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1.Introduction 
Malaria is a deadly infectious disease that affects 

humans. Malaria is caused by the parasite protozoan 

plasmodium, which may infiltrate erythrocytes and 

lead to a wide range of symptoms in humans. In 

accordance with World Health Organization (WHO), 

over 619, 000 people died from malaria in 2021, with 

an estimated 214 million people affected [1].  Over 

90% of these deaths happened in Africa, followed by 

over 6% in the South East Asia Region, Eastern 

Mediterranean, and 4% in the Western Pacific. In 

2020 there were an expected 241 million cases of 

malaria and 627000 casualties caused by malaria. In 

2019, there were 229 million confirmed cases of 

malaria and an estimated 409000 deaths. In 2018, 

228 million malaria cases were detected, and 

causalities reached to 411000 [1].  

 

 

 

 
*Author for correspondence 

In 2016, around 1.09 million and in 2017, 

approximately 0.84 million cases of malaria were 

documented in India, the majority of which were 

caused by the P. falciparum species [2]. 

 

Dr. Ronald Ross first discovered malaria 

transmission in the human body by mosquitoes in 

1897 [3]. The main reason for malaria is a protozoan 

parasite. The plasmodium genus infects the red blood 

cells (RBC) of the human body, which causes malaria 

[4]. Generally, female anopheles mosquitoes and 

human beings are the two main hosts infected by the 

parasite. When female Anopheles mosquitoes desire 

to foster their eggs, they bite and draw blood from the 

human body. If a parasite infects that person, then 

that same infected parasite blood is found in the 

mosquito, and that parasite reproduces and develops 

in the mosquito's body. When that infected mosquito 

bites another person, parasites containing the salivary 

gland are transferred into that person's blood [5]. 

After transferring parasites into the human body by 

the mosquito, malaria parasites grow at a very high 
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speed in the liver and RBC of that infected person. 

Malaria symptoms appear after one or two weeks. 

Primary symptoms that appear are headache, 

vomiting, fever, and chills. If malaria is not treated 

early and properly, it is very harmful to the human 

body. It may be a reason for kidney failure, low 

blood sugar, respiratory distress, enlargement of the 

spleen etc. [6]. Malaria can kill a person by 

destroying their RBC. Malaria during pregnancy is 

very dangerous, and it is one of the reasons for 

abortion [7].  

 

Control and eliminating malaria requires global 

awareness and the availability of effective 

interventions, such as gene drives and medication 

treatments. Effective and timely malaria extinction 

faces several issues to build a malaria-free world, and 

the possible supervision of the WHO 3 T (test, treat, 

and track) policy might be a rising ride [5]. 

Antimalarial medications, innovative insecticides, 

potent vaccinations, sustainable domestic and 

international funding, and worldwide awareness 

programs were created to promote effective 

implementation. While these initiatives were 

successful early on, the gradual modifications in the 

unusual climate patterns, the developing resistance of 

vaccines, and the late delivery of enormous quantities 

of pharmaceuticals and medical staff meant an 

emerging roadblock to eliminating malaria [8]. 

Funding per malaria-risk individual in 41 high-

burden nations is below US$ 2, according to surveys 

[1]. Malaria is a chronic disease that primarily affects 

poor people. It imposes a significant burden on 

society, the economy, and people's health, and it is 

inextricably related to poverty [9]. This presented a 

difficulty for the early diagnosis and fast effective 

treatment of malaria, which was necessary to ensure 

that patients did not serve as a reservoir for parasites 

anywhere in the world.  

 

Following several years of deliberation, the malaria 

research and development (R&D) alliance decided to 

collaborate with the WHO in the hunt for innovative 

and more effective strategies to fight malaria [5]. As 

a result, the malaria R&D alliance led to the 

multidisciplinary teamwork of clinical experts in the 

diagnostic and research research engineers in the 

field of malaria R&D [10]. The productive collision 

of the two disciplinary has resulted in the 

development of digital technologies with guaranteed 

levels of quality as well as a significant rise in the use 

of automated computer vision tools for the treatment 

of malaria, which has facilitated both the diagnosis 

and the implementation of a monitoring system [11]. 

With automated malaria diagnosis, it's possible to 

provide a patient's disease history, disease stage, 

speedy diagnostic test results, effective care, and 

accurate disease detection. Today, these automated 

computational models are unique initiatives of 

malaria R&D alliances that help reach the 

surveillance aim of early detection rate by 

implementing smart malaria diagnosis systems [12]. 

Malaria may be prevented, controlled, and treated 

more effectively if a more precise and effective 

diagnostic technology was available. As part of the 

standard malaria diagnostic technique, a competent 

microscope checks blood smears for infected 

erythrocytes. This approach is inefficient since it 

relies on the skill of the microscopists to provide an 

accurate diagnosis. In contrast to microscopy, rapid 

diagnostic methods are more costly and provide less 

information. Since 2005, thick and thin malaria blood 

smears have been exposed to automatic image 

identification approaches for microscopic diagnosis 

based on machine learning (ML) [13]. 

 

Through the study of medical images, deep learning 

(DL) has emerged as a potential tool for the accurate 

detection and diagnosis of diseases, including 

malaria. Yet, the application of DL in malaria 

diagnosis remains a difficult task due to the 

complexity of blood smear images, which include 

variable parasite size and shape, low contrast, and 

overlapping cells [14]. 

 

The purpose of this work is to build a DL-based 

computer-assisted detection method for the precise 

and automated detection of the malaria parasite in 

blood smear images. The suggested method leverages 

convolutional neural network (CNN) for effective 

feature extraction and classification, thereby 

overcoming the issues associated with the analysis of 

complicated blood smear images. 

 

Early and precise malaria diagnosis is critical for 

efficient treatment and disease management. Malaria 

diagnosis is now based on manual evaluation of 

blood smear pictures, which takes time and requires 

expert workers [15]. The absence of qualified 

workers and laboratory equipment exacerbates the 

problem in resource-limited settings, such as rural 

areas, where the incidence of malaria is highest [16]. 

DL techniques, such as CNN, have emerged as a 

promising approach for automated malaria diagnosis 

in response to these problems [17]. These approaches 

have demonstrated tremendous promise in reliably 

categorizing blood smear pictures as malaria parasite-

infected or uninfected. DL can significantly reduce 
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the strain of healthcare staff, accelerate the diagnosis 

process, and enhance diagnosis accuracy (ACC), 

resulting in timely and effective treatment [18]. 

 

DL models may also be trained on huge datasets, 

which improves their ACC and robustness, and they 

can be readily scaled up to analyse large amounts of 

data [19]. These models, which may be incorporated 

into healthcare systems and distributed on mobile 

devices, make diagnosis more accessible, particularly 

in distant and resource-constrained situations. 

 

As a result, the motivation for diagnosing malaria 

using blood smear images using DL techniques is to 

enhance the ACC, efficiency, and accessibility of 

malaria diagnosis, thereby contributing to the 

decrease of the worldwide malaria burden. 

 

The objective of this study is to design and 

implement a DL-based technique for malaria 

parasites that is accurate, efficient, and minimizes 

losses. Evaluate the proposed technique's 

performance using a variety of performance 

measures, compare the suggested technique's 

performance to other state-of-the-art techniques, and 

demonstrate the effectiveness of the proposed 

technique in clinical situations. This also expedites 

the diagnosis and classification of malaria by medical 

professionals. To forecast the result of such medical 

events, medical specialists must exert tremendous 

effort. The objective of the research procedure is to 

acquire certain outcomes. The significance of the 

research is as follows: 

 

Research for community 

The disease with the highest mortality incidence is 

malaria. Children under five years old were the most 

vulnerable [2], with an estimated 214 million cases 

and 619,000 fatalities in 2021 and 241 million cases 

and 627,000 deaths in 2020 [1]. Delay in detection is 

the primary cause of the elevated mortality rate. By 

spreading knowledge and enabling quick treatment, 

early detection of malaria can significantly lower the 

fatality rate. To reduce the mortality rate, an 

automated computer-assisted technique is necessary 

for precise and early detection. With such a method, 

there would be a greater possibility for an early 

diagnosis and appropriate treatment, which would 

increase the likelihood that malaria patients would 

survive. Digital thin and thick blood smear images 

can be used to automatically identify malaria 

parasites, giving a more effective and accurate 

diagnosis, when computer vision and ML techniques 

are used. 

Technical aspect for the healthcare industry 

Algorithms for DL and ML are generally 

acknowledged as powerful tools for image analysis. 

These models work better than other cutting-edge 

models in a variety of applications, increase disease 

diagnosis speed and ACC, and lower error rates 

generally. This kind of model can assist medical 

professionals in making crucial decisions, which in 

turn can help save lives. 

 

This research paper's contributions include the 

development of a novel DL-based computer-assisted 

detection technique for the automated detection of 

malaria parasites in blood smear images, a 

comprehensive evaluation of the performance of the 

proposed technique, and a comparative analysis with 

other state-of-the-art techniques. The proposed 

method has the potential to aid physicians in making 

precise and timely diagnoses, leading to improved 

disease treatment and patient outcomes. 

 

In this work, DL is employed to detect RBC parasite 

infection in thin smears on conventional microscope 

slides. For this purpose, used CNN, a field of DL that 

excels at handling two-dimensional input like photos 

and movies. It was motivated by research into the 

brain mechanisms responsible for object 

identification in felines [20]. The studies motivate a 

pattern recognition model to mimic how the brain 

interprets visual data. CNN models have the benefit 

of being trained robustly owing to their hierarchical 

structure of learning layers after the model's topology 

has been matched to the feature input. Using the 

spatial correlations of the visual patterns, the model 

may effectively minimize the number of parameters 

that need to be learned. This improves the precision 

(PRE) of the feedforward-backpropagation training 

technique. A CNN provides a learning approach that, 

unlike traditional classifiers, does not require feature 

extraction and fine-tuning in advance because DL 

represent exceedingly complex data. 

 

The paper is organised as follows: in the section 2, 

the existing work done for malaria detection has been 

summarised. Section 3 describes the material and 

methods used in the current work for implementation. 

The proposed models evaluation and result analysis 

have been done in section 4. The comparison of 

proposed models with state-of-the-art techniques and 

limitations of the present work has been summarised 

in section 5. Furthermore, conclusion, along with the 

future scope, have been discussed in section 6. 
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2.Related work 
In order to identify the malarial parasite in thin blood 

smear images, Raj et al. [21] suggested a DL-based 

image classification approach that makes use of a 

CNN for effective feature extraction and precise 

classification. It's possible that the suggested CNN 

model might automatically extract unique and 

fundamental features from given images. Using CNN 

for image data is a great idea. Using data from three 

distinct optimizers for both training and validation, 

this research evaluates the proposed model's apparent 

ACC. 

 

Minarno et al. [22] emphasise the seriousness of 

malaria as a worldwide public health concern and the 

significance of early identification and fast treatment 

to avoid serious results, including death. The purpose 

of this study was to categorise malaria cell images 

using the Inception-V3 architecture. The study 

indicated that the model with the RMSprop optimizer 

got the maximum ACC of 97% and the lowest loss 

value across three given scenarios. The findings 

suggest that the Inception-V3 model accurately 

identifies malaria cells, indicating that DL techniques 

might be used to diagnose malaria. 

 

Silka et al. [23] emphasise the vital need of early 

identification and treatment in controlling the 

potentially fatal illness of malaria. Researchers have 

achieved a stunning 99.68% ACC in identifying 

malaria from blood samples by adding a 

revolutionary CNN architecture. The researchers' 

proposed CNN exceeds existing approaches in ACC 

and speed, providing a viable alternative for malaria 

detection, particularly in resource-limited areas. The 

model's outstanding performance in categorising 

infected and uninfected samples with high sensitivity 

(SEN) and specificity (SPE) highlights its potential to 

assist healthcare professionals in properly detecting 

malaria and its subtypes using DL techniques. These 

findings have important implications for the 

application of artificial intelligence in infectious 

illness diagnosis. 

 

Razin et al. [12] suggest a DL strategy for the 

detection of malaria parasites using CNN and the 

YOLOv5 (you only look once version 5) algorithm. 

This is done in order to solve the constraints that are 

present in existing medical science malaria detection 

techniques. When it comes to identifying infectious 

blood images, the CNN model that has been trained 

achieves an astounding ACC of 96.21%. This novel 

approach has the potential to improve malaria 

diagnosis and reduce the burden of the disease all 

over the world. 

 

Krishnadas et al. [24] show that DL models, 

specifically YOLOv5 and scaled YOLOv4 (you only 

look once version 4), can automate the identification 

and categorization of malaria parasites, as well as 

their stage of advancement. The manual diagnostic 

method that has been used for malaria in the past 

takes a significant amount of time and is prone to 

mistakes. In contrast, the automated models that have 

been developed provide findings that are both quicker 

and more accurate. The performance of the model 

was significantly improved by the addition of 

augmented images and the usage of annotated 

datasets. Scaled YOLOv4 showed greater ACC for 

the categorization of parasites, achieving a score of 

83%. YOLOv5 came in a close second, with 78.5%. 

These findings suggest that these models have the 

potential to assist medical practitioners with accurate 

diagnosis and stage prediction of malaria, which 

might lead to more successful management and 

treatment techniques. 

 

Sifat et al. [25] developed an automated approach for 

identifying malaria parasites and their phases from a 

blood smear, which is an early use of DL algorithms. 

Using visual geometry group (VGG) 16, infected 

RBC parasites were identified. It was possible to 

identify malaria and its different stages automatically. 

97.67% of their segmentation was accurate. The ACC 

of U-Net's model was 92.05%. Using the CNN 

model, the SPE was 95%. The median ACC of the 

VGG16 model was 95.55%, and its SPE was 94.7%. 

Sampathila et al. [26] has implemented a computer 

technique for detecting malaria that involves 

categorising the malaria parasite from microscopy of 

a blood smear. It demonstrates how image 

segmentation and extraction of features may be used 

to detect malaria in blood smear images under a 

microscope. To eliminate distracting backdrops and 

objects, researchers examined the HSV (hue 

saturation value) of each image's colour space. Then, 

a neural network was used to identify and extract 

attributes from the data, such as colour and texture. 

The research yielded a training ACC percentage of 

97.2%. 

 

Recent methodologies were used in the study work 

carried out by Li et al. [27]. The authors investigated 

a hybrid model known as reinforced stream-based 

active learning (RAL) - convolutional neural 

networks with a support vector machine (CNNSVM), 

which was made up of numerous modules of residual 
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attention learning networks, a global average pooling 

block, and a classifier that was trained using a 

support vector machine (SVM). It was discovered 

that the model significantly improved prediction 

ACC without requiring any extra complicated 

calculations to be performed. 

 

Roy et al. [28] used image processing to detect 

malaria parasites in blood smear microscope images. 

This was done by using a model that used a colour 

pixel-based discriminating method and a 

segmentation technique. In their method, both 

watershed and HSV color segmentation were used. 

Next, they used morphological techniques to 

highlight the parasite in RBC microscopic images. 

Their efforts boosted the detection rate of the disease-

causing parasite to 90.0%.  

 

Nayak et al. [29] examined the effectiveness of 

several deep-learning algorithms for diagnosing 

malaria. With a training ACC of 97.55%, the ResNet 

50 model performed quite well. Maduri et al. [30] 

implemented the CNN network and image datasets in 

this work. This model's primary focus is image 

processing with the Keras image generator to produce 

the results. The trained model efficiently 

differentiates the between positive and negative 

images of the dataset. Image processing does not 

need expert expertise, image processing makes 

malaria diagnosis rapid and accurate. The primary 

goal of incorporating image processing into trained 

model is to allow it to classify positive and negative 

RBC from a huge dataset of microscope images of 

thin blood smears. DL is also used to classify human 

blood cells. 

 

Francies et al. [31] described the development of the 

YOLO technique and YOLOv5 as a cutting-edge 

object identification method in their study. The study 

explains how a single neural network was able to 

reframe the object identification issue using the 

YOLO approach. Setyawan et al. [32] used CNN to 

automatically categorise malaria parasites from blood 

smear images, and a positive result was found. This 

made a quick diagnosis possible, which saved the 

patient's life. This research focuses on the 

technologies, data collection, initial processing, and 

classification of the CNN algorithms that are already 

being utilised to diagnose malaria. This research also 

talks about problems that will need to be handled in 

the future and why it's hard to compare current 

tactics. Second, researchers analyse into the CNN 

techniques that are being used to classify malaria in 

research publications that have been published. Then, 

the suggested CNN techniques are spoken about and 

rated based on how well they work and what kind of 

features they have. 

 

Hung and Carpenter [33] used bright-field 

microscopy images of malaria-infected blood to 

identify cells and characterize their phases using an 

object detection algorithm previously applied to 

natural images. They compare it to a baseline 

technique that comprises cell segmentation, the 

acquisition of a number of single-cell attributes, and 

categorization using random forests. One of the 

greatest models for identifying objects in recent 

years, faster R-CNN, was utilised. It was learned 

using ImageNet and then tuned using the image 

dataset. 

 

Var and Tek [34] used images from Giemsa-stained 

blood smears to identify the parasites that cause 

malaria. (Plasmodium sp.). In this study, the 

scientists used transfer learning to detect and classify 

malaria parasites. They use the well-known CNN 

model VGG19, which has already been trained. Over 

20 iterations, they used 1428 samples of P. Vivax, 

1425 samples of P. Ovale, 1446 samples of P. 

Falciparum, 1450 samples of P. Malariae, and 1440 

samples with no parasites. 

 

Yang et al. [35] built the first DL system that works 

on mobile devices and can find parasites caused by 

malaria in thick blood smear images. This approach 

has two stages of processing.  Start by using an 

intensity based iterative global minimum screening 

(IGMS) on a thick smear imagine to identify for 

possible parasites. The next stage is to use a 

customized CNN to classify each candidate as a 

parasite or a backdrop. 

 

Iradukunda et al. [36] develop a realistic model to aid 

in the detection of malaria. The dataset used, made 

accessible by the National Institute of Health (NIH) 

in the United States, contained a total of 27,560 

photos of red RBC, including an equal number of 

images of infected and uninfected RBC. The extreme 

learning machine (ELM) model of single hidden 

layer feedforward neural networks was used to 

categorise and forecast whether a patient has malaria 

or not. 

 

Sifat and Islam [25] proposed that malaria parasites 

and their stages may be detected automatically from 

blood smears. An online database was used to 

identify images of blood smears from people with 

malaria. After some initial processing, U-Net was 
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used to separate RBC from blood smear images. 

CNN was then used to find RBC that were infected 

with malaria parasites. Finally, an outstanding neural 

network called VGG16 was used to find the different 

kinds and stages of malaria. 

 

Prakash et al. [37] build a deep CNN that can detect 

the presence of the malaria parasite in the thin blood 

smear images dataset. The malaria dataset can be 

obtained at the Lister Hill National Center for 

Biomedical Communications, which is located in the 

United States and houses the National Library of 

Medicine (NLM). The CNN model has an F1 score 

(FS) of more than 94% and is resistant to overfitting. 

Shekar et al. [38] proposed a CNN-based ML 

approach that automatically detects and predicts 

infectious cells in thin blood smears on traditional 

microscope slides. A ten-fold cross-validation layer 

of the CNN is applied to 27,558 single-cell images to 

understand the cell parameter. By comparison, the 

most accurate of three different CNN model types—

Basic CNN, VGG-19 Frozen CNN, and VGG-19 

Fine Tuned CNN—is determined. The model with 

the best ACC rate is then picked by comparing the 

ACC rates of the three models. 

 

Umer et al. [39] examined infected red cells under a 

microscope. This diagnosis is based on the 

pathologists' expertise and experience, and manual 

examination results may differ between laboratories. 

Alternatively, various ML methods have been used to 

help blood stains identify themselves. Yet, modifying 

positional and morphological features is a tough task 

that requires skill. Without considering the hand-

crafted features, in this paper, a new stacked based 

CNN design is proposed that makes it easier for 

computers recognize malaria. 

 

Joshi et al. [40] present a CNN-based DL technique 

for diagnosing malaria from microscopic cell images 

in their publication. In terms of ACC and other 

evaluation criteria, the suggested CNN model, which 

uses a 5-fold cross-validation approach, does better 

than all other methods presently in use and gives the 

greatest results for DL for diagnosing malaria. 

 

Paul and Bania [41] built three CNN models to 

predict malaria from RBC images of infected parasite 

RBC and uninfected parasite RBC. 

 

To detect malaria parasites, Aimi et al. [42] 

employed k-means clustering with red, green, blue 

(RGB), hue, saturation, intensity (HSI), and cyan, 

yellow (C-Y) colour models. The colour models were 

used to determine the optimum segmentation 

component. Following the selection of the best colour 

component, median filtering and seeded region 

growing area extraction were used to remove 

unwanted artifacts from the segmented image. 

 

Savkare and Narote [43] employed a statistical SVM 

classifier to detect malaria parasites in erythrocytes 

automatically. SVM, Naive Bayes, and multilayer 

perceptron were utilised to classify malaria-infected 

erythrocytes utilising textural and morphological 

information in a recent study. 

 

According to a review of numerous state-of-the-art 

studies, one of the key issues provided by the current 

study is that the results of kit-based procedures are 

less exact, and any wrong result may have an impact 

on the medication given to the patient. Another big 

obstacle that must be overcome utilising the 

technologies that are currently accessible is 

determining whether or not a patient has malaria. It is 

unable to distinguish between different types of 

malaria. Numerous scholars have conducted 

experiments and then disseminated their findings 

through scholarly publications within the same field 

of study. However, there is a need to enhance an 

automated computational-based computer vision 

approach to efficiently and effectively detect the 

malaria parasite from blood smear images, in 

accordance with the demands of the community. 

  

The community necessitates: The usage of 

standardised imagine datasets is limited in research 

due to the prevalent lack of standardisation across 

researchers' datasets. The quality and features of the 

microscope play a crucial role in the digital blood 

smear dataset, as it is via the use of a digital camera 

mounted to the microscope that all digital 

photographs of blood smears are captured. A 

standardised dataset has significant importance for a 

machine-learning system aimed at automating the 

detection of malaria. In the field of literature, the 

existing methodologies are capable of identifying just 

a singular strain of the malaria parasite. However, it 

is possible for the patient to be impacted by many 

types of parasites. Therefore, it is imperative to 

develop a model capable of accurately identifying 

various strains of malaria parasites. The authors 

employed several models and methodologies to train 

the machines for the purpose of classifying malaria 

parasites from blood smear images. The learning 

process of the training model is experiencing a 

significant duration. Therefore, it is imperative to 

minimise the duration required for training 
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classification models. In the field of literature, some 

academics have formulated models to analyse digital 

photographs of blood smears captured by a 

microscope-mounted camera. Hence, the 

development of an automated methodology is 

imperative to enhance the PRE of malaria parasite 

identification, facilitating early diagnosis and 

ultimately mitigating the future death rate associated 

with malaria.  

 

3.Material and methods 
Blood smear images are often used to detect malaria 

at an early stage. Medical professionals, such as 

medical laboratory technicians or pathologists, who 

are well-versed in the identification and classification 

of the different species and stages of malaria 

parasites under a microscope, do the grading of blood 

smear images. Accurate analysis of microscopic 

blood smear images is influenced by the expertise of 

pathologists. It takes too much effort and can produce 

inaccurate results. Hence, a computer aided diagnosis 

(CAD) system is critical for the automatic 

classification of malaria diagnoses and for assisting 

medical professionals and pathologists by providing a 

tool for a second opinion. As a result, an autonomous 

malaria detection system is being developed to ensure 

proper disease analysis and evaluation while also 

increasing ACC. 

 

3.1Dataset 

The malaria dataset is collected from the NIH 

website, which is publicly available [44]. This dataset 

has originated from Giemsa-stained slides of thin 

blood smears from 50 healthy patients and 150 P. 

falciparum infected patients who were screened for 

malaria. At the MOTM Research Unit of Bangkok, 

image specialists use slide readers to manually 

annotate images that are included in a dataset. After 

then, the NLM gathers all of these images together. 

Table 1 shows that there are an equal number of 

infected and healthy RBC in the 27558 images in the 

dataset. Figure 1 shows that uninfected blood image 

samples do not have plasmodium and (b) infected 

blood cell image samples have plasmodium. During 

pre-processing, the colored patches on RBC, which 

range in size from 110 to 150 pixels, are resampled to 

64×64 pixels to meet the needs of the classifier. 

 

Table 1 Dataset description 
Dataset Number of 

Healthy Patients 

Number of falciparum 

infected patients 

Total 

Images 

Number of 

Parasitized 

Images 

Number of 

Uninfected 

Images 

[44] 50 150 27558 13779 13779 

 

 
                               (a)Uninfected                                                (b)Infected 

Figure 1 Malaria dataset sample images 

 

3.2Hardware and software requirements 

Training DL models demands a central processing 

unit (CPU), graphics processing unit (GPU), and 

random access memory (RAM) with high 

performance. As the dataset utilized in this study 

consists of 27558 blood smear images, it is a 

relatively large dataset. Table 2 explains all the all 

the required hardware resources and Table 3 explain 

all software tools needed for this research study. 
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Table 2 Required hardware resources for this study 
CPU GPU RAM STORAGE 

Xeon CPU 2.20 

GHz 

Nvidia K80 12 GB RAM 

8.7 TFLOP@FP16 

16GB 128GB 

 

Table 3 Software tools needed for this research 
Programming language Libraries Software tools Integrated 

development 

environment (IDE) 

Python 3.7 Tensorflow, Pandas, Kearas, Matplot, 

Numpy, os, Pickle, Scikit-Image, 

Scikit-Learn, OpenCV Seaborn, PIL, 

Sklearn, Pillow,  CV2, 

Anaconda 3, Google Collab, 

Google Drive 

Spyder 

 

3.3Block diagram of methodology 

The block diagram of the research methodology is 

shown in Figure 2. The proposed methodology is 

divided into three sections: data pre-processing and 

segmentation, architecture of proposed classifiers 

models, and evaluation of proposed models. 

 

3.4Data pre-processing and segmentation 

Malaria blood smear images are taken from the NIH 

website consisting of 27558 images of malaria 

diseases [44]. In which 13779 images are parasitized 

Images and 13779 images are uninfected images. 

All of the images are in portable network graphics 

(PNG) format and RGB. The size of the original 

images is 110 to 150 pixels. During the pre-

processing stage, the colored patches on RBC, which 

range in size from 110 to 150 pixels, are resampled to 

64×64. After that segment the RBC for the detection 

of the malaria parasite using blood smear images to 

facilitate the classification process. 

 

3.5Proposed classification models 

The procedure for dealing with malaria diseases 

involves classifying them using two different models. 

In the first model, classification is carried out with 

the proposed CNN model-based binary classifier. In 

the second model, classification is carried out with 

the help of the proposed customized CNN model. 
3.5.1Proposed Model 1 - malaria disease classification 

with CNN model-based binary classifier 

A CNN model based binary classifier was created for 

malaria diagnosis using blood smear microscopic 

images. The model is implemented by resizing every 

image in the dataset to 64×64 and labelling them with 

0s and 1s. In addition, there is a 30% testing portion 

and a 70% training portion, with both of these 

portions being normalized between 0 and 1. In order 

to enhance Malaria detection ACC, binary 

classification algorithms based on CNN on a set of 

parameters have been used. In order to fine-tune the 

algorithm's PRE, it was trained and evaluated using a 

wide range of epoch sizes and batch sizes. By 

combining the most effective optimizer strategy, loss 

function, activation function, and binary 

classification, the CNN model improved its ACC to 

90.2%. The logic flow diagram of a binary classifier 

based on a CNN model is shown in Figure 3. 

 

Architecture of proposed model 1  

The proposed CNN model-based binary classifier 

design is made up of many convolutional and pooling 

layers, followed by a fully connected (FC) layer for 

classification. The pooling layers minimize the 

spatial dimensions of the feature maps while the 

convolutional layers extract and manipulate data 

from input images. The model employs the rectified 

linear unit (ReLU) activation function to induce 

nonlinearity, which improves the model's 

discriminative capability. To prevent overfitting, 0.5 

dropout regularization is utilized. To obtain the 

binary classification prediction, the output of the last 

layer is passed via a sigmoid function. The cross-

entropy loss between true labels and predicted labels 

is computed using the binary cross entropy loss 

function and the rmsprop optimizer. Because of its 

capacity to learn complex characteristics from 

images, the suggested architecture has exhibited good 

performance in binary image classification tasks. 

Table 4 shows the various characteristics of the 

proposed classifier. 

 

Components of proposed model 1 architecture 

convolutional layer 

The first and most important part of a CNN is the 

convolutional layer. It uses a mathematical process 

called "convolution" on the image it is given to find 

and learn key features or patterns in the image. 

Convolution is done with a set of filters, which are 

also called kernels or weights. These filters slide over 

the input image and multiply and add each element to 

make feature maps [45]. Then, these feature maps are 

sent through activation functions and pooling layers 
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to reduce the size of the network and make it deeper. 

As seen in Figure 4, this layer includes filters that 

can be learned. Convolutional layers are crucial in 

enabling CNNs to effectively process and analyze 

visual information, making them popular for image 

classification and other computer vision tasks. 

Equation 1 is used to calculate output parameters in 

the convolution layer. Where w represents the width, 

h is the height, d is the dimension of the input image, 

and N is the number of filters. 
No. of output parameters =  (((w ×  h ×  d) +
1) ×  N)     (1) 

 

 

 
Figure 2 Block diagram of proposed research methodology 
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Figure 3 CNN Model based binary classifier 

 

Table 4 Parameters of the proposed model 1 - CNN model based binary classifier 
S. No. Layers Input Image 

size 

Filter 

size 

No. of 

filter 

Activation 

function 

Output Parameters 

1 Input Image 64×64×3 -- -- -- -- -- 

2 Convolutional 64×64×3 3×3 32 ReLu 62×62×32 896 

3 Maxpooling 62×62×32 Poolsize 

(2×2) 

-- -- 31×31×32 0 

4 Convolutional 31×31×32 3×3 32 ReLu 29×29×32 9248 

5 Maxpooling 29×29×32 Poolsize 

(2×2) 

-- -- 14×4×32 0 

6 Convolutional 14×14×32 3×3 32 ReLu 12×12×64 18496 

7 Maxpooling 12×12×64 Poolsize 

(2×2) 

-- -- 6×6×64 0 

8 Flatten 6×6×64 -- -- -- 6×6×64 0 

9 Dense 2304 64 -- ReLu 64 147520 

10 Dense 64 1 -- Sigmoid 1 65 

 

 
Figure 4 Convolutional layer 

 

Rectified linear unit (ReLU) layer 

ReLU activation functions avoid the vanishing 

gradient problem in DL networks, especially CNNs. 

DL networks often use this activation function to 

avoid the vanishing gradient issue, which is common 

in deep networks, it replaces all negative input values 

with zero. Mathematically, the function is written in 

Equation 2, where i is the input and t are the output. 

ReLU activation functions are simple, easy to 

compute, and have been shown to make many DL 

models work better. In addition to ReLU, there are 

other types of activation functions, such as leaky 
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ReLU, which lets small negative values through, and 

parametric ReLU, where the slope of the function can 

be learned through training.  

t = maximum(0, i)   (2) 

 

Batch normalization 

Batch normalization normalizes neural network layer 

activations. It processes layer inputs before the 

activation function. Batch normalization reduces 

internal covariate shift and stabilizes and optimizes 

training. It reduces the variance of layer inputs, 

which makes the optimization process smoother and 

reduces the network's SEN to initialization. Batch 

normalization normalizes activations for each mini-

batch of data during training and scales and shifts 

them using learned parameters. Normalization makes 

the network more robust and faster learning by 

preventing it from being excessively sensitive to 

large or small inputs. The calculation of output 

parameters is shown in Equation 3. 

Parameters = (d × 4)   (3) 

 

Here, d represents the value of the dimension that 

was output by the layer before it. For instance, if the 

input image for the batch normalization layer is 

3×3×32, then d=32. 

 

Pooling layer 

CNN frequently employ the pooling layer to reduce 

the size of the feature images produced by the 

convolutional layers. Its main goal is to make 

network processes simpler while keeping the crucial 

data in the feature maps. The two most widely used 

pooling techniques are maximum pooling and 

average pooling. As seen in Figure 5. The size of the 

feature maps and the number of parameters and 

computations needed by the network are both 

reduced by max pooling in CNN, which outputs the 

maximum value in a particular region of the feature 

map. In average pooling, the output is the average 

value of the same region. Pooling helps prevent the 

network from overfitting by reducing the number of 

parameters and computational resources needed. It 

also increases the network's spatial invariance, 

making it less sensitive to small changes in the input 

image. 

 

3 5 1 7  
2 x 2 

Max Pooling 
   

7 8 5 6   

 

  8 7 

9 2 6 4   

 

  9 6 

3 5 1 2   

 

    

Figure 5 Pooling layer (2×2 Max pool) 

 

Dropout layer 

It is a regularization technique used to prevent 

overfitting in DL neural networks as shown in Figure 

6. During training, the dropout layer sets a predefined 

proportion of input units to 0, compelling the network 

to learn numerous distinct representations of the input 

data. This prevents the network from remembering 

the training data and failing to generalize to new 

input. Typically, the dropout rate, or the proportion of 

input units set to 0, is between 0.5 and 0.8. During 

testing, all input units are used, and their activations 

are scaled by the inverse of the dropout rate to 

compensate for the decreasing number of active units 

during training. Dropout is commonly utilized to 

enhance model performance and stability in several 

neural network types, including CNNs and recurrent 

neural networks. The major purpose of this layer is to 

eliminate some arbitrary group of functions in the 

layer by assigning a value of zero to each of those 

functions. 
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Figure 6 Dropout layer 

 

FC layer 

A deep neural network (DNN) completely connected 

layer is its brain. Every neuron in this layer is linked 

to every neuron in the layer above, as shown in 

Figure 7. Every neuron in a FC layer receives 

information from the layer below it, weights those 

inputs, and then sums them. After that, an activation 

function like ReLU, Sigmoid, or Tanh is applied to 

each neuron's output. By combining several 

fundamental characteristics from the layer before it, 

these layers in DL models are used to extract high-

level features from the raw input data. By combining 

the features that were picked up in the previous layer, 

this is achieved. Class probabilities can be generated 

from the output of the final FC layer for use in 

classification challenges. 

 

Activation functions 

Activation functions are utilized in neural networks 

to apply a mathematical operation on the output of 

each neuron to determine the neuron's output signal. 

This signal is used to determine if the neuron should 

be "activated" and pass information to the next layer 

in the network. Activation functions are critical in 

enabling neural networks to model complex, 

nonlinear relationships between input and output 

data. Common activation functions include Sigmoid, 

ReLU, and Tanh. Each of these functions has its 

unique characteristics and is best suited for particular 

types of neural networks or specific problems. They 

add complexity and nonlinearity to the model, which 

lets it learn complex ways to represent the data it is 

given. ReLU, Sigmoid, Tanh, and Softmax are all 

common activation functions. They are important 

design decisions that can have a significant effect on 

how well a neural network works. 

 

 
Figure 7 FC layer 

 

Sigmoid 

It is one of the most common non-linear activation 

functions. Sigmoid changes the values between 0 and 

1 in a certain way. The mathematical function of the 

sigmoid function is shown in Equation 4 and a graph 

of the Sigmoid function is shown in Figure 8. 

𝑆 =  
1

(1+𝑒^−𝑘)
    (4) 

 

 
Figure 8 Sigmoid function 
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3.5.2Proposed Model 2 - malaria disease classification 

with customize CNN model 

In recent years, DL has become increasingly 

widespread for use in the classification of medical 

images. Mostly, DL refers to a type of neural network 

that has several layers between the input and the 

output. Although a normal neural network has 

between one and two hidden layers, DNN include 

multiple layers. For the purpose of performing 

malaria disease classification in blood smear images, 

a customized CNN model has been proposed. There 

is no provision for the manual extraction of features 

in DNN. Using a wide range of different 

convolutional building components is required in 

order to successfully develop a customize CNN. The 

architecture of each convolutional block includes 

both convolutional layers and max pooling layers. 

After that, the proposed customized CNN model is 

evaluated with regard to a number of various factors. 

A customized CNN has been built to detect malaria 

parasites using blood smear images. In this model, 

two convolutional layers and four hidden layers were 

built consecutively. Each convolutional layer's output 

was added to the max-pooling layer, and the max-

pooling layer's output was added for batch 

normalization. A dropout layer has been added at the 

end of each convolutional layer. Dropout causes 

certain neurons in the network to be turned off at 

random, forcing the data to seek other pathways. As a 

result, overfitting is reduced. Following the 

convolutional layers, four dense layers were added at 

the end for class prediction. 

 

Finally, the model was built with a categorical cross 

entropy loss function, an Adam optimizer, and an 

ACC metric. The dataset was then fitted to the model, 

i.e. the proposed model was trained for different 

epochs and batch sizes. After training the model, 

evaluated the loss and ACC of the model on the test 

dataset. 

 

Architecture of proposed model 2 

The proposed customized CNN model is put to use in 

order to classify blood smear images collected from 

microscopy in order to determine whether or not they 

are infected of the malaria disease. The CNN model 

has a number of distinct convolution blocks, each of 

which is composed of convolution layers and max 

pooling layers. The size of the image being input is 

64 x 64 pixels. The image that was provided as input 

is then sent on to the first convolution block of the 

proposed customized CNN model. One convolutional 

layer and one max pool layer are included in the first 

convolution block. Detail architecture of proposed 

customized CNN model is following: 

 

Proposed customized CNN model is developed using 

the Keras API. The model is designed to classify 

images into one of two classes, and the input shape of 

the images is (64, 64, 3). Following is a brief 

explanation of each layer in the model: 

 

Input Layer: The input layer is defined using the 

Input class from Keras, with the shape of the input 

images specified as (64, 64, 3). 

Convolutional layers: Two convolutional layers are 

defined, each with a kernel size of (3, 3) and 32 

filters. The activation parameter is set to 'relu', and 

the padding parameter is set to 'same'. The first 

convolutional layer takes the input layer as its input, 

while the second takes the output of the first layer. 

Max pooling layers: Two max pooling layers are 

defined, each with a pool size of (2, 2). The first max 

pooling layer takes the output of the first 

convolutional layer as its input, while the second 

takes the output of the second convolutional layer. 

Batch Normalization Layers: 4 batch normalization 

layers are defined, each with the axis parameter set to 

-1. The output of the first max pooling layer is the 

input for the first batch normalization layer, whereas 

the output of the second max pooling layer is the 

input for the second batch normalization layer. The 

remaining two batch normalization layers are 

connected to the FC layers. 

Dropout layers: Six dropout layers are defined, each 

with a rate parameter of 0.2. The first dropout layer 

takes the output of the first batch normalization layer 

as its input, while the remaining five are connected to 

the FC layers. 

Flatten layer: The flatten layer is used to flatten the 

output of the second max pooling layer, which is a 

3D tensor, into a 1D tensor that can be fed into the 

FC layers. 

FC layers: Four FC layers are defined, with 512, 

256, 128, and 64 units respectively. The activation 

function for each of these layers is set to 'relu'. The 

first FC layer takes the output of the flatten layer as 

its input, while the remaining three are connected to 

the output of the preceding dropout and batch 

normalization layers. 

Output layer: The output layer is a FC layer with 2 

units and the activation function set to 'sigmoid', 

which is used for classification. It takes the output of 

the final dropout and batch normalization layer as its 

input. 

Model compilation: Finally, the model is compiled 

using the compile method. The optimizer parameter 
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is set to 'Adam', which is a popular optimizer for 

training neural networks. The loss parameter is set to 

'categorical_crossentropy', which is the loss function 

for classification problems. The metrics parameter is 

set to ['ACC'], which means that the ACC metric will 

be used to evaluate the performance of the model 

during training and testing.  

 

Model summary: The model summary is printed 

using the summary method of the Keras model. The 

block diagram of the proposed customized CNN 

model is shown in Figure 9 and the proposed model 

architecture is shown Figure 10 It displays the layers 

of the model, their output shapes, and the number of 

trainable parameters in the model. 

 
Figure 9 Block diagram of proposed customized CNN model 

 

 
Figure 10 Proposed customized CNN model architecture 

 

4.Results 
For the evaluation of proposed models, different 

evaluation metrics are used that are discussed below. 

After this, trained models are compared with state-of-

art techniques. 

 

Evaluation metrics 

The different parameters that are used for 

performance measurement for classification are PRE, 

SEN, SPE, FS and ACC. After considering all the 

parameters from the confusion matrix, the actual 

values and the predicted values are presented in 

Table 5. 

 

The term "true positive" (TP) refers to the situation in 

which both the observed and projected classes for a 

given data item are true. The term "false positive" (or 

"FP") refers to a situation in which the actual class of 

the data point is inaccurate, whereas the class that 

was predicted was accurate. A "true negative (TN)," 

abbreviated as "TN," indicates that both the observed 

and projected classes of the corresponding data item 

are false. False negative (FN) occurs when the real 

class of the data point is different from the projected 

class. 

 

PRE: is measured by dividing the number of TP by 

the combined total of TP and FP, as seen in Equation 

5. 

Precision(PRE) =
TP

TP+FP
   (5) 
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SEN: is defined as the ratio of TP to the sum of TP 

and FN as shown in Equation 6. Range of SEN is 

between 0 and 1. 

Sensitivity (SEN) =  
TP

TP+FN
  (6) 

SPE: is defined as the ratio of TN to the sum of 

positive as shown in Equation 7. Range of SPE is 

between 0 and 1. 

specificity (SPE) =  
TN

FP+TN
  (7) 

FS: A statistic for ML that can be utilized in 

classification models is referred to as the FS. In order 

to calculate the FS, one should combine the PRE and 

recall metrics into a single measure, as illustrated in 

the Equation 8. 

F1 Score (FS) =
2×TP

2∗(TP+FP+FN)
  (8) 

ACC: is computed by dividing the total number of 

true events, which is the sum of TP and TN, by the 

sum of TP, FP, TN, and FN, FP, as illustrated in 

Equation 9. 

Accuracy (ACC) =
TP+TN

TP+FN+FP+FN)
     (9) 

 

Table 5 Confusion matrix 
  Actual 

  +ve -ve 

Predicted +ve TP FP 

-ve FN TN 

 

4.1Result analysis of proposed model 1 

The proposed classifier was put into place to train 

and test it on a set of 27558 images of blood smears. 

70% of the 27558 blood smear images were used to 

train the model while 30% were used to test the 

model. The last layer of output gives back a single 

number between 0 and 1. If the result of the final 

output layer of the trained model is near to 0, then the 

image has been parasitized; however, if it is close to 

1, then the image has not been parasitized. After the 

different hyper-parameters of the proposed model 

were set up, the final trained model had an ACC of 

90.20 percent, and it took the proposed model 207 

minutes to train. 

 

Hyper-parameter Configuration 

The system must be trained with a number of 

parameters, each of which must be optimized at 

different training levels. After examining and 

assessing the outcomes at various phases, the batch 

size, epoch size, loss function, optimizer 

configuration algorithm, and activation function were 

configured. Batch size, epoch size, activation 

function, loss function, and optimizer settings all 

have default setup options of 32, 30, Sigmoid, binary 

crossentropy, and AdaDelta. The results are shown in 

Figure 11 according to various epoch sizes. Training 

loss decreased from 0.510 to 0.0102 and training 

ACC increased from 0.609 to 0.9892 as seen in 

Figure 12 for models trained and tested with varying 

epoch sizes. Increasing the epoch count resulted in a 

decrease in Val Loss from 0.441 to 0.160. This model 

achieved a best-in-class 75% Val ACC across 30 

epochs. 

The epoch size parameter was set to 30 with the 

validation ACC 75%, and successive CNN models 

were trained and tested on varied batch sizes. 

Overfitting was found in models trained and tested 

with 96, 128, and 160 batches, while models trained 

and tested with 32 and 64 batches generated the best 

results. Figure 13 shows the best performance with a 

batch size of 32. 

 

 
Figure 11 Screenshot of the proposed model 1 architecture 
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Figure 12 Training & validation loss / ACC for different epoch sizes 

 

 
Figure 13 Training & Validation Loss / ACC for different Batch sizes 

 

After determining the best epoch and batch size, the 

dataset is trained and tested on several optimizer 

algorithms, which serve as DL standards. Figure 

7 presents the results of various optimizers. 

According to the findings, the AdaGrad optimizer 

algorithm has a low training ACC and a high training 

loss. Both RMSProp and stochastic gradient descent 

(SGD) are overfitted when it comes to optimizers. 

Based on the values of Val Loss and Val ACC in 

Figure 14, Adam is the best optimizer method for 

this model, followed by AdaDelta. As shown in 

Figure 15, the suggested model is trained and 

assessed using a range of activation functions in an 

attempt to increase classification PRE. According to 

the results of the activation function analysis, the 

Relu activation function, Softmax activation function, 

and Elu activation functions are not well-matched for 

binary classification but are matched for multi-class 

classification. Although having a high Val ACC, the 

Tanh activation function is an overfit model. A 

10 15 20 25 30 45

Train_Loss 0.51 0.2872 0.1516 0.102 0.0616 0.0102

Train_Accuracy 0.609 0.8115 0.959 0.9649 0.9872 0.9892

Val_Loss 0.441 0.2992 0.261 0.18 0.1714 0.16

Val_Accuracy 0.703 0.7201 0.724 0.7333 0.75 0.732
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sigmoid activation function with a Val loss of 

0.171% yields the best PRE. Considering this, the 

diagram below depicts our conclusion that the 

sigmoid activation function is the best fit activation 

function for our suggested model. Finally, the 

optimal model has been determined by experimenting 

with various loss functions.

 

 
Figure 14 Training & validation loss / ACC for different optimizer algorithms 

 

Tabulated in Figure 16 are the outcomes obtained 

using various loss functions. The findings of the 

Categorical Hinge model are found to be inferior 

when compared to those of other models after 

reviewing Figure 16. It was discovered that different 

models yielded different results but within the same 

numeric range. In terms of Val ACC, mean absolute 

percentage error (MAPE) achieved 86.6% and Binary 

loss functions achieved the best ACC of 90.2%. 

Visualize results are shown in the Figure 16.

 

 
Figure 15 Training & validation loss / ACC for different activation functions 
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Figure 16 Training & validation loss / ACC for different loss functions 

 

Result analysis based on confusion matrix 

Several simulation parameters are used to test the 

proposed Binary classifier algorithm. A confusion 

matrix, which is a table that displays the number TP, 

TN, FP, and FN produced by a suggested binary 

classification algorithm, summarizes the 

classification results. Figure 17 depicts the confusion 

matrix for the suggested binary classification method. 

In Figure 17, TP denotes the number of parasitized 

positively labelled instances, which in this case is 

4058. The number of infectious negative cases 

appropriately labelled as negative, TN, is 3449. The 

number of parasitized tagged individuals that were 

incorrectly classed as negative is 305. The number of 

uninfected people that were incorrectly labelled as 

positive is 510. 

 

The parameters of the confusion matrix tell us a lot 

about how well a proposed classification technique 

works. Some of the most common metrics that can be 

worked out from the parameters of the confusion 

matrix are shown in Table 6. 

 

Table 6 Proposed binary classification technique 

results 

Classification report 

PRE Recall SPE ACC F1 score 

0.930 0.888 0.919 0.902 0.909 

 

 

 
Figure 17 Confusion matrix for the proposed binary 

classification technique 

 

4.2Result analysis of proposed model 2 

Malaria blood smear images are used to test the 

suggested customized CNN model using simulated 

settings. Batch size, optimizer, and epochs are the 

different simulation parameters employed in the 

analysis. For the evaluation of the proposed CNN 

model with the Adam optimizer, a batch size of 64, 

and epoch size of 20 is used. An analysis of the 

proposed model is carried out based on the confusion 

matrix parameters, the model's ACC, and the findings 

of an analysis of the model's loss. 

 

 

 

Logcos Ctg_Hinge Poisson Binary MAPE

Val_Loss 0.061 0.0821 0.069 0.052 0.081

Val_Accuracy 0.723 0.5574 0.829 0.902 0.866
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Analysis based on model ACC and model loss 

Figure 18 and Figure 19 depict the model ACC and 

model loss lines respectively, as they relate to 

classification using the proposed CNN model. The 

value of ACC improves as the number of epochs 

increases, while the value of loss falls as the number 

of epochs rises. The analysis was carried out on a 

total of 20 epochs. Figure 18 demonstrates that the 

proposed customized CNN model has a model ACC 

of 96.02% throughout a maximum of 20 epochs. The 

value of the model's ACC is roughly 92.51% when it 

is evaluated on the 9th epoch. The value of ACC also 

increases in parallel with the epoch value as it goes 

higher. 

 

The proposed model loss values are displayed in 

Figure 19 for a total of 20 epochs. While the value of 

the epoch continues to increase, the value of loss 

continues to decrease. As the number of epochs 

increases, it can be seen from the graph that the 

highest value of loss is around 1.1, and that this value 

goes down as the number of epochs increases. 

 

Result analysis based on confusion matrix 

The confusion matrix for the proposed customize 

CNN classification technique is shown in Figure 20. 

In the shown confusion matrix, the model has made a 

total of 8267 predictions, out of which 4429 are TP 

and 3509 are TN. This means that the model 

correctly predicted 4429 positive cases and 3509 

negative cases. 

 

However, the model has also made some incorrect 

predictions. It has predicted 197 cases as malaria 

positive that are actually negative, which are FP. 

Similarly, it has predicted 132 cases as malaria 

negative that are actually positive, which are FN. 

 

Along with these results, some other important 

metrics have also been calculated, including PRE, 

SEN, SPE, ACC and FS as shown in Table 7. 

 

How much of the model's positive predictions were 

accurate is referred to as PRE. It is calculated as 

TP/(TP+FP), which in this case is 0.957. This means 

that 95.7% of the positive predictions made by the 

model were actually positive, and only 4.3% were 

FP. A high PRE value indicates that the model is 

good at identifying TP, with few FP. 

 

Recall, also called as SEN, is a measurement of how 

many real positive instances the model accurately 

recognized. In this instance, it is computed as 

TP/(TP+FN), which is 0.971%. This indicates that 

the model successfully detected 97.1% of the real 

positive instances. A high recall score shows that the 

model accurately identifies all positive situations 

while producing a few FN. 

 

SPE is the proportion of real negative instances that 

were accurately detected by the model. In this case, it 

is computed as TN/(TN+FP), which is 0.947%. This 

indicates that 94.7 percent of negative situations were 

accurately detected by the model. A high SPE score 

suggests that the model accurately identifies all 

negative situations while producing minimal false 

positives. 

 

 
Figure 18 Training & validation ACC of proposed model 2 
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Figure 19 Training & validation loss of proposed model 2 

 

 
Figure 20 Confusion matrix for the proposed 

customize CNN technique 

 

ACC is the proportion of total predictions produced 

by the model that were accurate. In this case, it is 

computed as (TP+TN)/(TP+TN+FP+FN), which is 

0.9602. This indicates that the model's predictions 

were true in 96.02 percent of instances. A high ACC 

number implies that the model is effective at 

distinguishing positive and negative situations. 

 

The FS is a weighted average of the ACC and recall 

values, and it accounts for both false positives and 

FN. The model's FS is 0.964%. A high FS shows that 

the model is effective at recognising genuine 

positives as well as avoiding false positives and FN. 

 

Table 7 Proposed customize CNN classification 

technique results 

Classification report 

PRE Recall SPE ACC F1 score 

0.957 0.971 0.947 0.960 0.964 

 

5.Discussion 
In the presented research, two approaches for binary 

categorization of malaria blood smear images are 

thoroughly analysed. The performance of the models 

is depicted by the confusion matrices in Figure 15. 

Using the first method, 4058 TP and 3449 TN are 

obtained, yielding a 90.2% ACC rate. However, it 

incorrectly categorized 510 non-infected patients as 

positive and 305 parasite-infected ones as negative. 

With a greater ACC of 96.02%, the second 

technique—a customized CNN model—performs 

better than the first. There are fewer errors made, 

with 197 parasite-infected patients labelled as 

negative and 132 non-infected cases tagged as 

positive, but it accurately detects 4429 positive and 

3509 negative cases. 

 

The ACC and loss curves for both approaches are 

shown in Figure 16, which indicates that as the 

number of epoch’s rises, ACC rises and loss falls. 

The customized CNN model achieves 96.02% ACC 

and consistently performs well over all 20 epochs. 

The customised CNN model outperforms existing 

methodologies when compared to state-of-the-art 

models (Table 8), indicating its efficacy for 

classifying malaria parasites in microscopy blood 

smear pictures.  



Shankar Shambhu et al. 

1010 

 

Overall, the study emphasizes the importance of the 

personalized CNN model, which offers a significant 

advancement in the field of malaria diagnosis by 

image classification. 

  

Comparison of proposed models based on 

confusion matrix 

The confusion matrix gives a very clear 

representation of both the actual labels and the 

predicted labels. Figure 21(a) shows the confusion 

matrix of the binary classification technique used on 

the malaria blood smear dataset. 4058 cases were 

correctly labelled as positive, and 3449 cases were 

correctly labelled as negative, even though they were 

not infected. There were 305 labels with parasites 

that were wrongly labelled as negative, and there 

were 510 labels without parasites that were wrongly 

labelled as positive. After analysis of confusion 

matrix it is clearly stated that the proposed technique 

achieved an ACC of 90.2%. The confusion matrix for 

the binary classification method used on the malaria 

blood smear dataset is shown in Figure 21(b). 4429 

cases were correctly labelled as positive, and 3509 

cases were correctly labelled as negative, even 

though they were not infected. There were 197 labels 

with parasites that were wrongly marked as negative, 

and 132 labels without parasites that were wrongly 

marked as positive. 

 

After looking at the confusion matrix, it is clear that 

the proposed method has a 96.02% ACC rate. 

 

Result analysis of proposed models based on ACC 

and model loss  

Figure 22 shows the ACC and loss curves for the 

proposed techniques. A binary classification 

technique is presented for the classification of 

malaria blood smear images. Results of the presented 

technique are shown in Figure 22(a) and Figure 

22(b). After analysis of the graph, it is observed that 

as the value of the epochs increases, the ACC of the 

proposed technique is increased and as with the value 

of epochs, the loss value decreases. After the 

completion of the 30 epochs proposed technique 

achieved an ACC of 90.2%.  

 

Figure 22(c) and Figure 22(d) depict the model ACC 

and model loss lines respectively, as they relate to 

classification using the proposed CNN model. The 

value of ACC improves as the number of epochs 

increases, while the value of loss falls as the number 

of epochs rises. The analysis was carried out on a 

total of 20 epochs. Figure 22(c) demonstrates that the 

proposed customized CNN model has a model ACC 

of 96.02% throughout a maximum of 20 epochs. The 

value of the model's ACC is roughly 92.51% when it 

is evaluated on the 9th epoch. The value of ACC also 

increases in parallel with the epoch value as it goes 

higher. The proposed customize CNN model loss 

values are displayed in Figure 22(d) for a total of 20 

epochs. While the value of epoch continues to 

increase, the value of loss continues to decrease. As 

the number of epochs increases, it can be seen from 

the graph that the highest value of loss is around 1.1, 

and that this value goes down as the number of 

epoch’s increases.   

 

   
(a)                                                                                             (b) 

Figure 21 Confusion matrix (a) Proposed binary classification technique (b) Proposed customize CNN technique 
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Figure 22 (a) ACC of Binary Classification Technique (b) Loss of Binary Classification Technique (c) ACC of 

Customize CNN Classifier (d) Loss of Customize CNN Classifier 

 

Comparison of proposed techniques with state-of-

the-art techniques  

In order to test and validate the proposed techniques, 

Table 8 depicts a comparison between the proposed 

techniques and state-of-the-art techniques. Using 

27556 blood smear images, Jameela et al. employed 

ResNet-50 and VGG-16 DL techniques to classify 

malaria parasite [46]. With ResNet-50, the 

performance parameters indicated an ACC value of 

95.82%, while for VGG-16, the ACC value was  

 

 

 

96.00%. Yang et al. used 27,558 blood smear images 

and CNN technique to get a 93.46% ACC [35]. Shah 

et al. also applied CNN to 17460 blood smear images 

and achieved a 95.00% ACC [47]. The proposed 

customize CNN model achieved an ACC of 96.02%. 

Using microscopy blood smear images, a comparison 

of the SEN and ACC of the proposed DL techniques 

to other state-of-the-art techniques was conducted. 

This analysis demonstrates that the proposed 

customize CNN technique achieves greater overall 

ACC than existing techniques. A complete list of 

abbreviations is shown in Appendix I. 

Table 8 Comparison of different techniques 
Publication Number of 

Images 

Dataset Name Technology Used Performance Parameters 

PRE SEN SPE F1 ACC 

Proposed 1  27558 Blood Smear Images Binary Classifier 

Based on CNN 

93.00% 88.80% 91.90% 90.90% 90.20% 

Proposed 2  27558 Blood Smear Images Customize CNN 95.70% 97.10% 94.70% 96.40% 96.02% 

[46] 27558 Blood Smear Images ResNet-50 - 96.64% 94.97% - 95.82% 

[48] 27558 Blood Smear Images Morphological Image 

Processing 

94.66% 88.60% 95.00% 91.53% 91.80% 

[35] 27558 Blood Smear Images Customize CNN 94.25% 92.59% 94.33% 93.41% 93.46% 

[47] 17460 Blood Smear Images Customize CNN - - - - 95.00% 

[49] 27558 Blood Smear Images VGG Net-16 - - - - 95.03% 

[50] 1530 Blood Smear Images VGG16-SVM 84.47% 89.80% 88.81% 87.05% 89.21% 

Blood Smear Images VGG19-SVM 89.95% 93.44% 92.92% 91.66% 93.13% 

[51] 27558 Blood Smear Images Pre-trained CNN with 

VGG-16 

- 94.70% 97.20% 95.90% 95.9% 
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Limitations 

One significant limitation in the field of malaria 

classification and research is the absence of a 

standard dataset (i).The lack of a standardized 

collection of malaria-infected blood smear images 

with varying magnification factors and photo counts 

makes it challenging to develop accurate algorithms 

and hampers the comparison of results among 

different researchers. This limitation not only 

impedes the progress in developing robust CAD 

systems but also restricts the ability of histologists 

and ML professionals to introduce new algorithms 

that could potentially improve the classification ACC 

for malaria diagnosis. 

 

Another limitation arises from the existing models' 

inability to identify multiple malaria parasite species 

(ii).Given that malaria infections can involve 

different parasite species, the current models' 

limitations could lead to misdiagnoses, particularly in 

cases with co-infection. Accurate identification of 

parasite species is crucial for appropriate treatment, 

and the inability of these models to distinguish 

between multiple types of parasites hinders the 

effectiveness of diagnostic efforts. 

 

Furthermore, the unreliability of current microscopy-

based methods for malaria detection (iii) poses a 

serious challenge to accurate diagnosis. To improve 

the ACC and efficiency of parasite detection in 

malaria-infected blood smear images, fully automatic 

and precise techniques are required. Relying on 

manual microscopy-based methods alone can result 

in missed diagnoses and delayed treatment, thereby 

impacting patient outcomes. 

 

Another practical limitation is the lengthy training 

time for ML models in malaria parasite classification 

(iv).Researchers have explored various methods and 

techniques to train these models, but the extended 

training time remains a bottleneck in developing 

more efficient and timely classification models. 

Addressing this issue is critical to expedite the 

development and deployment of advanced diagnostic 

tools that can aid in malaria detection and treatment. 

 

Additionally, the manual counting of affected cells in 

blood smear examination is both time-consuming and 

subjective (v).Histologists and clinicians may need to 

manually count thousands of cells, leading to a 

tedious and error-prone process. To overcome this 

limitation, there is a pressing need for an automated 

cell counting model that can accurately and 

efficiently count the affected cells, thereby 

streamlining the diagnosis and enabling faster patient 

care. 

Moreover, the lack of a model specifically designed 

to diagnose malaria using smartphone-captured thin 

blood smear images (vi) Presents a significant 

limitation. Integrating smartphones as diagnostic 

tools can enhance accessibility and convenience, 

especially in resource-limited settings. A dedicated 

model that can accurately interpret images obtained 

from smartphones would facilitate widespread 

adoption and improve early detection and treatment 

of malaria. 

 

Furthermore, the invasive nature of current malaria 

detection techniques (vii), such as taking blood 

samples with an injection syringe, poses a concern. 

There is a growing demand for non-invasive 

alternatives to make the diagnosis process less 

discomforting for patients and reduce the risk of 

infections associated with invasive procedures. 

Developing and implementing non-invasive malaria 

detection techniques would improve patient 

compliance and overall diagnostic efficacy. 

 

Lastly, inter-observer and intra-observer variability in 

malaria diagnosis (viii) pose challenges to consistent 

and accurate diagnoses. Differences in interpretations 

among multiple pathologists or even within the same 

pathologist can lead to diagnostic discrepancies. To 

address this issue, automated detection methods are 

needed to reduce variability and ensure more reliable 

and standardized malaria diagnosis, enabling timely 

and appropriate patient management.  

 

6.Conclusion and future work 
This study introduced two DL algorithms that utilize 

blood cell images for malaria diagnosis. The binary 

classifier CNN model achieved an ACC of 90.20%, 

whereas the customized CNN model yielded 

significantly improved ACC at 96.02%. These 

proposed methods hold the potential to enhance the 

PRE and efficiency of malaria diagnosis, thereby 

contributing to early detection and more effective 

treatment. The outcomes highlighted the viability of 

DL techniques for swift and accurate malaria 

diagnosis, potentially saving lives and bolstering 

healthcare systems' resilience against the disease's 

impact. Moreover, the proposed models possess 

applicability beyond malaria diagnosis, offering 

potential benefits for diagnosing various infectious 

diseases, thereby enhancing global healthcare. 

 

In the future, avenues can be explored to develop 

hybrid models that integrate DL with other ML 
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approaches. Additionally, research could delve into 

the feasibility of implementing the proposed models 

in resource-limited regions where malaria prevails. 

Deployment of these models within healthcare 

systems has the potential to expedite malaria 

detection and diagnosis, ultimately leading to 

improved treatment outcomes and alleviating the 

global malaria burden.  
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Appendix I 
S. No. Abbreviation Description 

1 ACC Accuracy 

2 CAD Computer Aided Diagnosis 

3 CNN Convolutional Neural Network 

4 CNNSVM Convolutional Neural Networks with a 

Support Vector Machine 

5 CPU Central Processing Unit  

6 C-Y Cyan, Yellow 

7 DL Deep Learning 

8 DNN Deep Neural Network 

9 ELM Extreme Learning Machine 

10 FC Fully Connected 

11 FN False Negative 

12 FP False Positive 

13 FS F1 Score 

14 GPU Graphics Processing Unit 

15 H S I Hue, Saturation, Intensity 

16 HSV Hue Saturation Value 

17 IDE Integrated Development Environment 

18 IGMS Iterative Global Minimum Screening 

19 MAPE Mean Absolute Percentage Error 

20 ML Machine Learning   

21 NIH National Institute of Health 

22 NLM National Library of Medicine 

23 PNG Portable Network Graphics 

24 PRE Precision 

25 R&D Research and Development  

26 RAL Reinforced Stream-Based Active 
Learning 

27 RAM Random Access Memory 

28 RBC Red Blood Cells 

29 RGB Red, Green, Blue 

30 SEN Sensitivity 

31 SGD Stochastic Gradient Descent 

32 SPE Specificity 

33 SVM Support Vector Machine 

34 TN True Negative 

35 TP True Positive 

36 VGG Visual Geometry Group 

37 WHO World Health Organization 

38 YOLOv4 You Only Look Once Version 4 

39 YOLOv5 You Only Look Once Version 5 
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