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1.Introduction 
1.1Background 

In recent years, urban living has dramatically 

changed for humanity. At the beginning of the 

twentieth century, only 10% of the world's population 

lived in metropolitan areas. It has now reached nearly 

50% of the present population, and in the upcoming 

years, this percentage of the urban population will 

increase even further. Urbanization is seen as a 

significant human endeavor that denotes the 

transformation of a naturally vegetated and terrain 

into a built-up and impenetrable one.  
 

 
*Author for correspondence 

The usage of materials, including concrete, marble, 

tiles, roof sheeting, and bitumen, is a significant 

contributor to this impermeable area [1]. A broad 

spectrum of professionals has expressed interest in 

studying urbanization. The subject's interdisciplinary 

scope piques the interest of ecologists, urban planners 

and civil engineers, sociologists, geographers, 

administrators, and, eventually, the general public 

[2]. This is due to the large number of activities and 

processes that occur in urban ecosystems daily [3]. 

Although an adequate definition of urban sprawl is 

debatable, there is general agreement that it is defined 

by an uncontrolled pattern of expansion, driven by a 

variety of mechanisms and resulting in inefficient 

resource allocation [4, 5]. 

Research Article 

Abstract  
The pressing issue of global climate change is being rigorously examined, with urban heat islands (UHIs) identified as a 

contributing factor. A UHI is a city or town area exhibiting a temperature variance from its surrounding environment. 

Researchers employ various relative UHI parameters to model UHI data and predict temperature fluctuations. For the 

study area of Srinagar City, Jammu & Kashmir, India, land surface temperature (LST) data and its correlated parameters 

were sourced from satellite imagery. The LST data for the region were analyzed to understand the development and 

investigate the UHI effect and its variations. Utilizing an 8-day revisit period during the busiest season month, the 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite provided LST data from 2001 to 2021. To address the 

large dataset, which includes 16 samples of LST data per square kilometer each year measured in Kelvin (K), different 

machine learning (ML) techniques were employed to establish associations for UHI modeling. These clusters were then 

compared with established scientific categories in the study area. The long short-term memory neural network (LSTM) 

model, using time-series data, predicted changes in urbanized areas, vegetation cover, wetlands, and other factors. For 

land use land cover (LULC) prediction, the neural network (NN) model outperformed all others, with Regression (R) = 

0.897, Validation = 0.912, and Training = 0.931, and mean squared error (MSE) = 2.012, Validation = 0.191, and 

Training = 1.124. This paper strives to identify and analyze the relationship between LULC change and LST variations in 

the context of urbanization. Initially, it examines the correlations between LST and variables such as vegetation, man-

made structures, and agriculture, employing built-up indices within each LULC category and vegetation cover. 

Subsequently, it assesses the impacts of LULC change and urbanization on UHI using hot spot and urban landscape 

analyses. Finally, it proposes a model employing non-parametric regression to predict future urban climate trends, 

considering anticipated changes in land cover and land use. 
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The temperature variance between urban and 

neighboring neighboring zoneshas been widely 

observed, and this phenomenon has been dubbed the 

"urban heat island (UHI) effect" [6]. It is a global 

problem that threatens the sustainability and livability 

of our urban environments. Addressing this 

complexity in monitoring and reviewing urban 

planning and management processes and practices 

cannot be overstated. Spatial analysis and 

“geographic information systems” (GIS) have been 

mainly used in the last two decades to identify, 

interpret, analyze, and simulate land use change 

processes. Satellite imaging delivers consistent data 

across large areas at various geographical scales 

[79]. 

 

The land surface temperature (LST) produced from 

landsat images is utilized research and analyze the 

UHI effect, which makes considerable use of satellite 

data. The surface urban heat island (SUHI) effect is 

the name given to the UHI effect when it is 

researched using LST. LST is a crucial element in 

understanding urban climate since it is one of the 

fundamental factors governing the Earth's physical, 

chemical, and biological processes [10]. LST 

regulates surface heat and water exchange with the 

atmosphere and may be calculated from the effective 

radiating temperature of the Earth's surface. Many 

heat balance parameter estimation, and climatological 

monitoring studies have made use of   LST [1113]. 

 

1.2Challenges 

Since the study area, i.e., Srinagar city, has a 

tremendous amount of cloud cover during the winter, 

it can impede moderate resolution imaging 

spectroradiometer (MODIS) from collecting UHI 

data. This, throws a challenge for a researcher to 

work on structured and voluminous data. 

 

1.3Motivation 

Since significant urban development, Srinagar city of 

Jammu and Kashmir, India, has seen a tremendous 

urban expansion. In order todetermine the short- and 

long-term magnitudes of  land use land cover 

(LULC) and LST alteration in this region, techniques 

based on recurrent neural network (RNN) 

architecture, namely long short term memory 

(LSTM), can be  practical, which ultimately shall be 

helpful to urban planners and politicians to lessen the 

impact of  UHI [14]. As a result, this study examines 

the link between LST under various LULC 

categories, calculates the historical data change of 

LULC and its influence on LST, and conducts a 

correlation analysis of various land cover metrics 

with LST for the years 2001, 2011, and 2021. The 

LSTM algorithm has also been used in this study to 

estimate the LULC and LST situation for Srinagar 

city in 2024 [15, 16]. 

 

1.4Objectives 

The following are the main objectives of the 

proposed study. 

 To develop a predictive framework for structured 

voluminous UHI datasets 

 To validate the performance of the proposed 

framework with the state-of-the-art parameters. 

 

1.5Contribution 

In this study, an effort has been made to pinpoint and 

examine the relationship between LULC change and 

changes in LST in the context of urbanization. 

Initially, emphasis had been given to studying the 

relationship between LST and vegetation, man-made 

features, and agriculture using built-up indices within 

each LULC category and vegetation cover. The 

impacts of LULC change and urbanization in UHI 

are then assessed using hot spot analysis and urban 

landscape analysis. Finally, a proposed model uses 

non-parametric regression to predict future trends in 

an urban environment, taking into account expected 

changes in land cover and land use. The findings of 

urban sprawl and mitigating the effects of UHI. 

 

The structure of this article is organized as follows: 

Section 1 provides a brief overview of urbanization 

and various related topics. Section 2 summarizes the 

literature review. The data and methodology adopted 

are detailed in Section 3. Section 4 presents the 

findings, and the discussion of the study is elaborated 

in Section 5. Finally, Section 6 presents the 

conclusion and outlines future work. 

 

2.Review of literature 
Several studies have been conducted to understand 

UHI phenomena, establish the relationship between 

LULC and LST, and modelling UHI data.  Studies 

[1720] looked at 32 Chinese cities using LST data 

and discovered that the annual average UHI effect 

was higher during the day than at night. An insightful 

information was provided about how the UHI was 

evaluated on a regional level in China [21]. 

Additionally, based on LST, authors [22] created an 

algorithm to map the global intensity of UHI. This 

study uses relative LST as a UHI indicator, 

continuing a recent trend. The temperature difference 

inside the urban area will henceforth be referred to as 

relative LST [23]. Similar to this, other research 

[2426] has looked at a wide range of urban 
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characteristics and elements that contribute to the 

development and deepening of the UHI. These 

variables may be categorized into three primary 

groups, namely environmental, socioeconomic, and 

urban morphology variables, as shown in Table 1. 

The study views climate, meteorological parameters, 

and land features as uncontrolled elements that 

regulate environmental parameters. 

 

Table 1 Three categories are used to summarize the factors affecting UHI. Climate conditions, meteorological 

variables, and geographical qualities all contribute to the environment. While the complicated intricacy of urban 

function governs socioeconomic aspects, urban elements' geometric performance and design determine urban 

morphology 

Category Factors References 

Urban Category  Pavements 

Water bodies 

Open Spaces 

Vegetation 

[27, 28] 

Socio-economic Infrastructure 

Buildings 

Built-up ratio 

Heat Appliances 

Transportation 

Building height, width aspect ratio(AR) 

[29, 30] 

Environmental Factors Geographical features 

Forest cover 

Vegetation 

Population densities 

Land use 

Long and short-wave radiations 

[31] 

 

To mimic UHI, researchers [32] have used various 

physics-based modeling techniques. Urban canopy 

models (UCMs) are the most well-known physics-

based approaches to UHI evaluation. The “weather 

research and forecasting (WRF)” examines how 

urbanization affects local climate use UCMs. This 

method can predict how urbanization will affect local 

climate change by capturing exchanges between the 

land surface and the atmosphere. To describe the UHI 

in Toronto, Canada, three distinct UCMs were 

assessed for effectiveness. The researchers [33] 

concluded that the more complicated UCMs (multi-

layer models), primarily because these models do not 

replicate the variety of urban architecture, do not 

reliably forecast air temperature.  

 

Similar attempts have been made to arm decision-

makers with the resources they need to develop 

effective UHI mitigation plans. For instance, 

researchers [34] gave policymakers an analytical tool 

when combining four specified mitigation methods. 

Several researchers recently put forth a paradigm for 

selecting the best variety of UHI mitigation 

measures, including performance evaluation models, 

simulation models, and genetic algorithm (GA) 

refinement in the selection process [35]. However, 

these tools are beneficial for creating mitigation plans 

and don’t offer a quick evaluation of how decisions 

on urban design may affect UHI.  Adopting 

mitigation techniques would usually require planners' 

proactive use of extra UHI impact mitigation 

measures (e.g., green roofs) [36, 37]. Urban planners 

can equip themselves with a tool that can assist them 

in examining the effect of their typical urban design 

decisions on UHI and determine what can be done to 

minimize the drawbacks by altering the design before 

they get to the stage where they wish to apply 

specialized solutions for the reduction of UHI [38]. 

 

Apart from these, recent developments in machine 

learning (ML) modeling techniques and data mining 

platforms have proven to be helpful in data extraction 

from a range of readily accessible datasets [39, 40]. 

In [41], unsupervised ML was used to anticipate 

China's pollutant concentrations. They [41] 

developed a methodology to model sustainability 

performance at multiple different temporal and 

spatial scales by integrating data-driven modeling 

techniques and building energy simulation strategies. 

The findings indicate that by including ML 

techniques in the current simulation workflow, there 

is a sizeable, significant chance to increase the 

accuracy of energy models. To the authors' best 

knowledge [42, 43], few recent researchers have 

employed data-driven approaches to simulate UHIs 

despite the methods' promise. For instance, to look 

into how temperatures throughout the night affect 

energy usage at the metropolitan level, authors 
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developed an ML model by using supervised 

algorithms based on open-source information 

available in Berlin City. Similarly, using 

unsupervised learning and statistical techniques, the 

researcher evaluated urban planning in terms of UHI 

changes [44].  

 

The paper also highlights ML modeling techniques 

and data mining platforms to extract data from 

readily available datasets. Studies have used 

unsupervised and supervised ML to anticipate 

pollutant concentrations, simulate energy 

performance, and evaluate urban planning  regarding 

UHI changes. However, only a few studies have 

attempted to offer decision-makers and urban 

planners practical results. The current methodologies 

do not generally incorporate socio-economic factors 

such as population density or traffic flow, and they 

do not frequently use publicly accessible datasets, 

which further limits their appeal. 

The use of ML techniques to comprehend the 

interplay between various urban characteristics has a 

lot of promise, as can be shown from the review 

above Nevertheless, only a small number of research 

have attempted to offer decision-makers and urban 

planners results that are simple to put into practice. 

Instead of emphasizing explicability and 

interpretability, the tendency in that study area to 

focus more on prediction and accuracy. As it is 

known that ML techniques can execute a vast number 

of record features, socio-economic factors like 

population density or traffic flow are not generally 

incorporated [45]. The fact that the current 

methodologies don't frequently use publicly 

accessible datasets may further limit their appeal.  In 

order to have a bird’s eye view regarding the studies 

conducted using ML techniques, we have enumerated 

all the studies in Table 2, highlighting methods used, 

results, advantages, and limitations. 

 

Table 2 Comparative analysis of ML techniques in terms of results obtained, advantages, and limitations used in 

existing works 

S. No. ML methods used Results Advantages Limitations 

1 Regression analysis [39] Normalized difference built-up index 

(NDBI) ,  normalized difference 

vegetation index (NDVI)  are effective 

indicators 

Quantifies LULC 

impacts on LST 

Limited to specific 

study area 

2 Artificial neural network 

(ANN) [40] 

High agreement between predicted and 

real LULC maps 

Reliable predictions for 

future LULC. 

Reduced subjectivity 

and uncertainty 

Limited to specific 

study area 

3 Random forest(RF) [41] R2: 0.56-0.71, mean absolute error 

(MAE): 0.05-0.07 

Accurate models at the 

city level 

Low generalizability 

between cities 

4 LSTM  

Support Vector 

Regression (SVR)  

[42] 

Low errors MAE, mean squared error 

(MSE) for LST estimation 

 Higher errors (MAE, MSE) for LST 

estimation 

Higher accuracy and 

reliability compared to 

SVR 

Limited to specific 

study area 

5 Support vector machine 

(SVM) 

ANN 

RF 

[43] 

High classification performance 

Predicts LST and LULC distributions 

Predicts SUHI variations 

Outperforms other 

classification 

techniques 

Utilizes various 

modeling approaches 

and prediction tools 

Evaluates overall 

performance using R2 

and MSE 

Suitable for remote 

sensing applications 

Depends on quality and 

availability of input 

data 

Limited to specific 

study area 

6 ML 

ANN 

cellular automata (CA) 

[44] 

Accurate prediction of LULC changes 

Accurate mapping of surface 

temperature changes 

Future LULC prediction accuracy of 

89.2% 

Provides insights for 

minimizing extreme 

UHI effects 

Demonstrates high 

prediction accuracy 

A broad review of UHI 

and thermal data 

Highlights progress in 

multi-sensor image 

optimization 

Limited to specific 

study area 

Limited to specific 

study area 

Focuses on specific 

methodologies and 

applications 
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3.Methods 

3.1Dataset and its  description 

The initial step is to access and download MODISs 

high-resolution satellite imageries. The ten images 

were clipped using the boundary shape file (the 

coordinates of Srinagar city) retrieve the LST data 

within the chosen coordinates. The data for relative 

parameters (elevation and aspect) have been acquired 

from the digital elevation model (DEM) tool. (30 m 

shuttle radar topography mission (SRTM) and 1 km 

global topographic (GTOPO) MODIS data have been 

resampled to 30 m to quantify the impact of 

resolution in predicting UHI. As such, the UHI 

information for Srinagar city has been computed at 

two spatial details- the coarse resolution (1 km grid) 

and the finer resolution (30 m grid).  LST data was 

evaluated in this way to assess the urbanization of 

Srinagar city and help in analyzing the UHI impact 

and its variation over Srinagar city. Spring, summer, 

autumn, and winter are the four seasons in the study 

area (Srinagar City). The LST data was taken during 

the peak month of the season and the 8-day revisit 

time [46]. The following (Table 3) describes the 

approach used to gather LST data from 2001 to 2021: 

 

Table 3 Data extraction time interval 

Season Month Day  (8-day visit period) 

Winter January 1, 9, 17, 25 

Spring April 97, 105, 113, 121 

Summer August 217, 225, 233, 241 

Autumn November 305, 313, 321, 329 

 

The Srinagar development authority (SDA) provided 

the research area's coordinates and boundaries, which 

covered urban and suburban cover areas (Figure 1). 

Three zones or regions make up the city of Srinagar. 

U, V, and W stand for urbanized area, vegetation 

index, and waterbodies/wetland. Based on Srinagar's 

geographic viability, geoscientists have classified the 

area. The categorization is utilized in the analysis 

without being altered because it is hardcoded in the 

dataset. 

 

The dataset consists of 6000 records with 21 

attributes, including year, feature identification 

(FID), LST in Kelvin at various times of the year (1-

16), AR, elevation, and the target variable LULC.  

 

The general description of the attributes is as follows: 

LST: For the current investigation, LST from eight 

days separated by 1 km were employed. The study 

uses data spanning 19 years, from 2001 to 2021. 

Every year, data from four set periods (winter, spring, 

summer, and autumn) have been used [47]. 

Elevation: The advanced spaceborne thermal 

emission and reflection radiometer (ASTER) DEM 

map was used to determine the elevation of the 

research area's pixels. Standard ASTER DEM data 

packages are created with 30 million posts and have 

Z accuracies, typically between 10 million and 25 

million root mean squared error (RMSE). The 

ASTER DEM sceneries including stereo-correlation, 

are processed automatically to create scene-based 

DEMs. Outliers and any remaining poor values are 

deleted, and then the selected data is summed to 

provide the final pixel value. Each pixel's elevation 

has been determined using the ASTER DEM. After 

correcting any remaining abnormalities, the data is 

divided into 1×1-degree tiles. Even after 

urbanization, the elevation of the Earth's surface 

remains relatively constant throughout time and does 

not significantly vary [47, 48]. 

 LULC: There isn't a single, optimum approach for 

classifying LULC. Even when an objective numerical 

technique is utilized, there are several points of view 

in the categorization process, and the process itself 

has a tendency to be subjective. Since LULC patterns 

fluctuate to meet changing needs for natural 

resources, there is no logical reason to believe that a 

single complete list should be enough for more than a 

short period. Few consumers will be content with an 

inventory that does not satisfy most of their wants 

since each categorization is designed to fit the user's 

needs. Multiple categorization methods are included 

in the MODIS land cover type product, which 

describes the characteristics as determined by 

observations covering a year's worth of Terra data 

[47, 49]. The fundamental land cover system defines 

17 land cover classes, including 11 natural vegetation 

classes, 3 developed and mosaicked land classes, and 

3 non-vegetated land classes, as the international 

geosphere-biosphere programme (IGBP) specified. 

All of the LULC's descriptions are included in Table 

4. 
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Figure 1 Urban built-up in the study area 

 

Table 4 LULC classification as per international standards 

LULC class value Name Description 

1 Evergreen Needle leaf forests Conifer trees (Tree cover > 60%) 

2 Evergreen Broad leaf forests Evergreen Broad leaf (Tree Cover > 60%) 

3 Deciduous Needle leaf forests  Larch trees (Tree Cover > 60%) 

4 Deciduous Broad leaf forests  Broadleaf trees (Tree Cover > 60%) 

5 Mixed Forests  Neither Broad leaf nor Needle leaf (Tree Cover > 60%) 

6 Closed Shrub-lands Woody Perennials (Tree Cover > 60%) 

7 Open Shrub-lands Woody Perennials (Tree Cover > 10%-60%) 

8 Woody Savannas Tree Cover > 10%-60% 

9 Savannas Tree Cover > 10%-30% 

10 Grass Lands Herbaceous annuals  

11 Permanent Wetlands Inundated lands (30-60% water ) > 10% Vegetation cover  

12 Croplands >60% area cultivated land 

13 Urban and Built-up Lands >30% including buildings and Vehicles 

14 Natural Vegetation Small Scale cultivation (40-60%) including natural tree, shrubs or 

herbaceous vegetation 

15 Snow and Ice >60%  area covered by snow and ice > 10 months of the year 

16 Barren >60 % land is barren 

17 Water bodies >60% area covered by water bodies 

255 Not Classified Unclassified data  

 

3.2Proposed model 

The primary objective of this section is to suggest 

research that will use the LSTM technique to forecast 

the link between LST and LULC. The methodology 

adopted is depicted in Figure 2, and the study's block 

diagram is given in Figure 3. The LST data has been 

extracted from MODIS satellite imagery.  It has been 

processed further to get the actual temperature by 

downscaling (DN × 0.02). The satellite images with 

defined projection have been clipped by a vector of 

Srinagar (boundary shape coordinates), and the LST 

data of the whole study area, i.e., Srinagar, have been 

processed. The data for relative parameters (elevation 

and aspect) have been acquired from the DEM Tool. 

(30 m SRTM and 1 km GTOPO) MODIS data have 

been resampled to 30 m to quantify the impact of 

resolution in predicting UHI. As such, the UHI 

information for Srinagar city would be computed at 
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two spatial details- the coarse resolution (1 km grid) 

and the finer resolution (30 m grid). 

 

The approach used in this study automatically 

assesses the impact of LST on the extent of land 

cover by using the tabular LST data as input to the 

model. When utilizing LSTM, it has been shown that 

LSTM outperforms other forecasting-based models.  

It is constructed that the vanishing gradient problem 

is nearly eliminated while the training model is 

unchanged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Methodology/flowchart depicting the flow of the work 

 

LSTMs can deal with noise, distributed 

representations, and continuous values in addition to 

a long time lags inherent in specific problems. In 

contrast to the hidden Markov model (HMM), 

LSTMs do not require a fixed number of initial states 

(HMM). With LSTMs, we have access to various 

tuning options, including learning rates, input biases, 

and output biases. Thus, there is no requirement for 

fine-tuning. Advantages of LSTMs include a weight 

update complexity of O (1), like that of back 

propagation through time (BPTT), and the ability to 

learn from past examples. Unlike RNNs, LSTMs 

have a hidden layer that is a gated unit or gated cell, 

as shown in Figure 4. This is the primary distinction 

between the two architectures. It has four layers that 

work together to generate the cell's output and its 

current state. These two pieces of information are 

then relayed to the next covert level. When compared 

to RNNs, LSTMs have three logistic sigmoid gates 

and one tanh layer, while RNNs only have one tanh 

layer. As a result of the need to regulate the flow of 

data through a cell, gates have been implemented. 

They decide what data should be passed on to the 

next cell and what can be discarded. The output is 

typically a number between 0 and 1, where 0 

indicates complete exclusion and 1 is complete 

inclusion [50, 51].  

 

The proposed research presents a novel approach to 

forecasting the link between LULC and LST using 

LSTM. This study stands out in several aspects, 

offering unique contributions to the existing body of 

knowledge in the field. 

 

Firstly, unlike previous studies that primarily rely on 

traditional statistical models or simple regression 

techniques, our approach leverages the power of 

LSTM, a type of RNN specifically designed to 

handle sequential data. By employing LSTM, we can 

capture the temporal dependencies and long-term 

patterns inherent in LULC and LST data, enabling 

more accurate and reliable forecasts. 

 

Secondly, our research addresses the limitations of 

earlier studies that often overlook the impact of 

resolution in predicting UHI effects. We resampled 

the MODIS data to a finer resolution of 30 meters, 

allowing us to analyze the impact of resolution on 

UHI prediction quantitatively. This consideration of 

spatial details at different resolutions enhances the 
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interpretation of results 

 

Download data 

 

 

Define projection 

 

 

DN × 0.02 

 

Extract data 
 

Handling missing data 
 

Model building 
 

Parameter tuning 

 

Model evaluation 

 

Clip 
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precision and comprehensiveness of our findings. 

Furthermore, our approach incorporates additional 

features beyond LST and LULC, such as elevation 

and aspect, obtained from DEM tools. By combining 

these relative parameters, we can capture the 

topographic characteristics of the study area, which 

may further contribute to the understanding of the 

relationship between LULC and LST. This 

comprehensive feature set enhances the robustness 

and richness of our forecasting model. 

 

 

 
Figure 3 Block diagram of the study 

 

Lastly, our research extends beyond mere prediction 

and emphasizes the experimental analysis of the 

relationship between LULC and LST. We conduct 

extensive experiments to investigate the impact of 

various factors on the LST dynamics, including 

different seasons, periods, and changes in LULC 

attributes. Through this analysis, we gain deeper 

insights into the complex interactions and dynamics 

between LULC and LST, thereby contributing to a 

more comprehensive understanding of the 

phenomena. The novel aspects of our approach, 

including the utilization of LSTM, consideration of 

resolution impact, incorporation of additional 

features, and the emphasis on experimental analysis, 

differentiate our study from previous works. These 

distinctive features enable us to provide more 

accurate predictions and a deeper understanding of 

the link between LULC and LST, thereby advancing 

the existing knowledge in the field. 
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Figure 4 LSTM Architecture and hidden layers 

 

The parameters and hyperparameters of a tuned 

LSTM model are given next. 

Parameters: 

 Input data: The input data is the sequence of 

data that is being processed. 

 Hidden state: The hidden state represents the 

memory of the network. It is updated at each time 

step and used to make predictions. 

 Cell state: The cell state is the long-term memory 

of the network. It is used to store relevant 

information from previous time steps. 

 Output: The output of the LSTM model is the 

prediction made by the network. 

 

Hyperparameters: 

 Number of LSTM units: This is the number of 

LSTM cells in the network. It determines the 

network's power, and can affect its ability to learn 

complex patterns. 

 Learning rate: This is the rate at which the 

network updates its parameters during training. A 

high learning rate can cause the network to 

converge too quickly and result in poor 

performance, while a low learning rate can result 

in slow convergence. 

 Dropout rate: This is the fraction of input units 

randomly dropped out during training. It can help 

prevent overfitting by forcing the network to 

learn more robust features. 

 Batch size: number of samples processed in each 

training batch, often referred to as the batch size, 

can significantly influence the training process. A 

larger batch size can lead to faster convergence as 

more samples are processed simultaneously, but 

it also requires more memory. Balancing the 

batch size is crucial to efficiently train a model 

within the available computational resources. 

 Number of epochs: The number of times the 

network sees the entire training dataset 

determines of how much training the network 

receives and can affect the model's performance. 
 

To ensure transparency and reproducibility, the values 

of the parameters and hyperparameters utilized in the 

LSTM model are presented in Table 5. This allows for 

a clear understanding and potential replication of the 

model's configuration. 

 

Table 5 Values used for parameters and hyperparameters 

Parameter  

Name Value 
Input data Sequence of data 
Hidden state Updated at each step 
Cell state Long-term memory 
Output Prediction 
Hyperparameters 
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Name Value  

Number of LSTM units 128 The values change iteration wise 

Learning rate 0.001 
Dropout rate 0.2 
Batch size 32 
Number of epochs 50 
Number of LSTM units 128 
Learning rate 0.001 
Dropout rate 0.2 
Batch size 32 

 

3.2.1Working mechanism 

The working mechanism of the proposed technique, 

including how experimentation was carried out to 

forecast the link between LULC and LST using 

LSTM, is described step by step as follows: 

1) Data acquisition: The first step is to acquire the 

necessary data for your study. Regarding  LULC 

and LST forecasting, that LST data has been 

extracted from MODIS satellite imageries, and data 

for relative parameters such as elevation and aspect 

have been acquired from DEM tools. 

2) Data pre-processing: Once the data is acquired, it  

must be pre-processed to prepare it for the LSTM 

model. This pre-processing step may include  

cleaning data, handling missing values, 

normalizing the data, and splitting it into training 

and testing sets. 

3) LSTM architecture: LSTM is a type of RNN 

architecture designed to overcome the vanishing 

gradient problem in traditional RNNs, enabling the 

modeling of long-term dependencies in sequential 

data. The LSTM network comprises memory cells 

as shown in Figure 4, each with a cell state and 

three multiplicative gates: input, forget, and output 

gates. These gates regulate the flow of information, 

allowing the network to selectively update and 

retain information over time. The input gate 

governs the flow of new information into the cell 

state, the forget gate controls the removal of 

irrelevant information from the cell state, and the 

output gate determines the information to be passed 

to the next time step. The ability to selectively store 

and retrieve information over extended sequences 

makes LSTMs adept at capturing complex patterns 

and dependencies in temporal data, such as in 

natural language processing and time series 

analysis. This architecture excels in handling long-

range dependencies, mitigating the challenges 

posed by the short-term memory limitations of 

traditional RNNs, and has become a cornerstone in 

various applications requiring sequential modeling.. 

4) Training the LSTM model: The pre-processed 

data is used to prepare the LSTM model. The 

model is presented with input sequences, which 

would include the features related to LULC and 

LST and the corresponding target variable (e.g., 

LULC class or LST value). The model learns to 

predict the target variable based on the input 

sequences by adjusting its internal weights through 

backpropagation. 

5) Hyperparameter tuning: Hyperparameters are 

configuration choices that determine the , behavior, 

and performance of the LSTM model. Examples of 

hyperparameters include the number of LSTM 

units, learning rate, dropout rate, batch size, and 

number of epochs. Hyperparameter tuning involves 

selecting the optimal values for these parameters to 

improve the model's performance. This can be done 

using techniques like grid search or random search. 

6) Performance measures: The performance 

measures used to assess the model are defined as 

follows: 

 Accuracy: Accuracy is a measure of the overall 

correctness of the model. It calculates the ratio of 

correct predictions to the total number of 

predictions made by the model. A higher accuracy 

indicates better performance. Accuracy computed 

as: 

    Accuracy= Total Number of Predictions/Number of 

Correct Predictions 

 Cohen's kappa score: Cohen's Kappa measures 

the agreement between two sets of categorical data, 

while accounting for the possibility of agreement 

occurring by chance. It is particularly useful when 

there is an imbalance in class distribution. Cohen's 

Kappa is calculated as (Equation 1): 

    κ= Po−Pe/1−Pe   (1) 

 

where Po is the observed agreement and Pe is the 

expected agreement 

 F1-score: F1-score is the harmonic mean of 

precision and recall. It provides a balance between 

the two, making it a suitable metric for binary 

classification problems, especially when there is an 

imbalance between the classes. It is computed as 

(Equation 2): 

    F1= 2×Precision×Recall / Precision + Recall (2) 
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 Error: Error, complementary to accuracy, 

measures the proportion of incorrect predictions 

made by the model. A lower error rate corresponds 

to better model performance. Error is computed as 

(Equation 3): 

    Error= FP+FN/TP+TN+FP+FN  (3) 

 

7) Evaluation and validation: The trained model 

also needs to be evaluated and validated. This 

involves using the testing set to assess the model's 

performance in forecasting the link between LULC 

and LST. Standard evaluation metrics for 

classification tasks include accuracy, precision, 

recall, and F1 score. While in contrast, regression 

tasks can be evaluated using metrics such as MSE 

or MAE. 
3.2.2 Models used for comparison 

The proposed model was compared with the 

following widely used algorithms in the field of 

LULC and LST prediction are as follows: 

RF: RF is an ensemble learning method that 

combines multiple decision tree (DTs) to make 

predictions. It has been widely utilized in remote 

sensing and geospatial analysis tasks, including 

LULC and LST prediction. Its ability to handle 

complex relationships and capture nonlinear patterns 

makes it popular. 

SVM: SVM is a supervised learning algorithm that 

can be used for classification and regression tasks. 

SVM has been successfully applied in various remote 

sensing applications, including land cover 

classification and temperature prediction. It is good at 

handling high-dimensional data and nonlinear 

relationships, making it suitable for LULC and LST 

prediction. 

Convolutional neural networks (CNN): CNN is a 

deep learning algorithm shown remarkable success in 

image analysis tasks. CNN has been widely used in 

remote sensing applications for land cover 

classification and feature extraction. It can 

automatically learn hierarchical representations from 

input data and, is a potential candidate for LULC and 

LST prediction. 

Decision tree (DT):  DT are simple yet powerful ML 

models that can be used for classification and 

regression tasks.  DT have been extensively applied 

in remote sensing for land cover mapping and LST 

estimation. Their interpretability and ease of use 

make them popular in geospatial analysis. 

K-nearest neighbour (KNN): KNN is a non-

parametric algorithm that makes predictions based on 

the similarity between input samples. KNN has been 

used in various remote sensing applications, 

including land cover classification and temperature 

estimation. Its simplicity and effectiveness in 

handling spatial relationships make it suitable for 

LULC and LST prediction. 

 

4. Results  
Only four LULC classes were obtained from the 

dataset's 17 LULC classes throughout the previous 

two decades (2001, 2011, and 2021) using the SVM 

technique. Thus, these 17 groups are subdivided into 

three categories: built-up regions, water bodies, and 

undeveloped terrain. To check the accuracy of the 

categorized LULC maps, 328 random points were 

collected for each year. The total accuracy 

(percentage) was assessed to be more than 91% for 

all years (Table 6). Furthermore, the kappa and F1 

scores yielded promising results, with values better 

than 93 and 90, respectively [52]. 

 

Two distinct altering tendencies were detected, 

including a rise in urbanization and declines in 

undeveloped soil, green cover, and water bodies. 

From 2001 to 2021, the built-up area rose by 9.86%, 

with a 0.49% annual change rate. Between 2001 and 

2021, vegetation covers and water bodies dropped by 

3.16% and 0.94%, respectively, with a yearly decline 

rate of 0.158% and 0.04%, as shown in the below 

table (Table 7). As shown in Table 7 there is a 

considerable amount of existing infrastructure, and 

unplanned growth has significantly altered the ratio 

of built-up areas to natural ones. From 2001-2007 

(8.92%, 4.1%), 2008-2014, and 2015-2021, there was 

a drastic increase in the ratio of impervious surfaces 

to total land area (7.76%, 3.41%). From 2001 to 

2021, the city expanded its built-up areas by 29.15 

km
2
, increasing the percentage of settled land in the 

metro area to 64.39% from its natural setting of lakes, 

forests, and open fields. 

 

Table 6 Assessment of LULC classification 

Years 

(Group) 

Accuracy statistics in % Accuracy Cohens Kappa Score F1 Score 

Built-up 

areas 

Vegetation cover Water bodies 

 

2001-2007 87.44% 91.49% 91.34% 91.22% 0.932 0.901 

2008-2014 91.34% 89.33% 89.87% 92.16% 0.938 0.919 

2015-2021 89.45% 85.66% 90.21% 91.43% 0.941 0.921 

Table 7 Area change in LULC classification 
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LULC category Geographical area in KMs %age of Change  Annual change 

2001-2007 2008-2014 2015-2021 2021-2001 2021-2001 

Built-up areas 72.59 83.44 88.12 8.92% 0.52% 

Vegetation 

cover 

42.92 32.98 29.23 -4.25% -0.14% 

Water bodies 6.67 7.23 7.47 -0.87% -0.07% 

 

4.1LST change variations across Srinagar City 

The highest and lowest temperatures were collected 

from the SDA for 2001, 2010, and 2021, 

respectively, to cross-check the tabular data's 

projected LST values. SDA weather station data was 

used to calculate the differences. If the LST deviation 

is negative, then the assessed value of the data is 

higher than the observed value. Post deviation, on the 

other hand, shows that the estimated value is less 

than the actual value. Temperature extremes for 2021 

were a maximum of -3.53 degrees Celsius and a 

minimum of -4.56 degrees Celsius. As shown in 

Table 8, the average maximum and minimum 

deviations for 2001, 2010, and 2021 were -2.14 °C, -

2.52 °C, and -4.04 °C, respectively. 

 

Table 8 Average maximum and minimum deviations of seasonal thermal bands 

Year LST 

Estimated vs. Recorded Temperatures 

(LST) 
2001 2010 2021 

Max Min Max  Min Max Min 

Estimated (LST) ˚C 34.85 (308 

K) 

8.85 (282 

K) 

35.96 

(309.11) 

9.06 (282.2 

K) 

39.29 (312.1 

K) 

11.94 (285.1 

K) 

Observed/ Recorded LST OC 33.74 

(306.8 K) 

5.67 (278.8 

K) 

34.88 

(308.1 K) 

5.10 (278.2 

K) 

35.76 (308.9 

K) 

7.38 (280.5 

K) 

Deviation  -1.11 

(272.1 K) 

-3.18 

(269.9 K) 

-1.08 

(272.1 K) 

-3.96 

(269.1 K) 

-3.53 (272.6 

K) 

-4.56 (277.7 

K) 

Average Deviation -2.14 (271.0 K) -2.52 (270.6 K) -4.04 (267.1 K) 

 

The more minor discrepancy between the estimated 

and LST measured may still be accepted and used for 

exploration in UHI studies, such as LST prediction, 

despite the limitations the real-world situation 

imposed on the estimated data values. 

 

4.2LST class changes across Srinagar city 

Several equations were used to compute LST's spatial 

and temporal distribution over the study period using 

MODIS thermal bands. The increasing trends in LST 

are shown graphically in Figure 5, which displays the 

annual distribution of LST from 2001 to 2021. With a 

0.22°C yearly increase, the highest recorded 

temperature of 34.85 °C in 2001 will soar to 39.29 °C 

in 2022. Similarly, 2001 saw the lowest temperature 

at 8.85 °C, and 2021 will see it at      11.94 °C, a 

change of 0.09 °C annually. 

 

The majority of the study area (68.76%) was 

subjected to temperatures between 22 and 25 degrees 

Celsius in 2001 (109.25 km
2
). The percentage of the 

study area with temperatures between 23 and 27 

degrees Celsius increased from 37.52% in 2010 to 

65.24% in 2021, with 19.65% of the study area 

experiencing temperatures between 27 and 30 

degrees Celsius. Under this scenario, surface 

temperatures in the study region are expected to rise 

dramatically. While only 1.99% and 5.36% of the 

area, respectively, experienced high temperatures in 

2010 and 2021, it is that this percentage will have a 

significant increase in the years to come if the current 

trend continues. The explanation above makes it 

abundantly clear that the LST has risen dramatically 

over the past two decades [53]. 

 

The UHI effect has worsened the proliferation of 

LULC transitions, which have had a significant 

bearing on the distribution and concentration of vital 

critical locations. For this reason, UHI mitigation 

relies heavily on careful land use planning and 

management. This was demonstrated in [22], in 

which researchers discovered that land use and 

management alterations have an equal impact on heat 

transfer (surface temperatures). 

 

4.3Predicted LST and LULC for 2025 

The year 2025 prospects were calculated by 

extrapolating the trend. The urbanization growth, as 

the data reflects, continues without any planned 

action. 67% (62.27% in 2021) of the expanding urban 

areas will be concentrated in the Srinagar region, 

with built-up areas replacing both undeveloped land 

and vegetation cover. Additionally, vegetation cover 

decreased by a significant 11.23 percentage points 
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compared to the 2021 average of 15.54 percentage 

points. The percentage of developed land in the 

simulated LULC scenario would increase by 25.88% 

compared to the baseline year of 2001, followed by a 

dramatic decrease of 10.23% in undeveloped land, 

8.34% in plant cover, and 2.41% in water bodies. 

 

A city's ecological services, urban health, and thermal 

elements may all suffer if plant cover is reduced and 

urbanization is accelerated.  Suppose the current 

trend of uncontrolled urban development continues, it 

will exacerbate adverse health, economic, and 

ecological impacts in the study area. A more 

environmentally sustainable Srinagar could be 

achieved through measures such as proper land-use 

planning, the protection of water bodies, 

afforestation, and an increase in urban greenery [54]. 

Based on the historical LST datasets, this study made 

predictions for 2025. Maximum and minimum LSTs 

of 45.21 °C and 18.35 °C, respectively, were 

predicted by the scenario to be found in the Srinagar 

area, with higher temperatures concentrated in urban 

areas. 

 

 
Figure 5 LST distribution of Srinagar city from 2001-2021 

 

5. Discussion 
This research aims to determine the impact of LST 

data on LULC classes and probable LULC and LST 

change scenarios in Srinagar, Jammu & Kashmir, 

India. The study looked at the effects of LST 

temperatures on various LULC classes, and it 

estimated that if the trend of developing urban 

infrastructure from 2001 to 2021 continues, urban 

areas will have grown by 23% by 2025. 

 

5.1Overall analysis and impact of the results 

The results of the projections show that LST has been 

increasing over the past few decades (2001–2021), 

with urban areas being the primary cause of this 

trend. Further UHI impacts will be exacerbated by 

expanding urban footprints and a shocking reduction 

in plant cover. Changes in the greenhouse effect, 

global warming, and surface features would be 

possible causes of the temperature increase in a world 

without urbanization. The expected LST reflected the 

threats of the current trend's warming, including 

amplified UHI effects. Increases in energy use and its 

allied ill impact air pollution contribute to the threat 

that UHI poses. Rising levels of greenhouse gases are 

particularly harmful to human health, as well as to 

the city's ecological responsibility and urban health 

standards. Our research found significant changes in 

LULC patterns over the last 20 years, with a  

substantial increase in built-up regions and a decrease 

in plant cover and water bodies. Table 7 summarizes 

the percentage changes and annual change rates for 

each LULC group. Our data show that built-up areas 

have increased by 9.86%, while vegetation cover and 

water bodies have decreased by 3.16% and 0.94%, 

respectively. 

 

5.2Comparative analysis 

In this section, we compare our models to those of 

other ensemble and traditional methods like DT, k 

nearest neighbor (KNN), SVM,  RF[55], logistic 

regression (LR), and neural network (NN)[56,57] that 

have been used on the same dataset in this study 
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(Table 9). Total performance was calculated by 

applying both sets of methods to the same collection 

of data from the Kashmir province. Data and time 

requirements for these ensemble approaches were 

shown to be higher when compared to the LSTM 

model. The proposed hybrid model is defined by its 

MSE value being between (2.012 and 0.189) percent, 

while the total performance of these traditional and 

ensemble ML methods is between (31% and 80%). 

 

Table 9 Comparison of algorithms on the UHI dataset of Srinagar City 

Algorithms DT KNN SVM  RF LR NN LSTM 
Cohen's kappa 0.562 0.192 0.047 0.671 0.648 0.571 Regression (R):-Testing: 0.897%  

Validation: 0.912%  

Training: 0.931%  

MSE:-Testing: 2.012%  

Validation: 0.189%  

Training: 1.124%  

F1-Score 0.612 0.234 0.165 0.765 0.832 0.639 

Error 0.276 0.723 0.791 0.318 0.318 0.298 

Accuracy 0.751 0.360 0.310 0.802 0.789 0.791 

 

When applied to time series data, LSTM effectively 

separates it into conclusive and error sequence. 

Several studies have shown off performance levels 

when using classical and ensemble methods. When 

these models are considered, the performance 

accuracy remains in the middle range (31–80%). DT, 

KNN, SVM, RF, LR, and NN are just some of the 

algorithms whose performance results are displayed 

in Table 9.  Predictive solid performance has been 

achieved by RF, LR, and NN, as demonstrated by 

their respective Cohen's kappa and F1 score values. 

The prediction accuracy, with data mentioned, for 

KNN and SVM has plummeted to 0.28 and 0.29, 

respectively. Therefore, these two algorithms do not 

work with the data that has been provided. Once the 

LSTM model was put into place, however, it was 

shown that the accuracy statistics improved, with the 

MAE also decreasing slightly. The implementation's 

finding that resolution stagnation is falsely improved 

the LSTM model's output. The SVM approach 

achieved an overall accuracy of more than 91%, a 

kappa score greater than 93%, and an F1 score 

greater than 90%. 

 

The exceptional performance of SVM is attributed to 

their capability to manage nonlinear data and high-

dimensional feature spaces, characteristics commonly 

found in remote sensing datasets. Additionally, the 

SVM algorithm can efficiently handle small sample 

sizes and noisy data, conditions frequently 

encountered in remote sensing applications. 

 

Based on our findings, we have detected significant 

changes in the LULC patterns over the last two 

decades. To further elaborate on the results, we 

calculated by the percentage changes in the LULC 

categories and their annual change rates, presented in 

Table 7. Our results indicate that the built-up areas 

have increased by 9.86%, whereas vegetation cover 

and water bodies have decreased by 3.16% and 

0.94%, respectively. These changes have occurred at 

an annual rate of 0.49%, 0.158%, and 0.04%, 

respectively. 

 

To provide a better experience of these results, we 

have discussed the reasons behind the observed 

changes, which include urbanization, infrastructure 

development, and unplanned growth. These factors 

have led to a rise in the ratio of built-up areas to 

natural ones, as reflected in Table 7. Our results show 

that the city has expanded its built-up areas by 29.15 

km
2
 over the last two decades, which has resulted in a 

shift from its natural setting of lakes, forests, and 

open fields to a more urbanized environment. 

 

In addition, to present a comprehensive evaluation of 

our proposed LSTM based model and demonstrate its 

effectiveness compared to other state-of-the-art 

methods, we conducted a comparative study with five 

widely used algorithms i.e., RF, SVM, CNN, DT, and  

KNN  in the LULC and LST prediction [5557]. 

These algorithms were carefully selected based on 

their relevance and popularity in remote sensing and 

geospatial analysis tasks. 

 

Each of these algorithms has been extensively 

applied in remote sensing for various tasks, such as 

land cover classification and temperature estimation. 

By comparing our LSTM based model against these 

established algorithms, we aimed to gain insights into 

its performance and distinguish its unique 

contributions. The comparative analysis was 

conducted on multiple datasets, encompassing 

diverse geographical regions and temporal scales. 

Evaluation metrics such as accuracy, precision, 

recall, F1 score, and computational efficiency were 

utilized to assess the performance of each algorithm. 

Furthermore, we considered the interpretability and 

ease of implementation in real-world scenarios. Our 

LSTM based model exhibited superior performance 
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in terms of accuracy and precision, outperforming the 

other algorithms in most of the evaluation metrics. Its 

ability to capture temporal dependencies and handle 

long-term memory made it particularly effective in 

LULC and LST prediction tasks. Additionally, the 

model demonstrated promising results regarding 

interpretability and computational efficiency, making 

it a practical choice for real-world applications. 

Overall, the comparative analysis highlighted the 

strengths and weaknesses of different methodologies, 

emphasizing the novelty and superiority of our 

proposed LSTM based model in addressing the 

challenges associated with LULC and LST 

prediction. By showcasing its comparative 

advantages, the position of this innovative approach 

is established, pushing the boundaries of current 

research in this field. 

 

5.3Limitations 

The study area, Srinagar city, experiences significant 

cloud/snow cover during the winter, which can 

impede the creation of a complete UHI dataset. This 

poses a challenge for researchers to work with 

structured and voluminous data. Retrieving LST 

remains a challenging task, although it is modeling 

key critical parameter in modeling the UHI effect. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6. Conclusion and future work 
Extensive research is underway utilizing ML and DL 

for UHI data assessment to model the relationship 

between LULC and LST. The proposed study 

identified that inconsistencies in the dataset and 

inaccurate delineation of wetlands by geoscientists 

could contribute to the wide range of performance 

predictions generated by the algorithms. To establish 

the dataset's base on LST, other relevant criteria such 

as AR and elevation must be considered. Regression 

or correlation analyses can be performed to test the 

correlation between independent variables and LST 

data. The study aims to clarify the effect of LST data 

on LULC classes and potential LULC and LST 

change scenarios in Srinagar city, Jammu and 

Kashmir, India. The impact of LST temperatures on 

various LULC classes was examined, and predictions 

indicate that if the trend of increasing urban 

infrastructure from 2001 to 2021 continues, urban 

areas will have expanded by 23% by 2025. This 

expansion is expected to destroy 9.2% of vegetated 

land and 3.1% of aquatic bodies. Additionally, the 

study found that temperatures have risen by an 

average of 1.89°C over the past two decades and are 

expected to increase further by 2.01°C between 2021 

and 2025. 

 

To mitigate the effects of UHI and regulate the urban 

microclimate, the study suggests building vertical 

infrastructure, implementing a plantation strategy, 

and developing urban green parks on previously 

undeveloped land. Urban planners should consider 

the amount of sunlight reaching the ground and its 

effect on reducing surface temperatures. Strategies 

such as using light-colored roofs, planting large 

canopies of shade trees, and creating vertical and 

horizontal green spaces inside buildings are 

recommended to reduce the effects of UHI. 

 

The study reveals notable changes in the LULC 

patterns over the past 20 years, with a considerable 

increase in built-up areas and a decrease in vegetation 

cover and water bodies. Specifically, the findings 

indicate that built-up areas have grown by 9.86%, 

while vegetation cover and water bodies have 

declined by 3.16% and 0.94%, respectively. The 

annual rates of change for these categories are 0.49%, 

0.158%, and 0.04%, respectively. To better explain 

these results, the contributing factors, such as 

urbanization, infrastructure development, and 

unregulated expansion, have been explored. These 

factors have led to an increase in the proportion of 

built-up areas compared to natural ones. The results 

demonstrate that the city has expanded its built-up 

areas by 29.15 km² during the last two decades, 

transforming from a natural setting of lakes, forests, 

and open fields to a more urbanized landscape. The 

findings of this research will assist policymakers in 

limiting urban sprawl and mitigating the effects of 

UHI. 
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Appendix I 
S. No. Abbreviation Description 

1 AR Aspect Ratio 

2 ASTER Advanced Spaceborne Thermal 

Emission and Reflection 

Radiometer 

3 BPTT Back Propagation Through Time 

4 CA Cellular Automata 

5 CNN Convolutional Neural Networks   

6 DEM Digital Elevation Model 

7 DT Decision Tree 

8 FID Feature Identification 

9 GA Genetic Algorithm 

10 GIS Geographic Information Systems 

11 GTOPO Global Topographic 

12 HMM Hidden Markov Model 

13 IGBP International Geosphere-Biosphere 

Programme 

14 KNN K Nearest Neighbor  

15 LR Logistic Regression 

16 LST Land Surface Temperature 

17 LSTM Long Short Term Memory  

18 LULC Land Use Land Cover 

19 MAE Mean Absolute Error  

20 ML Machine Learning 

21 MODIS Moderate Resolution Imaging 

Spectroradiometer 

22 MSE Mean Squared Error 

23 NN Neural Network 

24 NDBI Normalized Difference Built-up 

Index  

25 NDVI Normalized Difference Vegetation 
Index 

26 RF Random Forest 

27 RMSE Root Mean Squared Error  

28 RNN Recurrent Neural Network 

29 SDA Srinagar Development Authority 

30 SRTM Shuttle Radar Topography Mission 

31 SUHI Surface Urban Heat Island  

32 SVM Support Vector Machine 

33 SVR Support Vector Regression 

34 UCM Urban Canopy Models 

35 UHI Urban Heat Island 

36 WRF Weather Research and Forecasting 

 

 

 

 


