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1.Introduction 
The widespread adoption of internet of things (IoT) 

systems in recent years has brought about a 

significant transformation in various industries. 

These systems provide ample opportunities for 

intelligent automation and artificial intelligence (AI) 

technologies. Machine learning (ML), a prominent 

AI approach, has shown great potential in improving 

the security of IoT devices and systems [1]. By 

efficiently analyzing large volumes of data, ML 

algorithms can detect anomalies, prevent fraud, and 

provide decision support in diverse fields such as 

healthcare and autonomous vehicles.  
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However, the growing reliance on ML for IoT 

security has exposed these systems to new threats 

posed by malicious actors.  

 

During the process of training ML models, different 

types of attacks such as poisoning, and evasion can 

be injected to deceive the system's decision-making 

algorithms (as depicted in Figure 1). Adversaries 

may choose to strategically modify input samples to 

cause misclassifications (known as evasion attacks) 

[2] or contaminate the training dataset to skew the 

classifier model (known as poisoning attacks) [3] (as 

shown in Figure 2). These attacks can seriously 

compromise the overall performance and reliability 

of security applications based on IoT, leading to 

significant challenges in the successful deployment 

of AI-enabled smart systems. 

Research Article 

Abstract  
Internet of things (IoT) systems were becoming increasingly complex due to advancements in open innovation, especially 

in the realms of intelligent automation and artificial intelligence (AI). However, their effective deployment was impeded 

by security concerns and the need for enhanced threat detection capabilities. To address these challenges and bolster the 

security of IoT devices, an architecture called "intellig_block" was developed. This architecture seamlessly integrated 

blockchain (BC) and AI technology to mitigate vulnerabilities and enhance system efficiency. The goal was to harness the 

advantages of BC and AI to offer effective solutions for the security challenges confronting IoT systems. The primary 

focus centered on thwarting contamination and evasion attacks on intrusion detection systems (IDS) powered by machine 

learning (ML). At that time, many existing solutions relied on traditional statistical frameworks or ML techniques, 

resulting in increased deployment and runtime costs. In contrast, the "intellig_block" architecture hashed the template 

file and embedded it as a smart contract to implement the categorization algorithm. The results of the experiments 

conducted at that time were quite promising: the execution time was short with minimal gas overhead. A potential method 

was proposed at that time for effectively identifying cyber threats in ML models using the "intellig_block" architecture, 

which could significantly fortify IDS. Smart contracts (SC) have been introduced as a solution to safeguard IDS results 

against adversarial machine learning (AML) attacks within BC. In that context, IoT devices leveraged these SC to 

promptly detect AMLs in real-time data streams. Comprehensive performance analysis and experimental findings at that 

time substantiated the efficacy of the model in shielding IoT devices against unreliable services, all while maintaining 

cost-effectiveness within a reasonable time frame and at an affordable cost. 
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In the context of IoT security, ML-based 

technologies have emerged as a promising alternative 

to traditional rule-based approaches. ML offers a 

multifaceted AI approach that can outperform 

dynamic networks without requiring explicit 

programming. Its versatility allows for the 

development of sophisticated models capable of 

handling complex IoT data. For instance, ML can be 

employed in health coverage, anomaly detection, 

fraud prevention, and various other applications 

where it learns to detect different types of assaults 

and deliver appropriate defensive strategies. 

Consequently, ML has become a valuable tool for 

monitoring, estimating, categorizing, and tracking 

future IoT activity. 

 

 

 
Figure 1 Attack zones in the implementation of AI 

 

 
Figure 2 Taxonomy of attack properties on ML 

 

The use of ML in securing IoT devices comes with 

its own set of difficulties. The procedure of ML 

model development, which includes data pre-

processing, model training, and testing, can lead to 

potential security vulnerabilities (Figure 3). 

Adversaries may inject poisoning and evasion attacks 

during these stages, compromising the ML model's 

integrity and causing misclassification of IoT 

activities [4]. Current research on AI technologies for 

IoT systems mainly focuses on ML and 

reinforcement learning (RL) [5]. While ML has 

demonstrated its potential in analyzing vast amounts 

of data and providing valuable insights, it has also 

become an attractive target for attackers who want to 

exploit these models for malicious purposes. 

Consequently, there is an urgent need to address 

these challenges to ensure that ML-based IoT 

security systems operate reliably and securely [6]. 
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The suggested solution involves running the ML 

fitting procedure locally, off-chain. This is because 

ML fitting may be a time-consuming and expensive 

computing procedure that can also burden the 

blockchain (BC) network. 

 

The model's parameters can be retrieved and kept on-

chain after the ML model has been fitted off-chain. 

As a result, just the crucial data about the ML model 

must be stored on the BC, rather not the complete 

dataset or the model itself. 

 

In the tests of our research, we use a variety of 

classifiers, including support vector machines 

(SVM), k-nearest neighbors (k-NN), random forest 

(RF), decision tree (DT), logistic regression (LR), 

naive bayes (NB), and multi-layer perceptron (MLP). 

In the field of ML, these classifiers are well known. 

They choose an ideal hyperplane using influence 

functions, enabling the pertinent separation of two 

categories within the data. As a member of the family 

of feedback neural networks, MLP stands out as a 

deep learning model. To enable advanced prediction 

conclusions, this method iteratively extracts 

characteristics and insights from the data using a 

stratified arrangement of nodes that are stacked on 

many levels. The convergence of SVM, k-NN, RF, 

DT, LR, NB, and MLP in this study provides an in-

depth and versatile investigation, combining 

traditional approaches and deep learning 

methodologies for a notable improvement in 

predictive accuracy and the generalization of models. 

The suggested strategy is a promising one for 

applying ML to a BC. It can assist in enhancing the 

scalability and privacy of ML applications while 

concurrently decreasing the computational and 

networking costs associated with ML. 

 

The two classifiers indicated in the previous sentence 

are further described in the following manner: 

SVM: Useful for classification or regression 

applications, this kind of supervised learning 

technique. To best partition the data points into two 

or more classes, SVMs find a hyperplane. SVM is a 

supervised ML algorithm that can be used for both 

classification and regression tasks. It works by 

finding a hyperplane that best separates the data 

points into two or more classes. In this case, the SVM 

model achieved an accuracy of 98% on the test set, 

which means that it correctly classified of the data 

points. 

RF: An ensemble of DT is used where each tree is 

trained on a random subset of the data, and their 

results are combined to improve performance and 

robustness [2]. In your case, the RF model achieved 

an accuracy of 97% on the test set, which means that 

it correctly classified of the data points. 

LR: A linear combination of features is used to 

estimate the likelihood of belonging to a class in the 

process of classification [3].  

Equation 1 is used to calculate the probability using 

LR. 

  ( )   ( 
  )    (1) 

It works by fitting a logistic curve to the data to 

predict the probability of a data point belonging to a 

particular class. In this case, the LR model achieved 

an accuracy of 99.2% on the test set, which is the 

lowest accuracy of all the models. 

k-NN: K-NN is a non-parametric ML algorithm that 

works by finding the k most similar data points to a 

new data point and then predicting the label of the 

new data point based on the labels of the k nearest 

neighbors [4]. The Euclidean distance to calculate an 

object's distance from its neighbors, as indicated in 

Equation 2, to classify unlabeled observations into 

the category of the most similar labeled cases. 

 (   )  √∑ (     )
  

     (2) 

 

In this case, the K-NN model achieved an accuracy 

of 97% on the test set, which is the same as the SVM 

model. 

DT: DT are a type of supervised machine-learning 

algorithm that can be used for both classification and 

regression tasks. The classification technique builds a 

tree representing judgments based on characteristics 

from root to leaf [5]. 

In this case, the DT model achieved an accuracy of 

99.8% on the test set, which is slightly lower than the 

SVM and K-NN models. 

NB: A classification method based on Bayes theorem 

assumes independence of all characteristics and is 

effective in some circumstances [6]. 

It works by assuming that the features of the data are 

independent of each other. In this case, the Naive 

Bayes model achieved an accuracy of 99.4% on the 

test set, which is slightly lower than the other models. 

MLP: MLP is a type of deep learning algorithm that 

can be utilized for classification or regression tasks. 

MLPs consist of multiple layers of nodes, where each 

layer is connected to the subsequent layer [7]. It 

works by learning the weights of the connections 

between the neurons in the network to minimize the 

error between the predicted and actual values. In this 

case, the MLP model achieved an accuracy of 99.6% 

on the test set, which is slightly lower than the SVM, 

K-NN, and DT models. 
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Figure 3 Process of detecting faults using ML 

 

The challenges and vulnerabilities in ML-based IoT 

security systems are the focus of this research. The 

objective is to create a strong and secure framework 

that can protect ML and deep learning models from 

cyber threats, specifically poisoning and evasion 

attacks. The proposed framework, called 

“intellig_block,” aims to enhance security levels and 

confidence in detecting IoT system threats by 

utilizing the power of BC technology [8]. 

The contributions of this paper are as follows: 

 Novel framework development: Introducing the 

intellig_block framework – a new and innovative 

approach that combines ML model hashing with 

smart contracts (SC) on the BC. This integration of 

ML and BC aims to decentralize the classification 

technique, reduce vulnerabilities, and enhance the 

overall security of IoT systems. 

• Privacy and security enhancement: Our framework 

combines SC and access control mechanisms to 

enhance the security and privacy of ML models. 

Additionally, these benefits extend to intrusion 

detection systems (IDS)[9]. This comprehensive 

approach safeguards the ML-based IDS from 

potential attacks and intrusions. 

• Empirical evaluation: Our experimental results 

showcase the effectiveness of the proposed 

intellig_block framework. They demonstrate the 

framework’s ability to achieve low execution time 

and minimal gas overhead. As a result, the 

framework is a viable and efficient solution for 

securing ML-based IoT systems. 

• Performance comparison: We evaluated the 

intellig_block framework’s performance against 

existing approaches, examining accuracy, 

deployment, and execution overhead. This 

comparison enabled us to assess the framework’s 

effectiveness and identify areas for improvement. 

 

The paper was structured as follows: In section 2, a 

detailed review of the related work was presented, 

highlighting the importance of BC technology in 

addressing security challenges in IoT domains. This 

led to the introduction of our proposed system in 

section 3. Afterwards, section 4 provided the 

simulation results of the intellig_block framework, 

offering a comprehensive evaluation of its 

performance. Discussion has been elaborated in 

section 5. Finally, in section 6, the conclusion of this 

study was presented, summarizing the contributions 

and outlining potential avenues for future research. 

 

2.Related work 
The public study topics of the intelligent 

decentralized systems on IoT have been invested in 

and debated by several scholars. Table 1 summarizes 

the several works presented in this section. 

 

Banerjee et al. [10] investigated IoT security 

mechanisms, as well as the paucity of IoT datasets, 

used between academic and professional 

organizations. Wright et al. [11] this paper describes 

a streamlined resource management framework using 

Ethereum for smart edge BC networks, enabling 

secure and verified outsourcing of computations 

between devices for financial compensation. Swan in 

[12] explored the advantages of utilizing BC for 

cognitive progress and its architectural implications 

in the realm of intelligence advancement. Qian et al. 
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[13] demonstrated high BC-based safety control 

strategies for connected systems. Nevertheless, there 

are worries in this study about erroneous traffic 

control and proof of identity. Rathore et al. [14] 

suggested BC-driven private deep learning for 

trustworthy IoT data in line with intelligent 

decentralized device-level systems. Shinde et al. [15] 

in the context of securing AI and open innovations, 

the authors advocate BC’s potential in ensuring data 

privacy, preventing data poisoning, and upholding AI 

model integrity, while acknowledging the 

technology’s novelty and ongoing security concerns. 

Abdel-basset et al.[16] suggested a federated learning 

(FL) method for preserving privacy while learning 

from non-independent and identically distributed data 

in fog assisted IoT, employing secure aggregation 

from fog nodes, albeit potentially sacrificing 

accuracy compared to centralized approaches. Kumar 

et al. [17] provided an overview of BC’s industrial 

IoT applications, outlining advantages and 

challenges, while noting the technology’s novelty and 

the absence of standards and interoperability. Liu et 

al. [18] presented an exploration of BC-driven FL, 

spotlighting advantages, and challenges, while 

highlighting the technology’s nascent stage and the 

absence of universal standards and interoperability. 

Rehman et al.[19] proposed a secure healthcare 5.0 

system integration BC and FL for data storage and 

ML model training, while acknowledging potential 

scalability limitations in extensive healthcare setups. 

Sun et al. [20] suggested a BC-based audit method 

for encrypted data in FL, utilizing BC for data and 

audit result storage, while acknowledging scalability 

challenges in expansive FL setups. Chen et al. [21] 

presented an overview of security challenges in BC 

systems, covering attack types and defense 

mechanisms, while noting the potential outdated 

nature of some discussed attacks and defenses. 

Barbaria et al. [22] introduced an innovative BC-

based architectural model for healthcare data 

integrity, leveraging BC for data storage and integrity 

assurance, yet potentially limited in managing 

substantial data volumes. Miao et al. [23] puts forth a 

data sharing plan for BC-driven IoT, utilizing BC for 

data storage and a privacy-preserving protocol for 

authorized sharing, despite potential computational 

costs associated with the privacy protocol. Yaacoub 

et al. [24] examined security hurdles in IoT-based 

FL, highlighting challenges like data privacy, 

poisoning, model theft, and Sybil attacks, while 

proposing solutions that might not scale efficiently 

for extensive IoT setups. Sáez-de-Cámara et al. [25] 

introduced a clustered FL architecture to enhance 

network anomaly detection in vast, diverse IoT 

networks, aiming for accuracy and efficiency gains, 

albeit potentially involving intricate implementation 

and deployment. Mirdula and Roopa [26] suggested a 

manufacturer usage description enabled deep learning 

framework for smart building anomaly detection, 

leveraging multi-sensor data, yet potentially lacking 

in rare event anomaly detection. Habiba et al. [27] 

suggested an edge intelligence approach for IoT 

network intrusion prevention, utilizing edge devices 

for data analysis, but possibly falling short in 

countering advanced attacks on these edge devices. 

Taloba et al. [28] put forward a hybrid BC platform 

for IoT-healthcare multimedia processing, utilizing 

BC for data storage and security, alongside a hybrid 

processing approach, yet potentially constrained in 

scalability for expansive systems. Singh and Singh 

[29] delivered an assessment of varied IoT access 

management methods, weighing pros and cons, and 

introducing a BC-backed decentralized authentication 

approach, which might not be universally compatible 

with all current IoT devices. Alsuqaih et al. [30] in 

introduced a privacy-focused control method for 
electronic health (e-health) apps, utilizing BC for 

patient records and employing homomorphic 

encryption for data privacy, though the encryption 

scheme could incur computational costs. Xi et al. 

[31]. The article examines BC’s role in secure 

medical data sharing, exploring benefits and 

limitations, and highlighting future research 

challenges in the realm of privacy and security. 

Zhang et al. [32] the article introduces a BC-powered 

framework for secure IoT data sharing, employing 

both BC and encryption methods to ensure the 

privacy and security of data exchanged among IoT 

devices. Zhao et al. [33] proposed a BC-centric 

approach to protect privacy in FL, ensuring data 

security and integrity during cross-device model 

training without raw data sharing. Bhan et al. [34] 

suggested a BC-infused solution for healthcare data 

sharing security, employing BC and encryption to 

safeguard privacy and security during medical data 

exchange among providers. Lou et al. [35] introduced 

a BC-powered privacy-preserving framework for 

edge computing, leveraging BC to safeguard data 

privacy in shared edge device environments. Rafique 

et al. [36] presented a BC-enhanced security and 

privacy framework for IoT, utilizing both BC and 

encryption methods to safeguard data security and 

privacy among IoT devices. Kumar et al. [37] 

suggested a BC-centered method for secure and 

private ML, employing BC to safeguard training data 

privacy. Taloba et al. [38] suggested a BC-infused 

framework for secure healthcare data management, 

employing BC and encryption to ensure privacy and 
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security of medical data within healthcare 

organizations. Li et al. [39] suggested a BC-driven 

system for secure edge computing data sharing, 

leveraging BC and encryption to safeguard privacy 

during edge device data exchange. Karaszewski et al. 

[40] examined BC’s role in public sector data 

sharing, exploring its benefits, limitations, and future 

research challenges. Kamath et al. [41] in suggested a 

BC-driven framework for secure data sharing in 

supply chain management. They combined BC and 

encryption for privacy and security among partners. 

Wang et al. [42] suggested BC for private data 

sharing among social science researchers. In Chi et 

al. [43] suggested a BC-powered solution for secure 

energy sector data sharing by combining BC and 

encryption to ensure privacy and security of data 

exchanged between providers and consumers. In 

Jiang et al. [44] suggested a BC-driven system for 

secure data sharing in finance, using BC and 

encryption for privacy among institutions. BC 

enhances security, privacy, and efficiency through 

tamper-proof ledgers, data encryption, and 

streamlined data sharing. Challenges include 

technical complexity, evolving regulations, and lack 

of universal standards. 

 

Table 1 Summarized literature review 

Article Objective BC Performance 

Type Consensus 

algorithm 

SC Security Privacy Trust 

[15] Improve the protection of AI data Private Proof of 

stake (PoS) 

● - - ● 

[16] Improve the privacy of ML Federated Proof of 

work 

(PoW) 

 ● ●  

[17] Improve the security and efficiency of 

the industrial IoT (IIoT) 

Public PoW  ● - ● 

[18] Improve the security and privacy of FL Private  

PoS 

● ● ● - 

[19] Improve the security and privacy of 

the 5.0 healthcare system 

Private PoS ● - ● ● 

[20] Improve the security and privacy of 

encrypted data 

Private PoS ● - ● - 

[21] Improve the security of BC Public PoW   ●  

[22] Improve the integrity of healthcare 

data 

Private PoS ● ● - ● 

[23] Improve the security and privacy of 

data sharing for BC- empowered IoT 

Private PoS ● ● ● - 

[24] Improve the security and privacy of FL Public PoW ● ● ●  

[25] Improve the efficiency of anomaly 

detection 

Federated PoW - ● - ● 

[26] Improve the accuracy of DL MUD PoW - ● - - 

[27] Improve the intrusion detection Edge  

intelligence 

PoW  - ● - 

[28] Improve the efficiency of multimedia 

data processing in IoT- Healthcare 

Public PoW - ● - ● 

[29] Improve the security of IoT device 

access management 

Private PoS ● ● ● - 

[30] Improve the privacy of privacy- 

preserving control mechanisms for 

healthcare applications 

Private PoS ● ● - - 

This 

approach 

Securing IoT with Intellig_block: A 

BC-based Defense against adversarial 

machine learning (AML) 

Prive/Public PoW ● ● ● ● 

 

3.Methods 
The proposed concept is based on the use of BC 

technology and ML to enhance the security of AI-

based systems. BC-based apps can be made smarter 

by leveraging ML capabilities. The security of 

distributed ledgers can be improved by employing 

ML techniques. Additionally, the decentralized 

design of BC technology can help improve ML 
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models. We have provided an architecture for 

adopting ML in intelligent applications, as shown in 

Figure 4. 

 

The proposed architecture aims to create a 

decentralized and intelligent system that can defend 

against various security threats. By integrating ML 

into BC-based applications, the system can leverage 

the benefits of both technologies. The architecture 

consists of four main levels, illustrated in Figure 5. 

 

Data source: At this level, the system generates and 

collects data from various sources, such as IoT 

sensors, IoT applications, or cloud-based services. 

These sources can produce diverse types of data, 

ranging from structured data (e.g., numerical data 

stored in databases) to unstructured data (e.g., text 

files, images, or videos). 

Model training: The collected data is then used to 

train the model. Model training is a critical stage 

where ML algorithms learn from the data to perform 

specific tasks, such as intrusion detection, data 

classification, or future behavior prediction. During 

model training, various techniques, such as 

supervised, unsupervised, and RL, may be employed 

based on the nature of the data and the system’s 

objectives. 

 

It is important to note that during training, models 

may be vulnerable to attacks, such as evasion attacks 

and poisoning attacks. These attacks aim to degrade 

the model’s performance by manipulating the 

training data, which can compromise the security and 

reliability of the system. 

 

At level 3 of the architecture, the Intelligent Secure 

Decentralized Model incorporates SC to ensure the 

security and decentralization of ML models. These 

contracts are self-executing programs that run 

automatically when triggered by specific events. In 

this context, they are used to embed the decision 

function of the ML algorithms. 

 

The use of SC enhances the security of the model by 

governing access to sensitive information and the 

model’s decision-making functions. This ensures that 

only authorized individuals with the appropriate 

access rights can interact with the model, thereby 

reducing the risk of malicious attacks. Furthermore, 

the decentralized structure of the BC enhances the 

security of the system as there is no central point that 

can be compromised. The models are distributed 

across multiple nodes in the BC, making them more 

resilient and less susceptible to attacks. 

 

After the model has been trained and secured through 

an intelligent contract, the results obtained by the 

model are displayed, and its performance is evaluated 

to assess its effectiveness and accuracy in detecting 

cyber threats.  

 

To ensure data integrity and security, the model files 

are stored on the BC as encrypted pieces. When a 

user requests a model file, the pieces are encrypted, 

and subsequently defragmented to restore the original 

file.  

 

To ensure that a file is authentic and trustworthy, the 

user can use the BC to compare the file’s hash with 

the calculated hash of the original file. This process 

provides a genuine and trustworthy way of verifying 

the integrity of model files, allowing for transparent 

and accountable interactions. The proposed 

architecture is an innovative and promising approach 

to enhance the security of AI-based applications by 

utilizing BC technology and ML. By integrating SC 

into the architecture, access to the ML models is 

governed, minimizing the risk of unauthorized access 

and potential attacks. Furthermore, the encryption 

and verification process for model files stored on the 

BC enhances data integrity and ensures the reliability 

of the ML models. 

 

The architecture concept seems to be well thought-

out, but more detailed explanations are required to 

understand how it would be practically implemented 

and operated. Specifically, clarifications are needed 

on how the ML models are integrated into SC, the 

details of access control mechanisms, and how the 

hash comparison process is facilitated. This will help 

to improve the clarity of the concept.  

 

Additionally, it would be helpful to discuss the 

potential limitations and challenges of the proposed 

architecture. For example, addressing issues related 

to scalability, gas costs on the BC, and the trade-offs 

between security and performance in decentralized 

systems would provide a more comprehensive 

evaluation of the architecture. 
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Figure 4 The design of IoT intelligent block architecture 

 

 
Figure 5 Proposed architecture mechanism flowchart for each phase 

 

The ML model’s working in the proposed approach 

for IoT intrusion detection involves the following 

steps: 

Data collection: The ML model collects data from 

various sources, such as IoT sensors, applications, 

and cloud-based services. This data includes network 

traffic attributes, system logs, user behaviors, and 

relevant information to identify potential threats. 

Data pre-processing: The data is pre-processed 

through cleaning, normalization, and feature 

extraction to prepare it for training and analysis. 

Model training: The pre-processed data is used to 

train the ML model using various algorithms like 

SVM, RF, or K-NN. The model’s parameters are 

optimized during training to achieve accurate and 

dependable results. 

Model evaluation: It is important to assess the 

performance and generalization capabilities of a ML 

model after it has been trained. This is done using a 

separate set of data that was not used during training, 

known as testing data. The model’s ability to 

distinguish between normal and anomalous activities 

is measured during this evaluation using metrics such 

as precision, recall, accuracy, and F1-score. This 

evaluation is crucial in determining whether the 

model is suitable for its intended purpose. 

Deployment and real-time monitoring: Once 

trained and evaluated, the ML model is deployed in 
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the intelligent secure decentralized model (Level 3). 

It continuously monitors real-time data from the IoT 

network. As new data arrives, the model predicts 

whether observed activity is normal or suspicious. 

 

Smart contract integration: The ML model’s 

decision function is integrated into SC, ensuring 

secure execution and governance. SC control access 

to the model, allowing only authorized entities to 

interact with it. 

Intrusion detection and alert generation: When the 

ML model detects anomalous or malicious behavior, 

it alerts system administrators or security personnel, 

enabling prompt action to mitigate potential threats.  

 

Advantages of the ML model and approach: 

Real-time detection: The ML model allows for real-

time threat detection and response, enabling quick 

action to prevent security breaches. 

Adaptability: ML models are well-suited for dynamic 

and ever-changing IoT environments due to their 

ability to adapt to evolving cyber threats and new 

attack patterns. 

Decentralization: Integrating the ML model into a 

decentralized BC network enhances system security 

and resilience to attacks. 

Transparency and accountability: The use of BC 

technology enhances transparency and accountability 

as all activities related to the model are recorded on 

the BC, providing a transparent audit trail. 

 

The integration of ML, BC technology, and SC 

provides the IDS with strong security features and 

effective threat detection capabilities in IoT systems. 

This makes it a dependable solution for safeguarding 

the security and authenticity of interconnected 

devices and applications. 

 

BC algorithm 

Algorithm 1: Smart contact algorithm 

 Input: model weights, model name 

 Output: model address 

1. Create a smart contract with two properties: 

o model weights 

o model name 

2. Define a constructor that takes the model weights and model name as input and stores the model weights 

and model name in the contract properties. 

3. Define a function getWeights() that returns the model weights. 

4. Define a function getName() that returns the model name. 

 

 

4.Results  
Intellig_block is a secure ML system that combines 

BC technology and ML. Its objective is to safeguard 

ML algorithms against IoT threats. To achieve this 

goal, intellig_block uses a collaborative ML 

paradigm that supports data collection and privacy 

breaches. In addition, it applies collaborative ML in a 

BC context to create a secure and reliable model 

against ML threats such as evasion and poisoning 

attacks. Finally, an intelligent block prototype model 

was created to test its effectiveness in real-world 

scenarios. 

 

AML attacks aim to deceive a ML model, resulting in 

incorrect decisions. There are two main types of 

AML attacks: poison attacks and evasion attacks. 

Poisoning attacks refer to the act of adding malicious 

data to a ML model’s training set. This harmful data 

can be intentionally designed to make the model 

biased against certain groups of individuals or result 

in incorrect decisions in specific situations.  

Evasion attacks, on the other hand, involve 

modifying legitimate data to cause it to be 

misclassified by a ML model. These changes can be 

very subtle and challenging for humans to detect.  

 

To test ML models against AML attacks, there are 

various approaches. One common method is to use 

artificial datasets that have been created to simulate 

AML attacks. Alternatively, real datasets that have 

been compromised by AML attacks can be 

employed.  

 

It is also essential to configure ML models in a way 

that makes them more resistant to AML attacks. This 

may involve using techniques like data 

normalization, data strengthening, and attribute 

selection. 

 

Test Scenario 1: A ML model can be manipulated by 

attackers who add malicious phishing emails to the 

model’s training set, causing it to classify phishing 

emails as legitimate. 
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Test Scenario 2: A ML model is used to detect 

financial fraud. The attacker modifies legitimate 

transactions so that they are misclassified by the 

model. The model will then be more likely not to 

detect financial fraud. 

 

Attack configuration 1: An ML model is utilized to 

categorize images of individuals. However, an 

attacker can manipulate the images in such a way that 

the model misclassifies them. This can lead to the 

model being more prone to misclassify people based 

on their race, gender, or age. 

 

Attack configuration 2: A ML model is used to 

translate languages. The attacker modifies the 

translations so that they are mistranslated by the 

model. The model will then be more likely to 

produce incorrect translations. 

 

The method used in the experiment relied on several 

underlying programs. We used Ganache and 

MetaMask tools to create a private Ethereum BC, 

which allowed us to test our Solidity contracts. 

  

To develop an intelligent contract, we simulated the 

BC using the Ethereum-based Remix integrated 

development environment and Solidity. We tested 

our hypothesis using TON_IoT [45], which is a 

collection of datasets for testing the fidelity and 

efficiency of various AI-based cybersecurity 

solutions. These datasets include IoT and IIoT device 

monitoring datasets, Windows 7 and 10 OS datasets, 

Ubuntu 14 and 18 TLS datasets, and congestion 

datasets. Because of their diverse sources, these 

datasets are known as “ToN_IoT.” They are used for 

intrusion detection, malware detection, advanced 

analytics and privacy preservation models.  

 

The data for the TON_IoT dataset was obtained from 

a realistic large-scale testing ground network that was 

created at the university of New South Wales 

Canberra cyber IoT lab. This network connected a 

range of virtualization and physical devices, hacking 

systems, cloud and fog platforms, and IoT devices, 

simulating the complexity and flexibility of IioT and 

Industry 4.0 networks.  

 

After the administrator calculates the hash of the ML 

methods, it is stored in a decentralized system. A 

classification approach was used to achieve the 

objectives of the study. Figure 6 shows the examples 

of BC-based logs. 

 

Our SC are implemented using a private BC called 

Ganache. This allows us to create Dapps and run 

tests. Ganache provides ten Ethereum accounts, each 

with a balance of 100 ether, along with a graphical 

user interface for tracking all network activity. 

 

Figures 7 to 9 illustrate the process of compiling and 

migrating SC to the Ganache BC. The cost of one file 

for this transaction, as shown in the result of the 

SVM migration, is 0.00050368 ethereum (ETH) 

(equivalent to £0.65 as of January 27, 2023). After 

transferring our smart contract, we will build a local 

virtual server containing the client-side application 

using the Truffle framework. To join our BC 

network, we need to connect to our MetaMask wallet.  

 

 
Figure 6 Journal of the Blocks created in a decentralized intelligent system 
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The Ethereum BC evaluates the proposed platform 

based on the cost incurred by SC. These costs are 

measured in units of gas required to complete 

transactions and perform smart contract tasks, which 

include both execution and transaction costs. 

Transaction costs refer to the fees for adding smart 

contract code to the Ethereum BC, which are limited 

by the size of the smart contract. The size of the 

contract is determined by the fundamental actions it 

performs. Execution costs, on the other hand, refer to 

the cost of storing global variables and invoking 

smart contract methods and are influenced by the 

calculations performed during transaction execution. 

To determine the gas charge for each transaction in 

our system Equation 3 has been used. 

Transaction Fee=Gas Used×Gas Price (3) 

 

Gas price refers to the amount of Gwei required for a 

transaction, while gas used represents the amount of 

gas consumed based on the amount stored and 

processed for each transaction. To illustrate, let’s take 

the add user method as an example, which allows for 

the assignment of roles and accounts to agents. In 

Figure 7, the gas used and gas price for this method 

are 84,275 and 20 Gwei, respectively. Therefore, 

Equation 4 can be formulated as: 
Transaction Fee=84,275×20=1,685,500  

Gwei= 0,00000000163 ETH   (4)    

             

According to the findings, the execution of k-NN and 

SVM transactions consumes a significant amount of 

gas, as shown in Figure 9. This indicates that these 

transactions involve a large amount of data and 

require a significant number of resources compared 

to other methods. Gas represents the amount of 

resources required to complete a transaction, and it 

incurs a cost. In Table 1, the total gas consumption 

was calculated by multiplying the gas used by the 

cost of gas. 

 

The information gathered has been summarized in 

Table 2, which shows the amount of feedback 

received related to the ML model and time spent on 

each transaction. The average time is the duration 

required to complete a funds transfer. It is noticeable 

that each feedback takes approximately the same 

amount of time. The data is presented in a tabular 

format for better understanding. In Figure 10, it is 

shown that the MD5 hash function is faster at 

calculating the speed of an ML model as compared to 

other functions. This is because it is simpler and has a 

128-bit size. However, it is also less secure when 

compared to SHA256 or SHA512. These two options 

are slower but more secure, making them suitable for 

high-security applications. The choice between them 

depends on the specific needs of the application. 

 
Figure 7 Registration smart contract deployed in Ganache 

 

 
Figure 8 Smart contract deployment 
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Figure 9 Gas consumption for respect ML model 

 

 
Figure 10 Secure hash function time velocity ML models 

 

When accessing the same service, the IoT may rate 

the same cloud server multiple times. The Ganache 

interface calculates the average transaction time in 

Table 3. The findings show that K-NN takes longer 

compared to other types of input. Figure 11 displays 

how the bindings were analyzed.  

 

Subsequently, we compared our framework’s results 

with those of a previous study using the same dataset. 

In intellig_block, MLP has an accuracy of 92.2%, 

while SVM has an accuracy of 98%. This comparison 

(Table 4) is based on some criteria deemed important 

such as BC-based, access control and security. 

 
Figure 11 Average ML model of time transaction/seconds 
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Table 2 Consumption of gas against the ML 

classifier 

ML classifier Gas fee Gas 

used 

Gas consumption 

SVM 0.00050 22308 10.616 

k-NN 0.00083 41506 34.449 

DT 0.00053 26506 14.048 

RF 0.00053 26506 14.048 

MLP 0.00047 25458 11.965 

LR 0.00053 47210 25.021 

NB 0.00053 22308 11.823 

 

Table 3 Time transaction ML algorithm 

ML classifier Times(s) 

SVM 0.47 

K-NN 0.83 

DT 0.53 

RF 0.53 

MLP 0.47 

LR 0.53 

NB 0.53 

 

Table 4 Comparison the proposed system with 

related work 

Parameter 

ID 

[18] [19] [20] [21] [22] Our 

system 

Pr1       

Pr2       

Pr3       

Pr4       

Pr5       
Pr 1:  BC-based; Pr 2:  Access Control-based; 
Pr 3:  Security; Pr 4:  Integrity; Pr 5:  Multi-agent sys 

X: Not supported; √:  supported. 

 

5.Discussion 
The proposed framework that merges BC with ML 

and deep learning has significant value in protecting 

IoT systems from cyber threats. By integrating BC 

with ML models, this framework can provide a 

higher level of security and trust in detecting system 

threats. This approach addresses the limitations of 

traditional security methods. The addition of a smart 

contract, which includes the hashing of ML models, 

further enhances the security of the classification 

technique. Decentralizing the classification technique 

in this way makes it less vulnerable to cyber threats. 

Additionally, by verifying the ML model through a 

smart contract before execution, this framework 

provides an additional layer of security. 

 

Finally, the integration of SC and access control 

helps ensure the security and privacy of the ML 

model. By limiting access to only authorize parties, 

the privacy and security of the ML model can be 

maintained. This approach can be particularly useful 

when implementing IDS. Validating the proposed 

approach, the fourth contribution presents 

experimental results that demonstrate the 

effectiveness of the proposed framework. The low 

execution time and gas consumed indicate that the 

framework is feasible for practical deployment. The 

experiments conducted to test the intellig_block 

framework revealed that it is highly efficient in 

detecting threats in IoT systems. The framework was 

able to effectively identify potential security breaches 

and intrusions with accuracy rates of 92.2% for MLP 

and 98% for SVM. By utilizing the power of ML 

algorithms and BC technology, intellig_block offers a 

robust solution to safeguard IoT systems against 

cyber threats.  

 

Collaborative ML in a BC context: The combination 

of collaborative ML and BC presents a novel solution 

to address data collection and privacy challenges in 

the IoT domain. The decentralized nature of BC 

ensures that data is securely shared and validated 

across the network, which helps to mitigate the risks 

of privacy breaches. With collaborative ML, 

participants can collectively contribute to the model’s 

training process without compromising the integrity 

of their data. This collaborative paradigm enhances 

trust among the participants and fosters a secure 

environment for sharing sensitive information. 

 

Enhanced security through SC: The intellig_block 

framework’s security is significantly enhanced by 

integrating ML model hashing as SC on the BC. SC 

are useful for verifying ML models before their 

execution, ensuring that only authorized and valid 

models are used for threat detection. The hashed 

representation of the ML models is stored on the BC, 

making it possible to detect any attempts at 

tampering or injecting malicious code into the 

models. As a result, the overall security and 

reliability of the framework is strengthened. 

 

Access control for ML security and privacy: 

Intellig_block incorporates access control 

mechanisms that provide an additional layer of 

security and privacy for the ML models. With access 

control, only authorized entities can access and 

execute the models, preventing unauthorized access 

to sensitive information and safeguarding the 

confidentiality of the models. By managing access 

rights carefully, the framework ensures that the threat 

detection process's integrity and accuracy is 

maintained, and potential insider threats are 

minimized. 
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Experimentation and validation of the framework: 

The intellig_block framework has been validated 

using the TON_IoT dataset, and experiments 

conducted on a private Ethereum network confirm its 

real-world efficacy. The framework has been 

subjected to practical scenarios, and the results 

demonstrate that it is feasible for deployment in real 

IoT environments. The low execution time and 

overhead, as well as the accuracy rates achieved, 

validate the practicality and efficiency of the 

intellig_block framework. These results position 

intellig_block as a promising solution to enhance the 

security and reliability of IoT-based IDS. 

 

Additionally, the comparison of the proposed method 

with an existing one in terms of accuracy, 

deployment, and execution overhead is significant. 

This comparison helps evaluate the effectiveness of 

the proposed framework and understand how it can 

be improved. By identifying the strengths and 

weaknesses of the proposed method in comparison to 

existing methods, researchers can refine and optimize 

the proposed approach further. Overall, the 

contributions of this paper can advance the field of 

IoT security by providing a novel framework that 

leverages the strengths of BC and ML to protect 

against cyber threats. While there may be limitations 

and challenges to the proposed approach, the 

contributions of this paper are significant and can 

guide future research in this area. A complete list of 

abbreviations is shown in Appendix I. 

 
Limitation 

While the proposed framework has several strengths 

and contributions, there are also some limitations and 

potential challenges that should be considered. Some 

potential limitations of the proposed framework 

include: 

 Scalability: The scalability of the proposed 

framework may be restricted due to the significant 

computational and storage demands of BC. As 

more participants and transactions join the 

network, the overhead costs of maintaining the BC 

network may become too expensive. 

 Security risks: While the use of BC can certainly 

enhance the security of ML models, it is still not 

completely invulnerable to attacks. The distributed 

nature of the BC network makes it challenging to 

identify and counteract any malicious attacks. 

Additionally, the incorporation of additional layers 

into the system, such as SC and access control, can 

introduce new security vulnerabilities that need to 

be addressed. 

 Data privacy: The proposed framework may not 

provide sufficient data privacy guarantees, as 

sensitive data may be exposed to unauthorized 

parties during the execution of the SC. This issue 

may be particularly problematic in applications 

where data confidentiality is critical. 

 Integration complexity: Integrating ML models 

with BC and SC can be a challenging task, which 

may require considerable development effort. This 

complexity can result in higher deployment and 

maintenance costs for the proposed framework, 

making it less appealing to organizations with 

limited resources. 

 Evaluation and benchmarking: While the 

proposed framework is effective through 

experimental results, it's important to conduct a 

more comprehensive evaluation and benchmarking 

to validate the proposed approach's scalability and 

efficiency compared to existing methods.  

 

6.Conclusion and future work 
The purpose of this paper is to introduce a 

trustworthy service provisioning method based on 

BC to detect assaults on ML algorithms. The same 

principle can be used to satisfy an organization's 

demand for data security, where a private BC 

requires authentication from multiple senior 

authorities before reaching an agreement. Verifying 

the various general agreements for the ML model, 

considering processing speed and time, are all 

important considerations for the development and 

exploration of data blocks that might be a crucial 

analysis. Solidity program code was used to create 

SC and execute them on the Ethereum network. The 

results of our simulations show that our system 

model can help protect IoT devices from malicious 

ML assaults. In future work, we plan to conduct an 

intellig_block evaluation trial with a case study to 

detect an attack and prove its feasibility and 

compatibility in IoT. 
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Appendix I 
S. No. Abbreviation Description 

1 AI Artificial Intelligence 

2 AML Adversarial Machine Learning 

3 BC Blockchain 

4 DPoS Delegated Proof of Stake 

5 DT Decision Tree 

6 E-health Electronic Health 

7 FL Federated Learning 

8 IDS Intrusion Detection System 

9 IoT Internet of Things 

10 IIoT Industrial Internet of Things 

11 k-NN k-Nearest Neighbors 

12 LR Logistic Regression 

13 ML Machine Learning 

14 MLP Multi-layer Perceptron 

15 N/A Not Applicable 

16 NB Naive Bayes 

17 NID Network Intrusion Detection 

18 PoA Proof of Authority 

19 PoS Proof of Stake 

20 PoW Proof of Work 

21 RF Random Forest 

22 RL Reinforcement Learning 

23 SC Smart Contracts 

24 SVM Support Vector Machine 

 

 


