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1.Introduction 
Electrical energy is generated, transmitted, and 

delivered to various types of customers at the 

appropriate voltage and frequency through an 

electrical network consisting of generators, 

transmission lines (TL), distribution lines, and 

transformers, all of which perform incredibly well 

[1]. Both industry and educational sectors are 

increasingly adopting hybrid modes of working 

environments in their daily operations. Additionally, 

modern citizens are demanding an ever-increasing 

level of security and reliability in their electric 

supply. Therefore, considering frequent and 

prolonged power failures due to environmental 

conditions, calamities, human errors, tree falls, and 

equipment malfunctions, a well-planned and 

designed electric network is necessary to avoid 

interruptions to scheduled activities. As a result, an 

electric network needs to be built to provide 

affordable and consistent electrical energy [2]. 
 

 

*Author for correspondence 

Corrected statement: High voltage transmission lines 

(HVTL) are the most cost-effective and efficient 

method for transporting large amounts of energy over 

long distances. However, it has been observed that 

the number of faults occurring on TL is higher 

compared to the overall faults in the entire electric 

power grid. If corrective action is not taken after a 

fault, it may spread to other equipment, leading to a 

system-wide blackout in extreme cases. Therefore, 

adequate protection must be provided for the TL 

network to quickly identify and resolve various 

abnormal conditions, preventing power loss or 

cascade tripping of the electric power grid [3]. Over-

current and distance protection (DP) techniques are 

exclusively used to protect HVTL. DP is the most 

significant and well-known relaying method used to 

protect HVTL and sub-TL from electrical fault 

conditions [4]. 

 

To accelerate the system restoration process after a 

fault in DP, it is essential to quickly evaluate the type 
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and location of the fault. Conventional fault-finding 

methods, such as patrolling, may be time-consuming, 

especially in the case of long-distance TLs, 

prolonging the fault repair process. On the other 

hand, the reliability of a fault diagnosis technique 

depends on the quality of data collected and 

processed, including previous fault finding and 

classification records [5]. This creates the motivation 

to develop a more reliable DP scheme and explore 

more specialized fault diagnosis methods for HVTL. 

  

The prime objective of the fault diagnosis method is 

twofold [6]: 

Fault classification: The ability to classify the type 

of fault and the affected phase/phases. 

Fault location: The ability to locate the fault point in 

terms of distance on the transmission line. 

 

To minimize damage and disruption to the power 

system, an artificial neural network (ANN)-based DP 

scheme is proposed in this paper. It is developed to 

accurately detect and isolate various kinds of 

disturbances. Ten types of faults are created on 

HVTL at different fault distances (FD) with various 

fault inception angles (FIA) and fault resistances 

(RF). The Rogowski coil (RC) is used instead of a 

conventional current transformer (CT) to measure the 

current and feed it to the distance relay (DR). In this 

work, the apparent impedance (Zap) values are 

estimated under several fault scenarios using the 

current and voltage signals from the RC and the 

voltage transformer (VT), respectively. The estimated 

Zap values are used to create the dataset required to 

train and test the ANN model. It is observed that the 

trained ANN model can accurately determine the 

fault types and distances on the HVTL. The 

simulation is performed using the Power System 

Computer Aided Design-Electromagnetic Transient 

DC (PSCAD-EMTDC) 4.1 software.  

 

The paper is organized into six sections. A literature 

review on the adoption of RC and other fault 

diagnosis techniques is presented in section 2. 

Whereas, section 3 discusses the significance of RC 

and ANN for the classification and location of faults. 

Section 4 presents the analysis of the results, whereas 

the discussion of the results is elaborated in Section 

5. Finally, the conclusions and scope for future work 

in this area are discussed in section 6. 

 

2.Literature review 
Literature review has been carried out in two parts. 

Parts one gives details of the adoption of the RC in 

place of conventional CT and part two about 

selection of fault diagnosis method. 

Part 1: In distance protection scheme (DPS), the 

performance of CTs & VTs is of the utmost 

importance, as the lowered secondary values must be 

an exact replica of the primary side values under all 

normal & abnormal scenarios [7]. Under abnormal 

conditions, more transients are present in primary 

line currents than line voltages. Presence of transients 

in current leads to CT saturation at earlier stage, 

which subsequently distort the nature of secondary 

current waveform [8]. Distortion in current waveform 

changes the value of estimated impedance and causes 

DR to under reach or over-reach [9, 10]. Thus faithful 

transformation of current signal on CT secondary 

side is very important in getting correct trip decision 

from DR. Hence it is very important to search for the 

solution on CT saturation problem, which will help to 

improve performance of DP scheme. 

 

To get rid from CT saturation issue and to improve 

current measurement method, different techniques, 

algorithms are addressed to reconstruct distorted 

waveform. Apart from this some alternatives to 

conventional CT, like optical current sensors, gapped 

core CT, linear couplers are suggested by some 

authors to enrich current measurement. The algorithm 

recommended in [11], is unaffected by CT saturation-

related consequences and gives correct FD. But in 

this proposed algorithm, currents retrieved from one 

unsaturated CT is considered as an input signal. The 

method proposed in [12] claims selectivity reliability, 

speed for all faults under CT saturation in differential 

impedance protection scheme. However, deficiency 

in proposed method in noted in identifying correct 

fault location. The model based method suggested in 

[13] used to identify and overcome CT saturation in 

which tentative values for some variables such as 

residual flux, winding impedance, inductive burden, 

and so on are considered. In [14, 15], effective 

algorithm has been proposed to overcome CT 

saturation in relaying operation. This approach is 

more effective, as no additional equipment are 

required and the configuration of the relaying circuits 

remaining intact. However, this approach does not fit 

in all scenarios and there is also a requirement of 

modern relays with the ability to assist CT saturation 

correction phenomena. 

 

 

 In [16] it is suggested to increase CT size to prevent 

CT saturation, which may not accommodate in the 

previously implied areas as well as may not be 

economically feasible. In [17], author proposed 
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utilizing a fiber optic current sensor for current 

measurement, however it was found to be both 

expensive and difficult to build accurate 

measurement systems with it in conventional 

substations. 

 

With modern multifunction relays, RC facilitate the 

development of advanced metering, control, and 

protection schemes, allowing faster fault response 

time and the ability to easily adapt with change in 

load and/or power system structure. As, new RCs are 

so exact, degree of protection can be adjusted to 

reduced threshold limits, minimizing burden on the 

protected apparatus. Furthermore, metering and 

control mechanism work quite correctly. The cost of 

RC is very less (almost 1/10th times) when compared 

with cost of conventional CT of same current rating 

[18]. In addition to this, RC is widely employed in a 

wide range of applications, like the measurement of 

power frequency current, the measurement of 

impulse and pulsed currents [1921], the 

measurement of currents in smart meters [22], fault 

detection mechanisms [23, 24], and many more. The 

main reasons behind the adoption of RC are its 

flexibility and simplicity in design. The printed 

circuit board design is the most recent and widely 

used design of RC used in numerous applications 

[2527]. 

 

Part 2: In case of long TL’s, fault diagnosis methods 

requires detailed information about the transients 

present in current and voltage waveforms after fault. 

In part 1, several methods have been proposed on 

recovery/modification/ characteristics extraction of 

distorted current waveform [1113]. However, the 

choice of the suitable extracted characteristics 

depends on one’s proficiency in this area and can be 

distinct. Using appropriate algorithms the required 

characteristics present in the waveforms can be 

extracted [28, 29]. But, these methods increases the 

computational load as well as the need of expertise or 

fine-tuning before being applied to new systems. As a 

result the flexibility and applicability of the proposed 

methods gets reduced. 

 

Only high frequency coefficients of wavelet 

transform (WT) have been used for fault 

identification, classification and location [30]. A very 

high sampling frequency of 200 kHz used in another 

WT based technique proposed for fault diagnosis in 

series compensated lines may prove to be a slightly 

challenging for practical execution [31]. Analysis on 

the use of expert systems for fault diagnosis shows 

that neural networks (NN)s have been found 

successful due to their generalization capability while 

dealing with uncertainties related with different types 

of fault parameters in HVTL’s [3234]. 

 

Hence, ANN has been found to be computationally 

fit and capable of handling massive datasets and offer 

excellent adaptation capabilities for classification 

issues.  

 

3.Methods  
3.1Fault identification and fault location using 

ANN 

The primary goal of ANN in TL protection is to 

enhance the DPS’s ability to diagnose faults more 

efficiently and accurately. The use of ANN for fault 

classification and finding faults on HVTL’s is 

described in detail in this section. 

  

Further, it is observed that improving the stability, 

security, safety, and reliability of the electrical power 

system requires quickly identifying the type and 

location of a fault. It helps to accelerate the process 

of system restoration after a fault. With the help of 

data that was collected and processed using records 

from prior fault detection and its classification, the 

reliability of a fault diagnosis technique is enhanced 

in this work. Figure 1 shows the block diagram for 

fault analysis on 220 kV, 200 km, 50 Hz three-phase 

HVTL using ANN and RC. After creating ten FT’s 

with various FD’s, FIA’s & RF’s, current and voltage 

signals are measured to calculate the value of Zap’s. 

The targeted signature pattern is compared with the 

actual generated signature pattern to classify a total 

of 10 faults and identify their locations. 

 

DPS is an established relaying technique used to 

protect the HVTL and sub-TL against electrical fault 

conditions (Figure 2). According to this scheme, fault 

analysis is done by estimating Zap up to the fault 

location using a VT and CT secondary values that are 

captured at the location of the DR. Further, estimated 

Zap is compared with the reach point impedance, for 

fault detection. If the Zap is less than the reach point 

impedance, a fault exists on the line between the 

relay and the reach point r [9]. 
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Figure 1 Block diagram for TL fault analysis using ANN and RC 

 

 
Figure 2 Distance protection scheme 

 

Estimation of Zap: In three phase DPS, three units 

are used to detect line-to-line faults and another three 

units are used for earth faults detection [35]. In the 

case of line-to-line fault, the Zap’s is the ratio of 

voltages and currents and is given by Equations 1 to 

3 as  

     
     

     
    (1) 

     
     

     
    (2) 

     
     

     
    (3) 

 

In the case of an earth fault, the Zap given by 

Equations 4 to 6 as 

    
  

     
     
   

 
    (4) 

    
  

     
     
   

 
    (5) 

    
  

     
     
   

 
    (6) 

 

The experimentation set-up for fault identification 

and location with the ANN technique using RC as a 

current transducer is illustrated in Figure 3. This 

technique makes use of Zap estimated for different 

types of faults created at different locations on a 

transmission line with different RF’s and FIA’s. The 

major components involved in the experimental setup 

are described below in sections 3.1 and 3.2.  
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Figure 3 Experimental setup for calculation of apparent impedance 

 
3.1.1Transmission line protection using Rogowski coil 

According to the study, correct trip decisions from 

DR rely on the faithful transformation of the current 

signal on the secondary side of the CT. RC is a 

solution for CT saturation that helps to improve the 

performance of DPS. The fundamental distinction 

between RC and CT is that RC windings are 

uniformly wound around nonmagnetic or air core 

rather than the core made up of magnetic material as 

shown in Figure 4. RC enables the design of modern 

control, protection and metering schemes with 

advanced multipurpose relays, providing faster 

response times to faults and can easily adjust to 

changes in power system configurations. The mutual 

inductance must be consistent for any primary 

conductor position within the coil ring to meet the 

first criterion. This is feasible by providing a coil 

with a constant cross-section S over an 

air/nonmagnetic core and building a coil with a 

specific turn density n. and Mutual inductance is 

given by Equation 7 [36, 37]. 

             (7) 

 

Where µ0 is the permeability of air / nonmagnetic 

material. Further, RC output voltage (Vout) in terms of 

the current to be measured is shown by Equation 8. 

       
     

  
    (8) 

 

The input-output characteristics of RC used for 

experimentation are shown in Figure 5 [38]. 

 

Two source AC power system model: As shown in 

Figure 6, fault analysis in DPS is performed using 

PSCAD-EMTDC 4.1 on a section of a 220 kV AC 

system [39]. The details of the 220 kV system used 

for the case study are given in Table 1 [40]. 

 

        
 Figure 4 Rogowski Coil (RC) configuration       Figure 5 Experimented V-I characteristics 
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Figure 6 Simulated two source AC power system model 

 

Table 1 220 kV AC system details used for experimentation 

S. No. Term Ratings 

1 System mega volt amps (MVA) 100 MVA 

2 +ve sequence impedance (per km), Z1 0.2928∠86.570 Ω 

3 0 sequence Impedance (per km), Z0 1.11∠74.090 Ω 

4 TL PQ length  200 km 

5 Source Impedance 32.15∠850Ω 

6 Source Voltage 220 kV, 50Hz 

7 compensation factor 2.82  

8 Load (75+j25) MVA 

 

RC details used in 220 kV AC system: The RC 

model along with an integrator as shown in Figure 7 

is used in DPS and based on the 220 kV system 

rating, its parameter values are estimated [40, 41]. 

The specifications of the RC model are given in 

Table 2. 

 

 
Figure 7 RC model in PSCAD 

 

Table 2 Rogowski coil ratings 

S. No. Term Ratings 

1 Rated Current 100kA 

2 RC Output 1000 mV/1 kA 

3 RC winding turns 270 

4 M of RC 2 µH 

S. No. Term Ratings 

5 R, L of RC 186 Ω, 7.8 mH 

6 C & Z of RC 235  pF, 2 k Ω 

7 
Integrator R (Rint) & C 

(Cint) 
100 Ω, 1 µF 

 
3.1.2ANN in transmission line protection 

Fault diagnosis using ANN is imperative due to its 

learning ability. For different fault events created on 

lines, 560 samples are collected and used to train the 

network. Further, the gradient descent algorithm is 

used to find out the error. The application of ANN in 

TL protection is primarily concerned with 

developments in attaining more efficient and 

effective fault diagnosis in DPS. Here, 50 % data is 

used for training, 25% of data for testing, and 25 % 

for validation to identify the type and location of the 

fault. Table 3 shows the fault events created on the 

220 kV system under consideration to observe the 

consistency of RC under abnormal conditions. 

 

Table 3 Fault events created on a line between bus P and bus Q 

S. No. Power system 

events 

Details 

1 FT Line to ground (LG) Phase A to ground (AG) 

Phase B to ground (BG) 

Phase C to ground (CG) 

Line to line (LL) Phase A to phase B (AB)  

Phase B to phase C (BC)  
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S. No. Power system 

events 

Details 

Phase C to phase A (CA)  

Line to line to ground (LLG) Phase A to phase B to ground (ABG)  

Phase B to phase C to ground (BCG)  

Phase C to phase A to ground (CAG) 

Line to line to line (LLL) Phase A to phase B to phase C (ABC) 

2 FIA 00, 300, 450 and 900 

3 FD 10% of line P-Q :  20 km 

25% of line P-Q:  50 km 

50% of line P-Q:  100 km 

75% of line P-Q:  150 km 

80% of line P-Q:  160 km 

4 RF 0 Ω and 10 Ω 

 

Algorithm for fault diagnosis: 

The algorithm to identify the FT and FD on the transmission line using the ANN approach is explained below: 

----------------------------------------------------------------------------------------------------------------------------- --------------- 

Input:  TL length: 200 km 

Fault distance in km: FD1=20, FD2=50, FD3=100, FD4=150 and FD5= 180. 

Fault Inception Angle (FIA): 0
0
, 30

0
, 45

0
 and 90

0 

Fault Type (FT): LG, LL, LLG, and LLL 

Fault Resistance (RF): 0 Ohm and 10 Ohm 

Voltages and currents at all possible combinations of FT’s, FD’s, FIA’s & RF’s  

ANN with: 3 input nodes, hidden neurons variation range: [10, 15, 20, 25, 30, and 35], learning rate: 0.001 

and 0.005 & the number of epochs: 300, during the training of ANN.  

-------------------------------------------------------------------------------------------------------------------------------------------- 

Output:  Estimation of Zap values 

----------------------------------------------------------------------------------------------------------------------------- --------------- 

              Start 

Step 1:  Initialize 200km, 220 kV AC power system as per Table 1.  

Step 2:  Collect voltage and current values at a specific FD for all ranges of FIA’s, FT’s, and RF’s. 

Step 3:  Estimate the values of the Zap seen by each phase as well as between two phases. 

Step 4:  Create data–Set for all possible combinations as mentioned in step 2. 

Step 5:  Train the ANN model for FT identification by considering the impedance seen by each phase and fault 

location by considering the impedance seen across two phases. 

Step 6:  Test and validate the model for the accuracy of FT and FD.  

The network consists of :  

               a) Set of N input units {Xi}; where i = 1, 2,…, N 

               b) Set of n output units{Yk}; where k =1, 2,…, n   

               c) Set of j hidden units {Vj}; where j = 1, 2,…, j 

              Thus, the hidden unit receive a net input and produce the output given by equation 9 

     ⌈∑      
 
   ⌉ Where i = 1, 2,…, n.                       (9) 

End 

----------------------------------------------------------------------------------------------------------------------------- --------------- 

 

4.Results  
A series of simulations have been executed in order 

to determine the effectiveness of the proposed 

protective scheme. These simulations are then used to 

generate the required data for training and testing in 

this work. The following processes are carried out to 

obtain the simulation results:-  

 

 

Process 1: Initialisation of model   

 Create faults such as LG, LL, LLG, and LLL for 

different FIA’s, FD’s, and RF’s. 

 Observe and store the value of Zap, read by phase 

A, phase B and phase C respectively. 

 Thereafter, again create LL and LLL faults for 

different FIA’s, FD’s, and RF‘s. 
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 Observe and store the value of Zap involving 

between phases AB, phases BC and phases CA 

respectively.  
 

Process 2: Data collection and sault diagnosis 

results using RC  

 Create all ten types of faults at 20 km, 50 km, 

100km, 150 km, and 160 km FD’s. Adjust FIA to 

0
0
, 30

0
, 45

0
, and 90

0
 as well as RF to 0 Ω and 10 

Ω. 

 Collect 560 samples for training the proposed 

network. 

 Zap values seen across individual phases A, B, 

and C are used for FT classification. Ten types of 

faults such as A-G, B-G,…, and A-B-C are 

assigned as F0, F1,…, and F9. 

 Zap values seen across phases A-B, B-C, and C-

A are used for finding the FD. FD’s, 20 km, 50 

km, 100 km, 150 km, and 160 km are assigned as 

FD0, FD1, FD3, and FD4 respectively. 

 A binary string of 9 bits is assigned for FT and a 

binary string of 5 bits is assigned for FD. 

 The target output (0000000001) specifies FT as 

A-G, [0000000010] specifies FT B-G fault, and 

(1000000000) specifies FT A-B-C fault, and so 

on. 

 The target output (00001) specifies FD as 20 km, 

(00010) specifies FD as 50 km, and (10000) 

specifies FT A-B-C and so on.  

 The gradient descent algorithm is used to find out 

the error between actual output and target outputs 

in feed forward back propagation neural network 

(FFBPNN).  

 

Table 4 to Table 6 displays values of Zap read by 

phases A, B, and C for FIA = 90
0
, 45

0
, 30

0
, and 0

0
 for 

different FT when a fault is created at 20 km, 100 

km, and 160 km respectively with and without RF of 

10 Ω. It is observed that Zap measured by each phase 

for L-G faults is the same. The same kinds of results 

are observed for LL, LLG, and LLL faults with 

different FD, FIA, and RF.  

 

Table 4 Zap at FIA=90
0
, 45

0
, 30

0
, and 0

0
, FD=20 Km 

RF  in 

Ω 

Faults LG fault LL fault LLG and LLL fault 

 

FT A-G B-G C-G A-B B-C C-A A-B-G B-C-G C-A-G A-B-C 

Phase Zap  in Ω 

Ω 

Ω 

Zap  in Ω 

 

Zap  in Ω 

 0 

A 0.612 3.73 3.57 3.04 158 3.120 0.58 4.36 0.69 0.79 

B 3.57 0.612 3.73 3.12 3.04 158 0.69 0.58 4.36 0.79 

C 3.73 3.57 0.612 158 3.12 3.04 4.36 0.69 0.58 0.78 

10 

A 1.593 2.66 4.75 4.36 159.3 1.859 1.485 4.52 1.70 1.6 

B 4.75 1.593 2.66 1.86 4.36 159.3 1.70 1.485 4.52 1.61 

C 2.66 4.75 1.593 159.3 1.86 4.36 4.52 1.70 1.485 1.6 

 

Table 5 Zap at FIA=90
0
, 45

0
, 30

0
, and 0

0
, FD=100 Km 

RF  in Ω 

Faults LG fault LL fault LLG and LLL fault 

 

FT A-G B-G C-G A-B B-C C-A A-B-G B-C-G C-A-G A-B-C 

Phase Zap  in Ω 

Ω 

Ω 

Zap  in Ω 

 

Zap  in Ω 

 0 

A 3.07 8.32 7.69 6.13 175 6.4 3.08 10.43 3.69 3.93 

B 7.69 3.07 8.32 6.4 6.13 175 3.69 3.08 10.43 3.96 

C 8.32 7.69 3.07 175 6.4 6.13 10.43 3.69 3.08 3.9 

10 

A 3.572 7.15 8.837 7.261 176.2 5.451 3.346 10.41 4.29 4.217 

B 8.837 3.572 7.15 5.45 7.26 176.2 4.29 3.346 10.41 4.26 

C 7.15 8.837 3.572 176.2 5.45 7.26 10.41 4.29 3.346 4.20 

 

Table 6 Zap at FIA=90
0
, 45

0
, 30

0
, and 0

0
, FD=160 km 

RF  in Ω 

Faults LG fault LL fault LLG and LLL fault 

 

FT A-G B-G C-G A-B B-C C-A A-B-G B-C-G C-A-G A-B-C 

Phase Zap  in Ω 

Ω 

Ω 

Zap  in Ω 

 

Zap  in Ω 

 0 

A 4.94 11.8 10.76 8.71 175 9.22 5.04 14.77 6.02 6.33 

B 10.76 4.94 11.8 9.22 8.71 175 6.02 5.04 14.77 6.38 

C 11.8 10.76 4.94 175 9.22 8.71 14.77 6.02 5.04 6.29 
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10 

A 5.346 10.63 11.89 9.758 176.1 8.357 5.183 14.74 6.55 6.537 

B 11.89 5.346 10.63 8.36 9.76 176.1 6.55 5.183 14.74 6.60 

C 10.63 11.89 5.356 176.1 8.36 9.76 14.74 6.55 5.183 6.51 

 

4.1Fault type identification using ANN 

ANN FT identifier is trained using three inputs such 

as Zap_A, Zap_B, and Zap_C, and the outputs are 

displayed using 10 output nodes, such as F0-F9 as 

shown in Figure 8. Error signals are transmitted to 

backward layers during learning, and weights are 

modified and amended. Weights are locked to 

estimate output for the latest inputs once the ANN is 

trained for a specific set of the training dataset. There 

are three input nodes in the ANN. The number of 

hidden neurons is adjusted between 15, 20, 25, and 

30. Whereas, the learning rate is tuned for 0.001 and 

0.005. During ANN training, the number of epochs is 

kept at 300. The effectiveness of FFBPNN for 

different parameters is shown in Table 7. It is 

observed that FFBPNN's highest accuracy of 99.21% 

is obtained with a learning rate of 0.005 and with 25 

hidden layers.  
 

 
Figure 8 Layer structure (3-25-10) FFBPNN 

 

Table 7 Percentage accuracy for various layer structures of FFBPNN 

S. No. Structure Learning rate Accuracy (%) 

1 3-15-10 0.005 93.67 

2 3-20-10 0.005 97.12 

3 3-25-10 0.005 99.21 

4 3-30-10 0.005 95.09 

5 3-15-10 0.001 95.57 

6 3-20-10 0.001 97.45 

7 3-25-10 0.001 97.45 

8 3-30-10 0.001 96.73 

The outputs of types of faults are presented using F0-

F9 as shown in Table 8. A binary string of 9 bits is 

allocated for identifying ten faults. The desired 

outcome of ANN with binary bits (0000000001) 

represents phase A-G fault. Whereas, (0000000010) 

indicates B-G fault and (1000000000] as A-B-C fault 

and so on. A total of 400 events were created to 

generate data required for FT identification. 

 

Table 8 Apparent impedance at different FT, FIA, FD and RF for FT identification 

Event 

No. 

Input Parameters 
Apparent Impedance, Zap 

(Ω) 
Output Bits (Fault type) 

FT 
FIA 

(deg) 

FD 

(km) 

RF 

(Ω) 
Zap_A Zap_B Zap_C F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 

1 A-G 0 20 0 0.612 3.570 3.730 0 0 0 0 0 0 0 0 0 1 

2 A-G 0 50 0 1.530 5.100 5.400 0 0 0 0 0 0 0 0 0 1 

43 B-G 0 100 0 8.32 3.07 7.69 0 0 0 0 0 0 0 0 1 0 

48 B-G 0 100 10 7.152 3.569 8.839 0 0 0 0 0 0 0 0 1 0 

329 C-A-G 0 150 10 6.17 14.05 4.868 0 1 0 0 0 0 0 0 0 0 

334 C-A-G 30 150 0 5.640 14.08 4.710 0 1 0 0 0 0 0 0 0 0 

385 A-B-C 45 160 0 6.330 6.38 6.29 1 0 0 0 0 0 0 0 0 0 

400 A-B-C 90 160 10 6.60 6.59 6.51 1 0 0 0 0 0 0 0 0 0 
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4.2Fault location identification using ANN  
ANN Fault locator is trained using three inputs such 

as Zap_AB, Zap_BC, and Zap_CA as shown in 

Figure 9.  Five output nodes such as FD0-FD4 are used 

to show the outputs. Table 9 shows the effectiveness 

of FFBPNN for different variables. It is observed that 

the highest accuracy of 99.01% is obtained with a 

learning rate of 0.005 and with 20 hidden layers. The 

outputs/ fault locations are presented using FD4 - FD0. 

A four-bit binary string is assigned to each of the five 

locations.  

 

The ANN's expected output (00001), (000010), and 

(01000) indicates faults located at a distance of 20 

km, 50 km, and 150 km respectively as shown in 

Table 10. A total of 160 events are created to 

generate data required for FD identification. 

 

 
Figure 9 Layer structure (3-20-5) FFBPNN 

 

Table 9 Percentage accuracy for various layer structures of FFBPNN 

S. No. Structure Learning rate Accuracy (%) 

2 3-15-5 0.005 94.50 

3 3-20-5 0.005 99.01 

4 3-25-5 0.005 98.33 

5 3-30-5 0.005 95.00 

8 3-15-5 0.001 95.75 

9 3-20-5 0.001 97.00 

10 3-25-5 0.001 97.82 

11 3-30-5 0.001 96.00 

 

Table 10 Apparent impedance at different FT, FIA, FD, and RF for fault locations 

Event 

No 

Parameters Apparent impedance, Zap (Ω) Output bits (Fault Location) 

FT FIA (Deg) FD (km) RF  (Ω) Zap_AB Zap_BC Zap_CA FD4 FD3 FD2 FD1 FD0 

1 A-B 0 20 0 0.789 9.470 8.50 0 0 0 0 1 

6 A-B 45 20 10 1.590 8.13 9.85 0 0 0 0 1 

44 B-C 30 50 10 11.868 2.43 10.59 0 0 0 1 0 

45 B-C 45 50 0 10.53 1.975 11.920 0 0 0 1 0 

86 C-A 45 100 10 14.959 15.32 4.22 0 0 1 0 0 

87 C-A 90 100 0 16.260 14.00 3.950 0 0 1 0 0 

154 A-B-C 0 160 10 6.53 6.53 6.53 1 0 0 0 0 

160 A-B-C 90 160 10 6.535 6.53 6.53 1 0 0 0 0 

 

4.3Model validation 
A total of 400 and 160 experimental runs were 

executed for model validation to identify FT and FD 

on TL’s. Table 11 shows one run to evaluate the 

target and actual outputs for FIA set to 0
0
, FD of 160 

Km, and RF value equal to 10 Ω. Whereas, Table 12 

displays the target and actual outputs for FIA set to 

0
0
, FT type B-C and A-B-C as well as RF value equal 

to 10 Ω. For model validation, low and high output is 

designated as 0 and 1. In practice, actual low values 

of outputs are approximated as 0 and high values of 

outputs as 1. From the obtained results, it is observed 

that actual outputs are approximately similar to the 

target output. 
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Table 11 Fault type identification with FIA=0
0
, FD=160 km and RF=10Ω 

FT 
Target Output Actual Output 

F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 

AG  0 0 0 0 0 0 0 0 0 1 0.004 0.013 0.02 0.016 0.003 0.005 0.001 0.007 0.008 0.993 

BG  0 0 0 0 0 0 0 0 1 0 0.005 0.018 0.021 0.019 0.003 0.006 0..002 0.013 0.984 0.007 

CG  0 0 0 0 0 0 0 1 0 0 0.013 0.006 0.003 0.001 0.012 0.005 0.003 0.978 0.002 0.022 

AB  0 0 0 0 0 0 1 0 0 0 0.002 0.014 0.007 0.002 0.011 0.004 0.981 0.003 0.001 0.006 

BC  0 0 0 0 0 1 0 0 0 0 0.002 0.004 0.002 0.005 0.017 0.982 0.006 0.005 0.001 0.002 

CA  0 0 0 0 1 0 0 0 0 0 0.001 0.002 0.005 0.018 0.968 0.022 0.004 0.003 0.005 0.006 

AB

G  
0 0 0 1 0 0 0 0 0 0 0.010 0.011 0.021 0.992 0.013 0.001 0.006 0.005 0.002 0.003 

BC

G 
0 0 1 0 0 0 0 0 0 0 0.003 0.020 0.97 0.019 0.001 0.005 0.002 0.004 0.005 0.004 

CA

G 
0 1 0 0 0 0 0 0 0 0 0.004 0.988 0.009 0.006 0.003 0.001 0.002 0.008 0.009 0.003 

ABC 1 0 0 0 0 0 0 0 0 0 0.991 0.002 0.015 0.012 0.006 0.004 0.003 0.001 0.002 0.007 

 

Table 12 Fault location identification with FIA=0
0
, FT=B-C, A-B-C and RF as 10 Ω 

FT FD Target Output Actual Output 

FD4 FD3 FD2 FD1 FD0 FD4 FD3 FD2 FD1 FD0 

B-C 

20 0 0 0 0 1 0.005 0.001 0.007 0.008 0.993 

50 0 0 0 1 0 0.006 0..002 0.013 0.984 0.007 

100 0 0 1 0 0 0.005 0.003 0.978 0.002 0.022 

150 0 1 0 0 0 0.004 0.981 0.003 0.001 0.006 

160 1 0 0 0 0 0.985 0.018 0.008 0.002 0.003 

A-B-C 

20 0 0 0 0 1 0.008 0.001 0.004 0.003 0.991 

50 0 0 0 1 0 0.004 0.002 0.021 0.994 0.003 

100 0 0 1 0 0 0.016 0.002 0.988 0.013 0.017 

150 0 1 0 0 0 0.011 0.984 0.014 0.005 0.001 

160 1 0 0 0 0 0.996 0.0016 0.005 0.010 0.022 

 

For FT C-A-G, the target output F8 should be 1 and 

for the remaining FT’s the target output should be 0. 

The proposed model can achieve actual output F8 as 

0.988, which is further approximated as 1 in Table 

11. Similarly, for FD set at 150 km and FT as A-B-C, 

the target output has 1 value. Whereas, the model is 

achieving actual output as 0.984≈1 as shown in Table 

12. It is seen that mean square error (MSE) identified 

in output is 0.016 and the training time required is 

0.0016 sec on a machine at 1 GHz.  

 Table 8 shows the target and actual outputs for 

eight cases (out of 400 with FIA=0
0
, FD=160km, 

and RF as 10 Ω for FT identification. 

 Table 10 shows the target and actual outputs for 

another eight cases out of 160 with FIA=0
0
, FT=B-

C, A-B-C, and RF as 10 Ω for FD identification. 

For validation, more data is used to train the model, 

more effective pattern attributes are identified, and 

real-valued numeric attributes are rescaled into the 

range 0 and 1.  

 

5.Discussions 
In this paper, the essential step considered in 

experimentation is to verify that the faithful 

transformation of current from the primary to the 

secondary side is achieved with RC. The proposed 

method for FT and FD identification is evaluated in 

terms of accuracy by considering various 

combinations of the input, hidden and output layer. 

From the result analysis for FT identification, it is 

seen that for three input, twenty-five hidden, and five 

output layer structures (3–25–10), FFBPNN with a 
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learning rate of 0.005, the system is able to achieve 

an accuracy of 99.33%. The combination of three 

input, twenty-five hidden, and five output layer 

structures (3–20–5) FFBPNN with the same learning 

rate of 0.005, the proposed method, has achieved an 

accuracy of 99.01% in determining FD location. 

Further the proposed fault diagnostic approach is also 

compared with the existing methods. When compared 

to other approaches, it is observed that the proposed 

model offers better accuracy for FT and FD 

identification, as shown in Table 13. Highest 

accuracy is observed in proposed method, due to 

faithful transformation of current form primary to 

secondary side as CT is replaced by RC. The steps 

involved in other method like feature extraction of 

the distorted current waveform gets completely 

eliminated. This enhances the speed, reliability and 

generalisation of the proposed method. 

 

Table 13 Comparative study of fault diagnosis methods 

Particulars Accuracy 

Combined Fault Location and Classification for Power Transmission Lines Fault Diagnosis with Integrated 

Feature Extraction [5] 
98.22 % 

A new FDOST entropy-based intelligent digital relaying for detection, classification, and localization of faults on 

the hybrid transmission line [42] 
98.2 % 

Probabilistic transmission line fault diagnosis using autonomous neural models, (For fault classification) [43] 97 % 

Transmission Line Fault analysis using ANN and RC ( Proposed) FT identification 99.21% 

FD identification 99.01% 

Advantages and limitations 

The main advantage of RC is its ability to be installed 

without disrupting the circuit through which the 

current is to be measured. RC also responds well to 

rapidly changing currents because of its low 

inductance. However, RC has a lower sensitivity and 

smaller output voltage since it has no ferromagnetic 

core. As a result, whenever RC is to be used for 

current measurement, it needs additional signal 

processing circuits and an integrator circuit, 

increasing the coil circuitry. Hence, in DPS, faults 

nearby the system bus as well as low-magnitude 

current faults may not be correctly diagnosed using 

RC. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future work 
ANN-based technique for fault diagnosis on high 

voltage TL is presented using RC as a current 

transducer. It uses an estimated value of Zap’s for ten 

types of faults that are created at different locations on 

a TL transmission line with different RF’s and FIA’s. 

In this paper, PSCAD-EMTDC 4.1 simulation 

software is used for simulation. The proposed model 

achieves a measured value of outputs that are same as 

the targeted outputs. For the experimentation, a total 

of 160 events are created to generate required test 

pattern for FD identification. Thereafter 400 events 

are also created to obtain required test pattern for FT 

identification. It is seen that TL fault analysis using 

ANN and RC as the current transducer is able to 

achieve an accuracy of 99.21 % for fault type 

identification and 99.01 % for fault location 

identification. 

 

Hence, it is concluded that the proposed DPS 

performs accurately for identification of type and 

location of fault as compared to existing available 

methods. The accuracy can be further enhanced by 

fine-tuning of ANN parameters. 

 

It is necessary to find the fault in multi-terminal lines 

without using the data from each terminal. Further, 

the measured data is not accessible or contains 

related errors. As a result, finding faults in multi-

terminal lines without having access to all the data is 

a major problem that necessitates more investigation. 
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Appendix I 
S. No. Abbreviation Description 

1 ANN Artificial Neural network 

2 AB Phase A to Phase B 

3 ABC Phase A to Phase B to Phase C 

4 ABG Phase A to Phase B to Ground 

5 AG Phase A to Ground 

6 BC Phase B to Phase C 

7 BCG Phase B to Phase C to Ground 

8 BG Phase B to Ground 

9 CA Phase C to Phase A 

10 CG Phase C to Ground 

11 CAG Phase C to Phase A to Ground 

12 CT Current Transformer 

13 DPS Distance Protection Scheme 

14 DP Distance Protection 

15 DR Distance Relay 

16 EMTDC Electromagnetic Transient Dc 

17 FT Fault Type 

18 FFBPNN Feed Forward Back Neural Network 

19 FD Fault Distance/ Location 

20 FIA Fault Inception Angle 

21 HV High Voltage 

22 IA, IB, IC Phase Currents 

23 LG Line to Ground 

24 LLG Line to Line to Ground 

25 LLL Line to Line to Line 

26 M Mutual Inductance 

27 MSE Mean Square Error 

28 MVA Mega Volt Amps 

29 n Turns Density 

30 NN Neural Network 

31 PSCAD Power System Computer Aided Design 

32 RF Fault Resistance 

33 RC Rogowski Coil 

34 TL Transmission Line 

35 Zap Apparent Impedance 

36 VT Voltage Transformer 

37 VA, VB, VC Phase Voltages 

38 WT Wavelet transform 

39 Z0 Zero Sequence Impedance 

40 Z1 Positive sequence Impedance 

41 ZA, ZB, ZC Line Impedance   

42 ZAB, ZBC, ZCA Line to Line Impedance  
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