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1.Introduction 
Localization is a crucial aspect of the operation and 

safety of autonomous vehicles (AV). It pertains to the 

AV's ability to precisely determine and uphold its 

position and orientation within its environment. 

Accurate localization is vital for the vehicle's 

navigation, obstacle avoidance, route planning, and 

overall dependable functionality. The navigation 

process for an AV encompasses establishing its 

starting point, identifying the destination, and 

determining the route to move from one point to 

another (known as the path planning issue).  

 

 

 
*Author for correspondence 
 

The AV's success in this process heavily relies on its 

localization capabilities, ensuring it can accurately 

locate itself in its surroundings [1]. 

  

AVs utilize a blend of sensor inputs and advanced 

algorithms to determine their position relative to the 

surrounding environment, as shown in Figure 1. 

These sensors may consist of the global positioning 

system (GPS), the inertial measurement unit (IMU), 

light detection and ranging (LiDAR), radio detection 

and ranging (RADAR), and cameras. Each sensor 

offers unique data types, and their seamless 

integration is crucial for achieving precise 

localization. By combining the information from 

these diverse sensors, AVs can accurately navigate 

and operate in complex and dynamic environments 

Research Article 

Abstract  
Autonomous vehicles (AVs) have emerged as captivating engineering ventures in the twenty-first century, capturing the 

interest of numerous academics and engineers across multiple generations. The world looks forward to leveraging AVs 

for reducing accidents caused by human errors and optimizing parking space utilization, particularly in urban areas. 

Accurate localization is pivotal for effective AV navigation, enabling the vehicle to pinpoint its precise position. While 

global positioning system (GPS) coordinates are widely used, their inherent errors and limitations can render them 

inadequate for determining precise location information, particularly in urban settings. Furthermore, drifting errors can 

undermine the efficacy of simultaneous localization and mapping (SLAM) algorithms. The proposed approach involves 

the utilization of a deep neural network, specifically a modified AlexNet architecture, which is a convolutional neural 

network (CNN), for localizing AVs in well-lit urban driving environments. The CNN enhances accuracy while reducing 

computational complexity and training time. Instead of relying on costly light detection and ranging (LiDAR) or radar 

sensors, a more affordable red green blue (RGB) camera sensor is employed. During testing, depth images are combined 

with RGB images using the intensity hue saturation (IHS) algorithm to enhance precision. Simulation results 

demonstrate an impressive accuracy rate of 95.49%, affirming the effectiveness of the proposed strategy. This study 

introduces a lightweight, precise, and reliable CNN architecture that significantly improves the accuracy of AV 

localization, simultaneously reducing predicted position errors by a considerable margin. The network's superiority is 

evidenced by mean square error (MSE) values of 0.039, 0.0099, and 0.0047 for position x, y, and orientation predictions, 

respectively. To validate real-time performance, the trained CNN was implemented in Python and integrated into the car 

learning to act (CARLA) simulator, enabling the online localization of a self-driving vehicle. This application 

successfully showcases the feasibility and efficacy of the proposed method.  
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[2]. The main challenges in AV navigation revolve 

around four key aspects: perception, localization, 

path planning, and motion control [3]. The main 

objective of localization is to determine the vehicle's 

position relative to its surroundings by using a 

reference coordinate system. Relying solely on GPS 

for localization can lead to inaccuracies and 

inconsistencies in the coordinates, posing challenges 

for self-driving vehicles to achieve precise 

positioning. Additionally, the utilization of 

simultaneous localization and mapping (SLAM) 

algorithms can be affected by drifting errors over 

time, leading to a decline in performance and 

accuracy. Some older techniques heavily depended 

on expensive LiDAR or RADAR sensors, making 

them impractical and limited in widespread adoption. 

 

 
Figure 1 One of AV functions: localization 

 

Furthermore, earlier efforts may have struggled to 

maintain consistent localization accuracy in various 

weather conditions, including bright sunny, wet, or 

cloudy environments [4]. Conventional localization 

techniques employ feature detectors such as oriented 

fast and rotated briefly (ORB) [5], scale-invariant 

feature transform (SIFT) [6], and speeded up robust 

features (SURF) [7] to mirror visual elements from 

previous frames. Triangulation estimates 6-degrees of 

freedom (DOF) position from matches, which is 

optimized using powerful fitting algorithms such as 

random sample consensus (RANSAC) [8]. SIFT and 

ORB-SLAM2 [9] can real-time localize indoors with 

a few millimeter error but fails in low-texture 

settings. Direct methods minimize photometric and 

geometric errors to determine camera position 

between images [10]. To avoid drift, these 

approaches compare the current image to a database 

of recorded frames to locate loops. After loop 

validation, camera postures are globally modified to 

minimize drift. probabilistic approaches like random 

forests [11] and neural networks may tackle the 

localization problem. Trainable systems can interpret 

high-dimensional input sequences. Unlike feature-

based techniques, neural networks have continual 

temporal complexity. PoseNet, the first end-to-end 

neural network for 6-DoF camera pose estimation, 

was based on GoogLeNet [5]. Two fully-connected 

regression layers were altered to generate a vector 

with position and orientation estimates instead of the 

softmax classification layer from the original 

GoogLeNet model. Training data is greatly reduced 

by transfer learning using object recognition weights. 

Networks enhanced post-PoseNet. Hyper parameter 

modification was avoided by PoseNet's trainable 

geometric loss function [12]. No method used input 

data depth. Red green blue-depth (RGB-D) data 

capture is harder without affordable high-resolution 

sensors. Training time and computing complexity 

made prior approaches unsuitable for real-time 

deployment. These issues highlight the need for new 

self-driving car localization solutions that address 

GPS accuracy, SLAM drifting errors, sensor 

accessibility, weather performance, and training 

effectiveness. Prior studies using outmoded and 

insufficient AV methods showed various drawbacks 

when implementing modern approaches like deep 

learning. These constraints ignored weather and time 

of day, requiring expensive sensors to obtain detailed 

information about the driving environment. In 

conclusion, outmoded self-driving vehicles have 

sensor cost, weather adaptability, training efficiency, 

and data availability issues [13]. The objectives of 

this paper are as follows: Reducing the number of 

layers in AlexNet, a popular convolutional neural 

network (CNN), to precisely locate AV using an 

RGB camera sensor, thereby eliminating the need for 

expensive sensors such as LiDAR and RADAR. This 

research aims to accomplish high precision in AV 

localization and minimize errors in estimated 

positions by utilizing a lightweight, dependable, and 

robust network for efficient training. In addition, the 

implementation of a CNN-based visual localization 

system for AV in different urban driving scenarios is 

investigated. The CNN algorithm classifies and 

interprets texture with greater precision than other 

detection sensors, such as RADAR and LiDAR, by 

utilizing modest sensors. The CNN algorithm's 

training procedure utilizes RGB camera images as 

inputs and generates the projected position as output. 

The objective of this study was to develop a precise 

and reliable technique for AV localization. To 

accomplish this, implemented an offline CNN-based 

method in MATLAB using RGB images. This 

method produced secure and accurate outcomes 

while reducing the required training time. The study 

utilized a vision-only system, eradicating the need for 
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costly sensors such as RADAR and LiDAR. Instead, 

they utilized the intensity hue saturation (IHS) 

method to combine RGB images with depth 

information and validate the positioning accuracy of 

the CNN. To obtain precise coordinates, the 

researchers employed the k-means method to 

determine how closely an image matches street 

images, thereby refining the localization process. The 

novel CNN architecture is the main innovation of the 

proposed method. The network's straightforward 

structure allowed for effective computation while 

maintaining high precision. This lightweight, 

accurate, and dependable CNN enhanced AV 

localization accuracy and reduced predicted position 

errors by a significant margin. To evaluate the trained 

network's efficacy in real-time, the network was 

implemented in Python and connected to the car 

learning to act (CARLA) simulator. This enabled the 

online localization of a self-driving vehicle, further 

validating the practicability and efficacy of the 

proposed method. In conclusion, this study presents a 

robust CNN-based method for AV localization, 

demonstrating its accuracy, dependability, and 

efficacy. Using RGB images and a lightweight 

network, the method provides a viable alternative to 

expensive sensor-based systems, making it a 

promising solution for autonomous driving 

applications in the real world.  

 

The following is an overview of this paper's 

structure: The second section offers a comprehensive 

review of the relevant literature. In section 3, the 

methodology of this investigation is discussed in 

greater detail. The fourth section provides a detailed 

description of the proposed method. The fifth section 

presents the results and analysis of the simulation. 

The report concludes with concluding remarks and 

findings in section 6. 

 

2.Literature review  
Localization is how an AV finds its location. This 

can be done using GPS, LiDAR, and optical 

odometry. Localization methods will be examined in 

the literature review [14].  

 

Stenborg et al. (2018) proposed a semantic 

segmentation for long-term visual localization. Using 

semantic information enhances accuracy and 

robustness. Offline map development and online 

localization includes two phases. In the offline phase, 

a CNN generates a semantic map and extracts and 

stores features. In the online phase, the algorithm 

matches segmented photos with stored features to 

estimate the cameras pose. On a dataset, the approach 

beats other visual localization algorithms. However, 

it requires semantically segmented images, which 

may sometimes be available [15]. 

 

Parisotto et al. (2018) put forth an attention-based 

recurrent network for global posture estimation. The 

6-DoF posture of an object was determined using an 

RGB image. Encoders extracted visual features, and 

decoders estimated pose. The attention method 

focused the network on relevant observable regions, 

improving position estimates. The authors trained and 

tested their model on several datasets and found that 

it outperforms several global pose estimation 

methods. The proposed method needed a lot of 

training data, which limited this research. New item 

categories not in the training data may not work with 

the proposed technique [16].  

 

Heng et al. (2019) offered a complete AV real-time 

localization and 3D scene perception approach. Deep 

learning was used to analyse multi-camera 360-

degree photos and construct a 3D scene model. 

Autonomous driving requires real-time, weather- and 

lighting-resistant systems. This paper requires real-

world experimental results. The system was 

evaluated in a controlled environment; therefore its 

performance in more complex and dynamic real-

world scenes is unknown. System robustness and 

accuracy needed real-world testing [17]. 

 

Amini et al. (2019) presented mobile robot 

autonomous variational end-to-end navigation and 

localization (VEENAL). VEENAL's variational auto 

encoder learned a latent representation of the robot's 

environment and an end-to-end navigation control 

policy. The method navigated and localized without 

maps or GPS. Navigation and localization accuracy 

improved in real-world experiments. VEENAL's high 

computing cost was negative. It was too 

computationally intensive to train the variational auto 

encoder and end-to-end control approach for low-

power robots. The authors should evaluate VEENAL 

in simpler, dynamic scenarios, which may reduce its 

real-world applicability [18].  

 

Ma et al. (2019) used sparse semantic high-definition 

(HD) maps to reliably localize self-driving 

automobiles. Semantic information from HD maps 

could help self-driving cars localize. They first found 

the HD map features visible to the automobile 

sensors, then used the observed properties to 

calculate the vehicle's pose. The authors compared 

their method to other state-of-the-art algorithms on a 

self-driving car platform dataset. They improved self-
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driving car localization. The paper used HD maps, 

which may need to be more accurate or available in 

real life. It may fail in dynamic environments with 

obsolete HD maps. The suggested method needs real-

world testing to prove its reliability and resilience 

[19].  

 

Yin et al. learned a similarity metric between 3 

dimension (3D) LiDAR point clouds from the query 

scan and the map. Matching the most similar point 

clouds in the map may infer the query scan's global 

position. The proposed method performed well on a 

public dataset. Map data quality and completeness 

limited the proposed solution. Complete map data 

would improve the proposed method. For real-time 

applications, the proposed technique may be too 

expensive to process [20]. 

 

Wan et al. (2020) developed a multi-sensor fusion 

approach for urban vehicle location. LiDAR, camera, 

and GPS data improved vehicle localization accuracy 

and robustness. The authors compared their method 

to other cutting-edge methods using urban data. 

Urban multi-sensor fusion worked well in the article. 

Paper is limited. The proposed method required too 

much computing power for real-time applications. 

Second, the authors only tested their strategy in a few 

metropolitan areas, which do not reflect urban variety 

[21].  

 

Chen et al. (2021) demonstrated AV image-based 

LiDAR localization in structured and unstructured 

scenarios. Neural networks extracted picture 

attributes and particle filters evaluated posture. 

Multiple datasets and comparisons to existing 

methods showed the method's accuracy and 

resilience. Pre-trained neural networks didn't 

generalize well. The method assumed preprocessed 

and calibrated LiDAR data, which may not be 

accurate in real life [22]. 

 

Héry et al. (2021) LiDAR, global navigation satellite 

system (GNSS), and HD maps enabling AV 

decentralized cooperative localization. The proposed 

solution provided reliable localization information to 

autonomous cars in GNSS-deficient environments. 

AV estimated poses with sensor data. Particle filters 

estimated vehicle postures in real-world experiments. 

Unfortunately, the system required AV to interact 

and share sensor measurements. Communication 

bandwidth may limit applications [23]. 

 

Qin et al. (2021) provided autonomous driving visual 

localization road map. Lanes, road boundaries, and 

intersections are captured via a lightweight semantic 

map. Only RGB images were used to create the map, 

which can be GNSS updated in real time to reflect 

environmental changes. On benchmark datasets, their 

strategy outperformed existing methods. In complex 

circumstances, the semantic map was used in the road 

map system. The authors also noted that the system's 

optical localization limits autonomy and requires 

other sensors [24]. 

 

Chu et al. (2021) suggested cooperative channel 

mapping (CCM) for vehicle localization. The system 

mapped the area using wireless automobile 

communication networks' channel state information 

(CSI). In challenging urban environments with non-

line-of-sight (NLOS), the suggested CCM technique 

leveraged spatiotemporal CSI correlation to 

accurately estimate vehicle positions. After extensive 

simulations and experiments, the authors' approach 

accurately located autos in diverse environments. In 

NLOS settings, the suggested CCM methodology 

outperforms current vehicle localization methods. A 

dense network of vehicles with CSI-capable 

communication devices was needed for high 

localization accuracy. Therefore, sparse vehicle 

density may limit the recommended method's 

scalability. The method's computational complexity 

may limit its real-time use [25]. 

 

Ballardini et al. (2021) localized cars using 3D 

building models and point cloud matching. 3D maps 

and vehicle sensor point clouds are used to estimate 

the car's position. Matching 3D map and point clouds 

approximated vehicle position. Real-world datasets 

fared well. The paper needs a pre-built 3D map of the 

environment, which may not be available. The 

procedure may fail if the 3D map is unavailable or 

old. Point cloud-to-3D map matching took too long 

for real-time applications [13]. 

 

Li et al. (2021) intelligent vehicle localization using 

multi-sensor fusion-based semi-open navigation 

maps. A semi-open intelligent vehicle navigation 

map was created using multi-sensor fusion. The 

intelligent car's environment map was accurate 

thanks to LiDAR, IMU, and GPS. On a real-world 

dataset, the proposed technique performed well. 

LiDAR sensor accuracy, which can be expensive and 

unavailable in all vehicles, was used in the paper's 

technique. A static environment was also assumed, 

which can be inaccurate [26]. 

 

Liu and Guo in 2021 suggested using an extended 

kalman filter (EKF) and deep learning to localize cars 
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without GPS. In challenging environments, EKF and 

deep learning achieve great accuracy and robustness. 

The EKF employed IMU data to predict the vehicle's 

position and velocity during GPS outages, and the 

deep learning model corrected it using the vehicle's 

previous trajectories. In short and long-term GPS 

outages, the proposed method worked effectively. 

The paper's flaw was the method's real-time 

performance. To test the proposed method in real-

time, where the vehicle's motion is more unexpected, 

and the scientists used pre-recorded data. More 

research was needed on the method's real-time 

performance in diverse driving circumstances [27]. 

 

Guo et al. (2021) demonstrated semantic localization 

in autonomous driving utilizing HD maps and coarse-

to-fine. Coarse localization with LiDAR-based 

mapping, semantic segmentation of point cloud data, 

and HD map matching were used. A structural scene 

dataset showed good semantic segmentation and 

localization using the provided strategy. The paper's 

flaw is that it only tested the proposed solution on 

one structural condition. The proposed technique 

could be evaluated on more diverse and complicated 

datasets to establish its usefulness and 

generalizability [28]. 

 

In 2021, Ren et al. addressed strong off-road LiDAR 

localization for autonomous cars. The study localizes 

accurately with LiDAR point cloud data. The authors' 

off-road studies were promising. It can handle 

uneven ground, grass, and impediments. Even in 

extreme off-road situations, the resilient and exact 

approach localizes. Sensor noise, occlusions, and 

range affect LiDAR data. The method's computing 

requirements aren't fully covered; therefore, a real-

time implementation research is possible [29]. 

 

In 2022, Yanase et al. proposed an exact vehicle 

localization approach using LiDAR and radar sensors 

and a matching confidence framework. To improve 

localization system precision and endurance, the 

scientists suggest combining radar observations with 

LiDAR point cloud data. Feature extraction from 

sensor modalities and matching procedures estimate 

the vehicle's position. Real-world data was used to 

illustrate the correctness of the authors' localization 

approach. Rain and fog can destroy sensors, but their 

technology was more robust. Due to the 

recommended confidence estimate framework's 

capacity to measure matching outcome dependability, 

the system could indicate scenarios where 

localization may be less trustworthy. The material 

supplied does not directly address the approach's 

limitations, and identifying them would need a 

thorough research project [30].  

 

The 2022 research paper by Peng et al. introduced a 

novel LiDAR-based dynamic localization approach. 

ROLL improved localization using transient mapping 

and LiDAR perception. Construction sites and busy 

cities were examined for LiDAR data. ROLL 

outperformed current localization methods. 

Temporary mapping allows the system to update and 

adapt to changing environments. Adaptation 

enhanced the system. ROLL was limited. Sensor 

noise and blockage affected its precision LiDAR 

data. Real-time application may be limited by system 

computing. ROLL exhibited promising LiDAR-based 

localization developments, providing useful 

information for further research and refining [31]. 

 

In 2022, Dauptain et al. employed sensor fusion, 

computer vision, and machine learning to create a 

high-level autonomous driving perception and 

localization system. The results proved its precision 

in sensing the environment and estimating vehicle 

position. The device has various drawbacks, 

including potential issues in poor conditions and high 

computing requirements. These limits must be 

addressed to optimize the system's performance for 

autonomous driving applications in the actual world 

[32]. 

 

In 2022, Lee et al. employed semantic segmentation 

on selected frames for real-time monocular SLAM. 

3D reconstructions, camera trajectory predictions, 

and semantically improved maps were correct. The 

method enhanced scene interpretation and resource 

use but had size ambiguity, information loss, quick 

motion, occlusions, and processing overhead. 

Semantic segmentation improved real-time 

monocular SLAM systems [33].  

 

In 2022, Kang et al. proposed GNSS-free cooperative 

localization for autonomous driving. AVs locate 

using LiDAR and V2X. The authors compared their 

technique to others. In GNSS-denied environments, 

LiDAR and V2X-based cooperative localization 

improved AV localization. V2X communication and 

Lidar data yielded high-resolution maps. 

Autonomous driving localization accuracy was 

sufficient using the proposed technique. In GNSS-

denied environments, the proposed method 

overcomes localization failure. Autonomous cars can 

locate themselves using LiDAR and V2X 

communication. Research is scarce. Real-world 

results may vary. The study only investigated LiDAR 
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and V2X technologies, although other sensor 

modalities and fusion approaches could improve 

localization accuracy. For real-time implementation 

in a resource-constrained system, the recommended 

technique's computation and communication needs 

were not sufficiently examined [34]. 

 

In 2023, Han et al. suggested field-based SLAM. 

LiDAR-visual-inertial simultaneous and mapping 

(LVI-SAM) is improved. They tested their technique 

using real-world vehicle data. Localization and 

mapping were more accurate and resilient with the 

modified LVI-SAM method. The system addressed 

GPS signal loss, tough terrain, and dynamic barriers. 

The improved LVI-SAM approach improved 

localization and mapping with visual input from the 

surroundings. The algorithm's accuracy improved 

with visual, odometry, and inertial sensor data. 

Algorithm constraints. In resource-constrained 

systems, the Improved LVI-SAM algorithm's 

computational complexity can slow real-time 

performance. The system was vulnerable to weak 

illumination and sparse visual features since it relied 

on visual data. To overcome these constraints and 

make the approach applicable to other field 

circumstances and vehicle platforms, more research 

and optimization are needed [35]. 

 

Final evaluation study is confined to different 

environments: Some papers analyze the suggested 

localization strategy in limited circumstances. A 

report that only assesses the strategy in controlled or 

structured conditions may not sufficiently portray 

real-world driving challenges and complexities. 

Sensor limits ignored: GPS, LiDAR, and IMUs 

localize. Studies must acknowledge sensors' 

constraints and uncertainties. In practice, neglecting 

sensor restrictions can improve localization. Not 

generalizable: Some authors only test their strategies 

on certain datasets or locations. The approach's 

applicability to different locations and road 

conditions may be questioned. Papers must 

demonstrate technique efficacy and robustness. 

Limited scalability: A localization method's 

scalability is its ability to execute efficiently and 

accurately in more complex environments or larger-

scale deployments. Papers may need to test their 

scalability for AV deployment. The reviewed works 

discuss LiDAR-based AV robust localizations and 

offer novel methods to improve precision and 

robustness. LiDAR and sensor fusion help localize in 

difficult off-road or dynamic circumstances. These 

methods work in many scenarios. Disadvantages 

exist. Sensor noise, occlusions, and range can affect 

LiDAR localization precision. Some methods are 

computationally intensive for resource-limited 

systems. The evaluated works explore weather, scale 

ambiguity, information loss, rapid motion, 

occlusions, and optimization. More research is 

needed to overcome these constraints and optimize 

present methods. This includes overcoming sensor 

limits, considering real-time implementation, and 

adding sensor modalities and fusion technologies for 

precision and robustness. 

  

3.Methods 

Many other industries, including AV, make use of 

deep learning nowadays. The use of artificial neural 

networks (ANNs) is beneficial to the process of deep 

learning. This section discusses the CNN and IHS 

methodologies that were utilized in the theoretical 

component of this work. This section will discuss the 

suggested organizational structure. 

 

3.1Convolutional neural networks (CNN) 

Deep learning with neural networks is a subfield that 

falls under the general heading of the field of 

machine learning. Machine learning is illustrated as 

an example of an application of artificial intelligence 

[36]. CNN is well-known for its deep learning model 

architecture, which is used for object recognition, 

images categorization, and geographic localization. 

CNNs are built with multiple layers for the purpose 

of efficiently processing visual data. CNNs are built 

with layers that are convolutional, pooling, and fully 

connected (FC) [37]. Small filters detect edges and 

textures in a CNN layer. These filters produce feature 

maps from local patterns. Pooling layers shrink 

feature maps. Max pooling chooses the highest value 

in a region. This conserves computation and data. FC 

layers, sometimes called dense layers, link every 

neuron from the previous layer to the current layer. 

They aid data learning and classification. In order to 

extract spatial properties from the input image, the 

convolutional layers perform filtering on it. These 

filters locate localizations information by identifying 

edges, corners, and textures. Pooling reduces the 

number of sample features on a map, hence reducing 

the spatial dimensions of the map while maintaining 

all of the essential information. The model will 

become both more effective and easier to compute 

going forward. In order to improve real-time speed 

and efficiency, the CNN model ought to be improved 

to lessen the amount of computing complexity 

involved in localization. It can be computationally 

expensive to process massive volumes of visual 

information in real time for the purpose of 

localization. Because the processing complexity of 



Shahad S. Ghintab and Mohammed Y. Hassan 

1022 

 

the CNN model has been reduced, the localization 

process may now be completed more quickly and in a 

manner that is more suitable for platforms with 

limited resources, such as embedded devices and 

driverless vehicles [38]. Researchers have proposed a 

number of different approaches to improve the CNN's 

design. Reducing the size of the filters used or using 

depth-wise separable convolutions can help reduce 

the number of parameters and calculations. Both the 

global average pooling and the spatial pyramid 

pooling reduce the amount of space that is used while 

maintaining critical characteristics. The 

computational complexity of CNN models can be 

reduced by the use of pruning, quantization, and low-

rank approximation without sacrificing speed [39]. 

These strategies eliminate unnecessary computations 

and parameters, which ultimately results in a model 

that is more effective. Convolution is a mathematical 

operation that can be used on higher-dimensional 

functions, such as images. There are several steps 

required, including element-wise multiplication, 

summing, and sliding a filter across the input image. 

This method is used to perform image 

transformations. Images can be thought of as 

functions that only exist in two dimensions. For 

example, A is the two-dimensional input (the 

picture), K is a two-dimensional filter with a size of 

m by n, and F is a two-dimensional feature map. 

Convolution of A and K results in the variable F, 

which can be formally stated as [40] (Equation 1): 

 (   )  (   )(   )  ∑ ∑  (        

 ) (   )    (1) 

 

The spatial dimensions of the input data (both width 

and height) are typically reduced by a pooling layer 

in a neural network while the critical information is 

kept intact. This is one of the common functions of a 

pooling layer. The pooling process is applied in an 

independent fashion to every feature map and input 

channel. The max pooling operation is the most 

popular form of pooling, and it takes the maximum 

value that can be found within of a sliding window or 

filter. The filter iteratively moves through the input 

data using a step size that has been previously 

specified, picking the value that is highest within the 

window at each place to serve as the output for that 

region. This process is repeated for each region, 

which ultimately results in a map that has decreased 

spatial dimensions and features that are more sparsely 

distributed [41]. 

 

The final layer with complete connectivity outputs 

class scores to a classifier [42]. Softmax and support 

vector machines (SVMs) are the primary classifiers 

of ConvNets. Softmax Performance: Exponential 

Relationship The output layer of a neural network is 

used for classification. As seen in Equation 2, [40]: 

 (  )  
 

  

∑   
 
   

    (2) 

 

Parameters and hyper parameters are required for 

CNN models. They regulate network conduct during 

training and inference [43]: 

Weights: Learnable parameters interconnect various 

CNN layers. They keep track of training data, 

knowledge, and patterns. In weight training, gradient 

descent is used to reduce the loss function. 

Biases: Each neuronal layer possesses additional 

properties. They allow neurons to activate even in the 

absence of input, thereby granting the network 

flexibility. Imperfections enhance model-data fit. 

Hyper parameters 

Learning rate: The optimization algorithm increases 

weights during training at a specific step size. High 

learning rates may overshoot ideal weights, whereas 

low learning rates may impede convergence. 

Practical training requires the correct learning rate. 

Number of layers: A CNN's convolutional, pooling, 

and fully connected layers (FCL) are hyper 

parameters. Deeper networks capture more 

complicated information but require more computer 

resources and training data to avoid overfitting. 

Filter size: The input data's convolutional kernels' 

spatial dimension is the filter size. It determines 

convolutional layer receptivity. Smaller filters catch 

minute details, while larger filters collect global 

patterns. Complexity and input data determine filter 

size. 

 

Pooling layers reduce feature map spatial dimensions. 

Hyper factors that impact down sampling include 

pooling type (max, average) and size (pooling 

window dimensions). Pooling reduces computing 

complexity, extracts dominating features, and 

increases model translational invariance. 

 

Activation function: The CNN model's activation 

function introduces non-linearity. The activation 

function depends on the model's capacity to capture 

complex interactions and avoid vanishing gradients. 

Rectified linear unit (ReLU), sigmoid, and tanh are 

standard. 

 

3.2IHS for RGB and depth merging 

Optical RGB sensors are the most common 

information source due to their adaptability and 

affordability. These sensors recognize, segment, 

monitor, and localize objects in color images using 
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computer vision techniques. This discipline has been 

greatly enhanced by deep learning technology [44]. 

By integrating and injecting useful information from 

multiple input images, image fusion produces a 

single output image that is more beneficial and 

effective than all input images [45]. IHS improving 

fusion is widely utilized. This color analysis 

technique is used in image processing. Among the 

enhancements are spatial precision, feature 

perfection, and data integration. Spectral information 

frequently impacts the color and saturation of an 

image. The visual system indicates that amplitude 

variation is manageable and has no effect on spectral 

properties [46]. IHS is a third-order method due to 

the RGB-IHS conversion paradigm. The transform 

kernel has a dimension of 3×3. Numerous published 

studies employ unique IHS transformations with 

matrix value variations [47] (Equation 3): 
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Intensity, Hue, Saturation, Red, Blue, and Green. V1 

and V2 are midpoints. Through the use of special 

case processing, the method adjusts the levels of 

intensity, color, and saturation between 0 and 255. 

The hue, the saturation, and the intensity may all be 

seen with RGB cubes. Hue (H), saturation (S), and 

intensity (I) may all be distinguished in color 

photographs. Formulas in geometry can be used to 

convert RGB to IHS. The H that is given by [47] 

(Equation 4 and 5).  
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The saturation S is given by [47] (Equation 6): 
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The Intensity (I) is given by  [47] (Equation 7): 
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3.3Methodological investigation 

Localization is certainly one of the most essential, if 

not the most important component of autonomous 

transportation. This study's most important 

contribution is the achievement of outstanding 

localization accuracy for AVs using only a vision-

based system, which paves the way for the 

elimination of expensive sensors such as LiDAR and 

RADAR. Using visual data and deep learning 

models, this paper investigates how to improve the 

precision of AV localization. Depth perception is a 

crucial aspect of perception for precise localization. 

The proposed CNN's accuracy was evaluated using 

an RGB image with depth and the IHS method. The 

camera image with unprocessed pixels is the sole 

input for the independent localization method. The 

outcome is the predicted position. 

 

A CNN with a modified AlexNet architecture is 

trained offline in MATLAB using RGB images. This 

is accomplished by following the steps that have been 

outlined. After that, the trained network is 

implemented in the Python programming language so 

that the CARLA simulator may be used to perform 

real-time localization of an AV. A more in-depth 

explanation of each stage of the procedure may be 

found below: 

 

Data collection and preprocessing: - Gather a set of 

RGB images from the CARLA simulator along with 

their corresponding ground truth positions of the AV. 

 - The dataset needs to undergo preprocessing, 

including resizing the images to a consistent size and 

normalizing the pixel values within an appropriate 

range (e.g., [0, 1]). 

 

Offline and utilizing MATLAB, CNN architecture 

training and design: 

 -Create a customized version of the AlexNet 

architecture using MATLAB to satisfy the 

requirements of the localization project. To 

accommodate both the dataset and the desired output, 

it may be necessary to modify the number of layers, 

the sizes of the kernels, and the number of neurons 

present in FC layers. The dataset should be divided 

into the training set and the validation set during 

model training. 

-Train the modified AlexNet CNN using 

backpropagation and stochastic gradient descent 

(SGD) on the training set. To monitor how well the 

model performs on the validation set to prevent 

overfitting, by modifying the model's hyper 

parameters and regularization procedures for optimal 

results. After CNN training has been completed in 

MATLAB, the trained model must be exported in a 

Python-compatible format. Tensor Flow’s that are 

compatible with Python were used in this work. 
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Real-Time Python Implementation: To communicate 

with the CARLA simulator, a Python client-server 

connection was established. 

- Import the exported CNN model into Python and 

configure it to generate predictions and accept input 

images. 

- Establish a connection to the CARLA simulator as a 

client in order to acquire real-time RGB images 

captured by the vehicle's camera. 

- To get the incoming photos ready to be uploaded to 

CNN, it will need to process them by resizing and 

normalizing them, for example. 

- Using the imported CNN model, make a prediction 

about the position and orientation of the vehicle 

based on the processed images. 

- Send the vehicle's anticipated location back to the 

CARLA simulator in order to update the simulation 

with the vehicle's new position. 

Real-time translation in CARLA: Ensure that the 

Python script is properly integrated while the 

CARLA simulator is operating so that real-time 

translation can be performed. 

-Using the CNN model, the Python script predicts the 

car's position and orientation as it travels within the 

CARLA simulation. These predictions enable the 

script to precisely update the vehicle's location. The 

proposed localization of AV is depicted graphically 

in Figure 2. 

 

CNN's architecture was based on the original 

AlexNet structure [43]. Using an input image of 

256×256 pixels, a 21-layer CNN is constructed to 

enhance output accuracy and reduce error with 

minimal training time. This network is trained using 

the stochastic gradient descent method (SGDM) 

optimization technique [48], is always more rapid 

and effective than gradient descent method (GDM) 

[49]. 

 

 
Figure 2 Illustrates the work plan for the AV localization process 

 

Eleven different classes are utilized in the classifier 

phase, and this is determined by the total number of 

streets. This work improved AlexNet to reduce the 

computational complexity and the amount of time 

required for training while simultaneously increasing 

CNN's adaptability and effectiveness. The number of 

convolution layers was decreased from five to three. 

In the newly proposed architecture, the useful 

properties of input images are extracted by a first 

convolutional layer that contains 128 filters arranged 

in an 11-by-11 grid. In order to further improve the 

features that were recovered, the second 

convolutional layer uses 512 filters that are 5 by 5. 

The next three layers are totally connected (FC), and 

they contain 384 filters that are 3×3. The application 

of mathematical operations to features through the 

use of FC layers helps with classification. The 

softmax function generates class score probability 

distributions in the last FC layer of the algorithm. 

The pooling layers come next, after the convolutional 

layers, and they lower the spatial dimensions while 

capturing higher-level characteristics. Figure 3 

illustrates how the use of ReLU activation functions 
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can both induce non-linearity and speed up the 

learning process. 

 

Depth improves generalization across image sizes but 

can over-specify. This study used a modified 

AlexNet architecture with three convolutional layers 

instead of five. This change optimized computational 

performance and layer weight management. CNNs 

still work well with many image categories despite 

this adjustment. The flowchart of the proposed 

network is shown in Figure 4. 

 

 
Figure 3 Demonstrates CNN's proposed design for the 21st layer 

 

 
Figure 4 Flow chart of the proposed network 

 

The algorithm of the proposed network is as follows: 

Start 

Input: RGB Images 

       Depth Images (from the IHS method) 

Preprocess Images 

Construct CNN Architecture (Modified AlexNet): 

- Input: 256 × 256-pixel RGB Images 

- Convolutional Layer 1: 128 filters (11×11) 

- Convolutional Layer 2: 512 filters (5×5) 

- FC Layers: 3 layers with 384 filters (3×3) 

- Softmax Activation for classification 

Training the CNN: 

- Stochastic Gradient Descent Method (SGDM) 

optimization technique 

Localization Process: 

- Input: RGB Images 

- Extract features using the CNN 

- Predict position using the trained CNN 

 

Evaluation of Localization Accuracy: 

- Use RGB images with Depth information (from 

IHS method) 

- Assess the accuracy of the CNN predictions 

Improvements to AlexNet Architecture: 

- Reduce the number of convolutional layers from 5 

to 3 

- First convolutional layer: 128 filters (11×11) 

- Second convolutional layer: 512 filters (5×5) 

- Three FC layers: 384 filters (3×3) 

- Apply ReLU activation functions for non-linearity 
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Pooling Layers: 

- Reduce spatial dimensions and capture higher-level 

features 

- Applied after convolutional layers 

End 

 

4.Results  
Training a supervised neural network requires a 

significant amount of data. The system architecture is 

trained and evaluated with the use of RGB images, 

depth images, and their corresponding coordinates. It 

was necessary to use a simulator in order to construct 

the pose label because this data was not readily 

available to the public. Vehicles equipped with video 

sensors and the CARLA system is able to record 

images at a predetermined frame rate. Examining 

how your AV algorithms react to shifts in 

illumination, visibility, and road conditions can be 

done by simulating different daytime situations (such 

as morning, noon, and evening) and weather 

conditions (such as sunny, cloudy, rainy, and foggy). 

The collection of images that make up this map 

comes from a variety of different driving conditions, 

see Figure 5. This helps uncover potential obstacles 

and opportunities for improvement, which ultimately 

results in autonomous systems that are more resilient 

and flexible. The generation of images with the 

appropriate input size for network design can be 

achieved by adjusting the image size and the field of 

vision. Images in RGB and depth can be produced by 

the sensor. For the purpose of producing the dataset, 

this study made use of the open-source CARLA 

simulator. With the CARLA simulator, realistic 

training and testing of algorithms for autonomous 

driving may be accomplished [50]. During the testing 

process, images from the 3,279 RGB training dataset 

are combined with the depth photos taken by the 

camera sensor. Data in RGB and depth can improve 

the accuracy of localization. The city center, nearby 

districts, and woodland areas are all included on the 

map that spans a total area of 120,000 square meters, 

the top view of town 1 show in Figure 6. The 

CARLA simulator's 10 city streets as well as the 

tunnel are depicted in Figures 7, this configuration 

corresponds closely to the town plan described in 

[50]. This area is accessible to AV, which can then 

go around and collect data. A predetermined number 

of photos are taken by the AV.  

 

      

       

     
Figure 5 A Street in Town 1, different daytime (e.g., morning, noon, evening) and weather conditions (e.g., sunny, 

rainy, foggy) 

 

IHS is applied to RGB and depth photos to improve 

dataset accuracy, comparable to the procedure 

employed in our published paper [51], see Figures 8. 

This method combines RGB and depth photos to 

depict the environment better. The automated car 

follows roadways in the simulated map. The car 

navigates and interacts with the virtual environment 

using RGB and depth camera sensors. This study 

uses CARLA to capture RGB and depth photos from 

several points in a virtual metropolis. These images, 

plus the IHS approach, enable precise localization 

and evaluation of the proposed localization method. 
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Figure 6 The top image of the proposal map in the CARLA (open-source) simulator environment. 

 

 
Figure 7 The RGB image of a city roadway and a tunnel 

 

   
               (a)                                                    (b)                                                    (c) 

Figure 8 Images in (a) RGB format and (b) Image in RGB depth generated by the CARLA simulator, (c) the result 

of Combined RGB and depth pictures based on the IHS 

 

Table 1 shows the CARLA simulator dataset used to 

localize AV. The dataset has 256×256 photos with 

three RGB channels. Three thousand two hundred 

seventy-nine pictures are trained and tested in the 

localization model. CARLA, a popular open-source 

autonomous driving simulator, captured these photos 

[50]. The simulator recreates urban and road 

conditions. The dataset has 11 classes. These classes 

may represent localization targets or landmarks the 

AV needs to locate accurately. The classes may 

feature traffic signs, lights, buildings, pedestrians, or 

other urban aspects. Variable image counts per class 

suggest an imbalance in instance distribution across 

classes. Some classes have more photos than others. 

This imbalance can influence localization model 

training and performance; therefore, data 

augmentation or class balancing may be needed 

during training. This dataset contains CARLA 

simulator photos of urban settings and situations for 

training and testing AV localization models. Data 

augmentation involves horizontally flipping photos to 

expand dataset size and curve representation. 

 

Table 1 Simulator CARLA dataset 

Resolution 

of the 

image 

No. of 

images  

No. of 

classes 

No. of 

images/class 

256×256×3 3279 11 Variable 

 

The numerical repercussions, experimental setting, 

and training procedure parameters are outlined in 

Table 2, which can be found below. In order to 

identify the best possible configuration for training 

the CNN, its hyper parameters were optimized 

through a process of trial and error. During the 

training, which lasted for a total of 40 epochs, the 
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complete dataset was fed into the network for a total 

of 40 times. The magnitude of the weight adjustment 

increase was defined by the initial learning rate, 

which was initially set to 0.001. This occurred during 

the training method. This variable has the potential to 

have a significant impact on the training dynamics 

and convergence pace of the network. The processing 

of eight samples was done throughout each iteration 

of the training procedure. The amount of training 

samples that are utilized during a single forward and 

reverse iteration of the network is referred to as the 

batch size. It has an effect on the amount of memory 

that is used during the training procedure, the 

computational efficiency, and the convergence 

behavior. The lesson is carried out on a computer that 

has an Intel Core i7-10510U processor and 8 

gigabytes of RAM. The clock speed of the processor 

has been measured at 1.80 GHz as its normal clock 

speed, with a turbo clock speed of 2.30 GHz. These 

specs shed light on the computational resources that 

were put to use throughout the training process. 

Because MATLAB code was used in the training 

implementation, it may be deduced that the training 

technique and all of the associated actions were 

carried out inside the confines of a MATLAB-based 

programming environment. Notably, these particulars 

offer information regarding the experimental setup 

and parameters that were utilized, even though it is 

possible that they are not required in order to conduct 

an exhaustive analysis of the trained CNN model's 

efficiency or performance. A complete analysis and 

debate necessitates the inclusion of additional data 

and information and real time implementation. 

 

Table 2 Parameters of training process 

Experimental Setup and 

Parameters 

Value 

Epochs  40 

Learning rate  0.001 

Batch size  8 

CPU  Intel Core (i7-10510U) 

RAM  8 GB 

CPU clock rate  1.80 GHz (base), 2.30 

GHz (turbo) 

Training environment  MATLAB 

 

Equation 8 represents the mean square error (MSE) 

loss function that assesses the model's accuracy. The 

MSE loss function quantifies the average squared 

difference between anticipated and actual values to 

assess model fit training data. Minimizing MSE loss 

helps the model forecast accurately. The actual 

location is Y, and Y   is the expected position [52] 

(Equation 8): 

    
 

 
∑ (   ̂)  

      (8) 

 

Table 3 Presents the experimental setup and 

parameters.  

 

Within the experimental framework, the SGDM 

optimizer performs training on a backpropagation 

neural network. The objective of using a CNN that is 

based on feature selection is to localize AV. Using 

this strategy, useful image features can be selected to 

minimize the dimensionality of the data and improve 

localization. CNN model training elements are 

different depending on the task. A vehicle's location 

can be determined with the use of edge detection, 

color histograms, texture descriptors, and other visual 

signals. In order to evaluate the trained model, the 

CNN model dataset is divided into a training set 

consisting of 80% of the data and a test set consisting 

of 20%. Eighty percent of the data is used to optimize 

and learn patterns, while the remaining twenty 

percent is utilized to test the model on data that it has 

not before seen. The generalization of a model may 

be evaluated with machine learning by using this 

80/20 train-test split. In 99 minutes, the CNN model 

will have learned from the training data and will have 

adjusted its parameters. Training time is determined 

by the complexity of the model, the quantity of the 

dataset, and the resources available on the computer. 

See Figure 9 for further information on how 2,680 

iterations carried out throughout 40 epochs led to an 

accuracy of 95.49 percent. 

 

Based on the network trained using MATLAB, have 

proceeded with the following steps in this wok:  

AV localization outcome in MATLAB:  

- In the our published paper [51], AV localization 

results were obtained using an offline CNN-based 

MATLAB implementation. According to the project's 

specifications, the CNN architecture was modified 

and trained on a dataset of RGB images from the 

CARLA simulator. In the published paper, the 

localization precision obtained by the MATLAB-

based implementation was discussed and presented. 

This included metrics such as MSE and other 

evaluation measures, demonstrating the accuracy of 

the trained CNN model in predicting the position of 

the AV. 

Python reconstruction of CNN:  

- The current work seeks to extend and complete the 

published paper by implementing the trained CNN 

model in Python. 

-The previously developed and trained CNN model in 

MATLAB is exported in a Python-compatible format 

(Tensor Flow). 
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In Python, the model is reloaded and the 

configurations necessary for real-time predictions are 

set.  

Real-Time Simulation Using the Python:  

-The CARLA simulator acts as the server, while 

Python is used as the client to establish a connection 

using the Python API.  

-During simulation navigation, the Python 

application captures real-time RGB images from the 

CARLA simulator's camera.  

-These images are processed (e.g., resized and 

normalized) to conform to the CNN model's input 

specifications. 

-Based on the processed images, the imported CNN 

model predicts the AV's position and orientation and 

provides real-time localization data.  

CARLA simulator as server: 

 -During the simulation, the CARLA simulator 

functions as a server, providing the environment and 

receiving commands from the Python script (the 

client).  

-The Python script continuously transmits images to 

the CARLA simulator for localization and receives 

updates on the AV's position and orientation as it 

moves through the simulated environment. 

 

By recreating the CNN model in Python and 

connecting it to the CARLA simulator via the Python 

API, this study seeks to demonstrate the real-time 

performance of the proposed CNN-based AV 

localization technique in a dynamic simulation 

environment. The combination of MATLAB for 

offline training and Python for real-time deployment 

enables a thorough and efficient evaluation of the AV 

localization system, yielding valuable insights for 

future advancements in autonomous driving research. 

Comparison and modification between our published 

paper and this work: 

 

Number of Layers: This work employs a CNN with 

21 layers, which is a little shallower than the 

published work's CNN, which has 22 layers. The 

change in the number of layers may have been done 

to make the computation more effective without 

significantly losing accuracy. 

 

Size of initial Filter: The initial layer of this work 

features 128 filters that are each 11×11 in size, 

whereas the published work uses 256 filters that are 

each the same size. The decision to use fewer filters 

may have been taken to simplify the model and use 

fewer computational resources. 

 

Number of images for instruction: The dataset used 

in this work, which has 3279 photos, is smaller than 

the dataset used in the published paper, which has 

5283 images. The dataset has shrunk (Table 4). 

 

Accuracy: The accuracy of this work is higher than 

that of the published work, which was 94.76%. The 

enhancements in localization accuracy were probably 

made possible by changes made to the CNN 

architecture and training procedure. 

 

Precision: From earlier work to this study, precision 

increased from 0.9 to 0.96. This improvement shows 

that the current methodology can better discover and 

classify meaningful AV localization instances. An 

accuracy rating of 0.96 indicates a more refined and 

effective system with fewer false positives (FP) and 

better localization results. This study's precision 

improvement supports improving AV location 

accuracy, see Table 5. 

 

Modification: 

Localization Capability: The addition of yaw 

estimation in addition to (x, y) localization is the 

main change between this work and the published 

work. This work extends the localization capacity 

and makes it acceptable for actual autonomous 

driving applications by estimating the vehicle's 

orientation (yaw), which is crucial for precise and 

accurate navigation in real-world circumstances. 

 

Implementation: This work uses Tensor Flow to 

implement the trained CNN model in Python and 

connects it in real-time to the CARLA simulator. The 

published study, in contrast, uses MATLAB to 

conduct offline testing. The dynamic and real-world 

testing made possible by the online implementation 

provides for a more accurate assessment of how well 

CNN performs in a virtual setting. The results of 

using a CNN for the localization of AV in the 

CARLA simulator are shown in the Figure 10. A 

comparison of the desired and actual vehicle 

positions as determined by the suggested CNN-based 

AV localization system is shown in Figure 10. The 

findings displayed in this figure show outstanding 

performance in precisely determining the vehicle's 

position. The localization method was highly precise 

and reliable, as evidenced by how closely the actual 

positions match the anticipated positions. The CNN 

model's ability to precisely locate the car using RGB 

photos is demonstrated by the small difference 

between the desired and real placements.  In a 

realistic virtual world, the experiment attempted to 

assess the precision of the CNN-based localization 
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strategy. The outcomes show that the AV-based CNN 

localized the vehicle's position and orientation with a 

high degree of accuracy. The exact predictions of the 

AV's location were made possible by the CNN's 

capacity to process and evaluate RGB images from 

the CARLA simulator. For autonomous driving 

systems to be safe and dependable, the vehicle needs 

to be able to navigate and operate successfully in 

challenging real-world situations. The Figure 10 

showcases the results of high-accuracy AV 

localization using a CNN in the CARLA simulator's 

Town 1 environment. The purpose of the experiment 

is to compare the desired AV position, represented by 

a blue point, with the actual AV position obtained 

through the CNN-based localization, depicted as an 

orange point. The presence of a blue point on the 

figure indicates the target or desired position that the 

AV should ideally be located at this position is likely 

determined by ground truth data. On the other hand, 

the orange point represents the actual AV position 

obtained through the CNN-based localization 

method. The localization CNN has been trained to 

predict the AV's position and orientation accurately 

using input data, which may include RGB images, 

depth data, or both. A successful CNN-based 

localization will be characterized by the orange point 

closely aligning with the blue point, demonstrating 

the network's ability to accurately estimate the AV's 

position in the simulated environment. A small 

distance between the blue and orange points indicates 

a high level of accuracy in the CNN-based 

localization, signifying that the AV's position 

prediction closely matches the desired position. 

 

Table 3 Experimental setup and parameters 

Method/Technique Description 

Optimizer  SGDM 

Neural Network   Backpropagation-based 

Feature Selection  CNN-based approach selects informative image features for localization 

Input Dimensionality Reduced by selecting relevant features from the image 

Features  Includes edge detection, color histograms, texture descriptors, and other visual signals 

Dataset Split  Training set (80%) and test set (20%) 

Training Duration 99 minutes (depends on model complexity, dataset size, and computational resources) 

Train-Test Split  Commonly used 80-20 split for balancing training and evaluation data 

Model Performance Achieved 95.49% accuracy after 2680 

iterations  over 40 epochs 

Simulation Results Provided for CNN-based street identification and coordinate work 

Output Prediction  Figure 11 shows the successful prediction of AV position and orientation 

Dataset Evaluation Datasets categorized for visual location recognition 

Coordinate Retrieval K-Means clustering used to locate image coordinates after CNN network determines the street class 

Average Distance  Between two photographs: 3.01 meters vertically and 0.5 meters horizontally when the car travels at 

60 km/h 

Frame Rate  Camera captures 50 frames per second 

 

 
Figure 9 The results of the accuracy and loss functions 
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Table 4 Comparison based on layers and filters 

Metric Previous study [51] Proposed work 

No. of Layers                             22 21 

Size of First Filter                      256 filters (11×11) 128 filters (11×11)    

No. of Images for Training                5283 images 3279 images            

Localization Capability                   x and y x, y, yaw     

Implementation MATLAB Offline         MATLAB Offline +Python (Tensor Flow) 

Online 

 

Table 5 Accuracy and precision comparison of the previous and current study 

S. No. Metrics Previous study [51] Proposed work 

1 Accuracy 94.76% 95.49%                 

2 Precision 0.9 0.96 

 

 
Figure 10 Desired and actual positions 

 

Figure 11 demonstrates the error comparison 

between the magnitudes of position of the vehicle 

with the estimated localization. We add the 

magnitudes of the position from x, and y axis from 

both actual position and estimated position and plot 

them against time to compare the error. Figure 12 

shows the orientation magnitude curve for the ground 

truth and the estimated data.  

 

The strong design and effective training of the CNN 

model are responsible for the good results in Figure 

11. With the help of the modified AlexNet 

architecture, the network in this work is able to 

extract meaningful representations from the RGB 

images, collecting crucial elements for accurate 

localization. Additionally, the MATLAB training 

procedure makes sure that the CNN is well-optimized 

and generalizes to real-world circumstances 

successfully. The desired and actual vehicle rotations 

(yaw) as determined by the same CNN-based AV 

localization system is contrasted in Figure 12. The 

outcomes displayed in this Figure 12 likewise 

demonstrate very strong performance in precisely 

determining the vehicle's direction. The model's 

ability to precisely forecast the vehicle's rotation 

based on the visual input is demonstrated by the fact 

that the real vehicle's yaw closely resembles the 

planned yaw. For autonomous driving to be 

successful, the vehicle's rotation must be correctly 

estimated. When traveling through complicated and 

dynamic situations, the AV can make well-informed 

decisions thanks to accurate yaw estimate. An 

important benefit of the suggested approach is that 

the CNN model can predict yaw with accuracy using 

RGB images without the need for pricey LiDAR or 

RADAR sensors. Overall, the reliability and 

efficiency of the proposed CNN-based AV 

localization system are well supported by Figures 11 

and 12. Excellent position and yaw estimation are 

displayed in the results, showcasing the approach's 

potential for use in practical autonomous driving 

scenarios. A viable option for AV, removing the need 

for expensive sensors and improving the overall 

safety and effectiveness of autonomous driving 

systems, is the accurate localization and reliable yaw 

estimation obtained by a light and effective CNN 

model. 
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Figure 11 Desired vs effective vehicle position 

 

 
Figure 12 Desired vs effective vehicle rotation Yaw 

 

5.Discussion  
To assess the results quantitatively, the mean squared 

error (MSE) was computed for pose, encompassing 

error analysis for both position and orientation. Table 

6 presents the MSE values, illustrating the disparity 

between desired and actual positions within a CNN-

based AV localization system. The objective of this 

study is to evaluate the CNN model's accuracy and 

precision in localizing the AV across real-world 

scenarios. MSE stands as a widely employed metric, 

gauging the variance between predicted and actual 

positions, thereby offering valuable insights into the 

performance of localization algorithms. 

 

Within this context, the x-coordinate (horizontal 

position) manifests an MSE of 0.039, while the y-

coordinate (vertical position) demonstrates an MSE 

of 0.0099, and the vehicle rotation (yaw) showcases 

an MSE of 0.0047. The minimal MSE values 

underscore the high accuracy and precision achieved 

by the CNN-based AV localization system. These 

marginal deviations between desired and actual 

positions signify the model's adeptness in predicting 

the AV's coordinates in both horizontal and vertical 

dimensions. 

 

The promising results presented affirm the robustness 

and reliability of the CNN-based localization system. 

This, in turn, establishes a solid basis for real-world 

applications in the realm of autonomous driving. The 

system's commendable accuracy holds paramount 

significance in ensuring the secure and efficient 

navigation of AVs, particularly in intricate and 

dynamic surroundings. It's worth noting that the 

reported MSE values of 0.039, 0.0099, and 0.0047 

denote exceptional performance. Nonetheless, further 

analysis and validation using diverse real-world 

datasets and challenging scenarios are imperative to 

validate the model's generalization capabilities and 

real-world viability. Furthermore, juxtaposing the 

CNN-based system with alternative localization 

methods and considering computational efficiency 

will elucidate the system's competitiveness in 

practical applications. 
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Collectively, the outcomes depicted in the figure 

validate the efficacy of the CNN-based AV 

localization system. This highlights its remarkable 

accuracy and potential to serve as a pivotal 

component in achieving dependable and precise 

autonomous driving capabilities. 

 

Table 6 Quantitative result on localization accuracy 

MSE 

Position MSE 

x-coordinate (horizontal position) 0.0399 

y-coordinate (vertical position) 0.0099 

Yaw (vehicle rotation) 0.0047 

 

5.1Limitation and recommendations 

Real-world driving scenarios are utilized in this 

research. However, additional data derived from 

actual driving experiences must be incorporated to 

fully validate the suggested method and ensure the 

CNN's performance in real-world scenarios. 

Limited dataset size: While the utilization of a 

lightweight network has its advantages, the model's 

ability to generalize across diverse road conditions 

and environments may be constrained due to the 

relatively small dataset of 3279 photos. Enhancing 

the performance and robustness of the CNN could be 

achieved by augmenting the dataset size. 

Single camera sensor: The core component of the 

proposed technique is an RGB camera sensor. While 

this approach eliminates the need for expensive 

LiDAR and RADAR sensors, relying solely on a 

single camera might be limiting in scenarios 

involving occlusions or complex road layouts. 

Exploring the fusion of multiple sensors could 

potentially enhance localization performance overall. 

 

Recommendations: 

Data augmentation: To address the challenge of the 

small dataset size, employing data augmentation 

methods can expand the training dataset. Techniques 

like rotation, flipping, and adding noise can diversify 

the training data, thus improving the CNN's ability to 

generalize across scenarios. 

Sensor fusion: Although the focus of this work is on 

RGB camera data, future research could delve into 

sensor fusion techniques. Integrating information 

from various sensors, such as LiDAR and RADAR, 

could enhance localization accuracy and robustness 

under varying driving conditions. 

Real-world testing: To validate the efficacy of the 

proposed strategy in real-world environments, 

conducting real-world testing using an actual AV is 

essential. This approach will help identify potential 

issues and opportunities for improvement. 

Error analysis: A comprehensive error analysis 

should be undertaken to comprehend the limitations 

of the proposed strategy. Identifying sources of errors 

and uncertainty in localization can guide future 

enhancements and optimizations. 

Performance in dynamic environments: Evaluating 

the CNN's performance in scenarios involving 

moving obstacles, pedestrians, and other vehicles is 

critical for real-world applications. Assessing the 

method's capabilities under complex and dynamic 

situations provides a more realistic evaluation. 

 

The proposed CNN-based method has the potential to 

address these limitations and implement the 

suggested strategies in the future, thereby enhancing 

AV localization accuracy. This, in turn, positions the 

method as a more practical and reliable option for 

applications in the field of autonomous driving. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future work 
This study delves into the potential of utilizing a 

CNN for localizing AVs in urban environments, 

taking into account diverse meteorological 

conditions. The CNN-based technique holds promise 

for achieving moderately accurate AV localization 

using vision-only data, without the need for costly 

RADAR and LiDAR sensors. In this study, a 

practical computational modification of the well-

known ALEXNET CNN architecture with fewer 

layers proves successful. The CNN model is trained 

offline in MATLAB using raw camera images and 

associated location-coordinate data for each frame. 

The utilization of the IHS technique, blending depth 

images with RGB images, facilitates accurate AV 

localization. Simulation results demonstrate that the 

proposed technique attains commendable localization 

accuracy with enhanced performance within a 

significantly shorter training time of 99 minutes and 

28 seconds. The CNN-based solution outperforms 

conventional methods, achieving an impressive 

accuracy rate of 95.49%. 

 

A notable feature of the proposed method is its 

capacity for seamless integration of offline 

MATLAB training with real-time implementation in 

Python through the CARLA simulator. Offline 

MATLAB training enables researchers to safely 

explore diverse architectures, hyperparameters, and 

training methodologies, expediting the exploration of 

the CNN's design space and yielding a well-

optimized model. 
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Moreover, integrating the CNN model into the 

CARLA simulator enables dynamic and realistic 

testing within real-world scenarios. By recreating the 

CNN in Python and seamlessly interfacing it with 

CARLA, the model's performance is assessed across 

varied driving scenarios, weather conditions, and 

urban environments. Real-time implementation 

provides rapid insights into the model's behavior and 

potential refinements. The CNN-based technique 

demonstrates its ability to accurately and reliably 

localize AVs across diverse urban areas and weather 

conditions. The synergy between offline MATLAB 

training, real-time Python-based implementation, and 

CARLA simulator integration showcases the model's 

practical efficacy and sets the stage for future 

research involving more intricate training and 

validation scenarios.  

 

Although the MSE values of 0.039, 0.0099, and 

0.0047 reflect excellent performance, further 

investigation and validation using diverse real-world 

datasets and complex scenarios remain crucial. 

Rigorous testing of the model's robustness, 

generalizability, and real-world feasibility will 

solidify its potential for advancing AV localization 

technology.  
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Appendix I 
S. No.  Abbreviation Description 

1 ANN Artificial Neural Network 

2 AV Autonomous Vehicle 

3 B Blue 

4 CARLA Car Learning to Act 

5 CNN Convolutional Neural Networks 

6 CCM Cooperative Channel Mapping 

7 CSI Channel State Information 

8 DoF Degrees of Freedom 

9 EKF Extended Kalman Filter 

10 FC Fully Connected 

11 FCL Fully Connected Layers 

12 FP False Positive 

13 FN False Negative 

14 GNSS Global Navigation Satellite System 

15 GPS Global Positioning Systems 

16 GDM Gradient Descent Method 

17 H Hue 

18 HD High-Definition 

19 I Intensity 

20 HIS Intensity Hue Saturation  

21 IMU Inertial Measurement Unit 

22 LiDAR Light Detection and Ranging 

23 LVI-SAM LiDAR-Visual-Inertial Simultaneous 

and Mapping 

24 MSE Mean Square Error 

25 N Total Number of Sample 

26 NLOS Non-Line-of-Sight  

27 ORB Oriented Fast and Rotated Briefly 

28 RADAR Radio Detecting and Ranging  

29 R Red 

30 RGB Red Green Blue 

31 RGB-D Red Green Blue-Depth 

32 ReLU  Rectified Linear Unit 

33 RANSAC Random Sample Consensus 

34 SLAM Simultaneous Localization and 
Mapping 

35 SGDM Stochastic Gradient Descent Method  

36 SVMs Support Vector Machines 

37 SIFT Scale-Invariant Feature Transform 

38 SURF Speeded Up Robust Features 

39 TP  True Positives 

40 TN True Negatives 

41 V1, V2 Values in the Middle 

 VEENAL Variational End-to-End Navigation 

and Localization 

42 X, Y, and  ̂ X, Y Actual Location, and  ̂ is the 

Expected Position 

43 2D 2 Dimension 

44 3D 3 Dimension 

 

 

 


