithms, 

particularly those employing metaheuristic 

optimization techniques, have shown a trend toward 

enhancing both convergence speed and accuracy. The 

proposed ameliorated GWO-based MPPT algorithm, 

as evidenced by the simulation results, aligns with and 

even surpasses the benchmarks set by contemporary 

approaches.  

 

Several recent papers have reported on the application 

of GWO for MPPT in PV systems. In a 2019 study, Da 

et al. [40] proposed a GWO-based MPPT algorithm 
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that achieved an efficiency of 99.99% and a 

convergence time of 0.7 seconds under STC, while in 

PSC, it achieved an efficiency of 99, 86% and a 

convergence time of 0.72 seconds. Similarly, by Chtita 

et al. [41] presented a GWO-based MPPT algorithm 

that attained an efficiency of 99.96% and a tracking 

time of 2.75 seconds under STC, while in PSC, it 

achieved an efficiency of 99,58% and a convergence 

time of 2.87 seconds. In another 2022 research paper,  

Motahhir et al. [19] also proposed a GWO-based 

MPPT algorithm that reached an efficiency of 99.97% 

but a tracking time of 2.63 seconds under STC, while 

in PSC the  achievement in efficiency was 99,74% and 

2,76 seconds in convergence time, as shown in Table 

3. The ameliorated GWO-based MPPT algorithm 

outperforms these algorithms in terms of both 

convergence time and accuracy. Its ability to achieve 

GMPP within 0.21 seconds in STC, and 0.48 seconds 

in PSC, coupled, respectively, with accuracy rates of 

99.75% and 99.59%, represents a significant 

improvement over previous GWO-based MPPT 

algorithms. The superior performance of the 

ameliorated GWO-based MPPT algorithm can be 

attributed to several improvements, including: 

- Optimal parameter tuning for the GWO 

algorithm: The GWO algorithm's performance is 

influenced by various parameters, including the 

number of search agents, weight coefficients, and 

the number of iterations. Tuning these parameters 

to their optimal values led to the best results in our 

application. 

- Improved exploration and exploitation: The 

algorithm's enhanced exploration capabilities allow 

it to thoroughly search the search space, while its 

improved exploitation capabilities enable it to 

refine its search towards the GMPP. This 

improvement stems from the diminished 

randomness of the duty cycles over iterations, 

achieved by employing the decreasing exponential 

function in Equation 10 instead of the linear 

decreasing function, which gives the results shown 

in Figure 8 (b), Figure 9 (b), Figure 10 (c), and 

Figure 11 (b) that lead to quicker identification of 

the GMPP under dynamic weather conditions. This 

translates to reduced energy losses and higher 

efficiency. 

- Adaptive parameter tuning: The algorithm's 

ability to dynamically adjust its parameters based 

on the current operating conditions contributes to its 

robustness and adaptability to reduce oscillations 

and improve convergence speed. 

- Effective noise filtering: The algorithm's 

incorporation of noise filtering techniques like 

median filtering and moving average filtering to 

mitigate the impact of noise on its tracking 

performance. 

 

In summary, ameliorated GWO truly shines in 

challenging situations, especially during dynamic 

weather conditions such as fluctuating clouds or 

partial shading. In contrast to traditional MPPT 

algorithms that may struggle in these scenarios, 

Ameliorated GWO excels. Its exceptional tracking 

abilities guarantee optimal energy capture even in 

swiftly changing environments. Additionally, its 

efficiency is notably advantageous in large-scale PV 

systems. Consider the significant cost savings and 

environmental benefits achieved by maximizing 

power output on extensive solar farms! These 

instances illustrate how the enhanced performance of 

ameliorated GWO translates into tangible advantages 

in practical applications. However, despite its 

advantages, the GWO-based MPPT algorithm has 

some limitations: 

- Parameter sensitivity: The performance of the 

GWO algorithm is sensitive to the selection of its 

parameters, such as the number of search agents, the 

weight coefficients, and the number of iterations. 

Improper parameter selection can lead to slow 

convergence, oscillation around the MPP, or early 

convergence to a local maximum. 

- Limited output voltage range: One of the primary 

limitations of a boost converter is its limited output 

voltage range. The output voltage is always greater 

than the input voltage, but it is limited by the 

maximum voltage rating of the switching element 

(MOSFET in our case) and the inductor. 

- Output voltage ripple: Boost converters produce a 

pulsating output voltage due to the switching action 

of the transistor. This ripple can be a source of noise 

in the system and can affect the performance of 

sensitive electronic devices. 

- Balance between exploration and exploitation: 

The GWO algorithm needs to strike a balance 

between exploration and exploitation. Exploration 

enables the algorithm to search a wide area of the 

search space to find the global maximum, while 

exploitation allows it to refine its search around the 

MPP. If the algorithm favors exploration too much, 

it may take a long time to converge, while if it 

favors exploitation too much, it may get stuck in 

local maxima. 

- Voltage spike issue: During the initial stage of the 

MPPT process, the GWO algorithm may generate 

sudden changes in the duty cycle of the boost 

converter, leading to voltage spikes in the DC 

output. 
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- Parameter tuning for boost converter: The 

optimal parameters for the GWO algorithm may 

need to be adjusted based on the specific 

characteristics of the boost converter and the PV 

system. This can be a time-consuming and complex 

process. 

 

Table 3 Comparison between Ameliorated GWO and GWO-based MPPT algorithm [9] under the defined scenarios 
Efficiency (%) Reached power 

(W) 

Optimal power 

(W) 

Tracking time (s) Tracking 

algorithm 

Shading 

patterns 

99,77 745 746,7 0,21 Ameliorated 
GWO 

First Pattern 
(STC) 

99,97 159,95 160 2,63 GWO[9] 

99,63 412,5 414 0,48 Ameliorated 

GWO 

Second Pattern 

(PSC) 

99,64 90,44 90,77 2,85 GWO[9] 

99,55 570,4 572,9 0,31 Ameliorated 

GWO 

Third Pattern 

(PSC) 

99,74 117,28 117,59 2,76 GWO[9] 

99,79-99,66 745,1-412,6 746,7- 414 0,21-0,4 Ameliorated 

GWO 

Transition from 

STC to PSC 

 

The ongoing development and enhancement of 

metaheuristic optimization techniques, such as GWO, 

are crucial for further improving the performance of 

MPPT algorithms in PV systems.  

 

Researchers are diligently exploring innovative 

methods to enhance the convergence speed, accuracy, 

and adaptability of these algorithms. Such 

advancements are instrumental in paving the way for 

more efficient and reliable solar energy systems in the 

future. A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future work 
This study introduces a precise analytical model of a 

PV system operating under PSC. An ameliorated 

GWO-based MPPT algorithm is suggested, which 

adjusts the pursuit behavior by prioritizing the alpha 

agent in Equation 8 of the conventional GWO 

algorithm. This facilitates more accurate tracking of 

the GMPP of the PV system under PSC in a shorter 

tracking time. 

 

To assess the effectiveness of the suggested 

ameliorated GWO algorithm, multiple simulations are 

conducted on three series PV panel configurations 

exposed to uniform irradiation and three distinct 

shading patterns. The dynamic performance of the 

algorithm is evaluated by subjecting the proposed 

configurations to 4 seconds of changing shading 

patterns. It is noted that the proposed algorithm 

achieves more precise GMPP tracking in less time. As 

a result of the stochastic nature of heuristic algorithms, 

it was found that the proposed algorithm does not get 

stuck in local MPP, as well as has a shorter tracking 

time than the traditional GWO-based MPPT 

algorithms [9]. Based on the performance analysis, the 

ameliorated GWO algorithm emerges as a superior 

choice compared to the comparative achievements in 

terms of stabilizing power output around the GMPP 

and enhancing tracking speed. 

 

Future research will focus on the experimental results 

of applying this approach. It has been noted that the 

currently proposed algorithm struggles to track minor 

variations in irradiation under the predefined ratio of 

Equation 12, and small oscillations persist. To address 

this issue, the plan is to integrate the presented 

algorithm with the Kalman filter, which has 

demonstrated significant efficacy in tracking. This 

combination aims to enhance the algorithm's precision 

and stability, leading to more efficient PV system 

performance. 
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Appendix I 

S. No. Abbreviation  Description  

1 ABC Artificial Bee Colony 
2 AC Alternative Current  

3 ACO Ant Colony Optimization  

4 ANN Artificial Neural Networks  

5 FLC Fuzzy Logic Control 

6 DC Direct Current  

7 GA Genetic Algorithms  

8 GMPP Global Maximum Power Point  

9 GMPPT  Global Maximum Power Point 
Tracker 

10 GWO Grey Wolf Optimization 

11 IncCond Incremental Conductance 

12 MOSFET  Metal-Oxide-Semiconductor 
Field-Effect Transistor 

13 MPP Maximum Power Point  

14 MPPT  Maximum Power Point Tracker 

15 P&O Perturb and observe 

16 PSC Partial Shaded Conditions 

17 PSO Particle Swarm Optimization 

18 PV Photovoltaic 

19 PWM Pulse Width Modulation 

20 RL Reinforcement Learning 

21 STC             Standard Test Conditions 

22 SVMs Support Vector Machines 
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