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1.Introduction 
Reinforced concrete (RC) framed structures are the 

most commonly used structure framework 

worldwide. Thus, design optimization of RC frames 

[1] is necessary to achieve sustainability by reducing 

cost and carbon emissions.  Optimization assists in 

creating the most cost-effective design [2] while 

maintaining structural integrity and safety. 

Construction expenses can be decreased and cost 

efficiency [3] can be improved by determining the 

most appropriate section sizes and reinforcing 

schemes. Improved structural performance is the 

result of optimized designs [4], which ensure that the 

frame can sustain the prescribed loads and retain 

stability throughout its service life. This can result in 

a more sturdy and long-lasting construction [5].  

 

 
*Author for correspondence 

The quantity of concrete and reinforcement steel 

required can be lowered by using an optimized 

design. This conserves natural resources and 

contributes to a more sustainable building approach 

to material conservation [6]. An optimized design can 

frequently result in streamlined construction 

procedures [7] and shorter construction times. The 

whole construction schedule can be improved with 

thoughtful design decisions. An optimized structure 

is safer and more dependable since it takes into 

account different load combinations, safety 

considerations, and structural needs [8]. This is 

especially important for constructions like buildings, 

where occupant safety is of utmost importance. The 

ability of the structure to survive extreme 

occurrences, such as earthquakes, may be improved 

with an optimized design [9] or wind loads, 

contributing to its total resilience. During the design 

and construction phases, optimized designs are 
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frequently more adaptive and flexible to various 

architectural layouts and changing needs [10]. Design 

optimization helps create a physical environment that 

is more sustainable by reducing the amount of 

materials and energy used during construction [11]. 

Regulatory compliance is ensured by an optimized 

design that guarantees the building complies with or 

exceeds applicable building rules and standards [12]. 

Engineers are encouraged by optimization to 

investigate novel and creative design techniques that 

might not be visible in conventional methods [13]. 

This may result in improvements to engineering 

methods and building technologies. Finally, design 

optimization is essential for assuring efficiency [14], 

safety [15], and sustainability of RC frames [16]. It 

integrates engineering concepts, economic concerns, 

and environmental considerations to produce high-

performance structures that satisfy societal objectives 

while having the least negative environmental effect 

possible. 

 

There is a huge database on design optimization of 

RC frames using linear and metaheuristic methods 

yet effective optimum results are still far from being 

implemented in practical designs. During the detailed 

design stage, individual RC frame members such as 

beams, columns, footings, slabs, and shear walls, as 

well as full RC frame structures, are optimized for 

various objective functions. Recently, there has been 

attention drawn to the cost parameter alongside 

efforts to optimize material usage and environmental 

performance in RC structures [17–19]. The primary 

focus of the optimization has always been the 

minimization of the overall cost of the RC frame 

structure [20, 21]. The popularity and need for design 

optimization of RC frame structures have led to many 

review articles. Discussed the evolution of design 

variables and objective functions in the design 

optimization of RC frame structure over the years 

[22]. Evaluated and contrasted different design 

formulations for structural optimization frameworks, 

enhancing seismic design efficiencies [23]. The 

comprehensive study on various metaheuristic 

algorithms and emerging artificial intelligence 

techniques in civil engineering was discussed by [24, 

25] respectively. Furthermore, [26, 27] provided the 

details of the design optimization works in embodied 

carbon and overall RC structure respectively. Several 

techniques have been employed to achieve the 

optimal solutions for various objective functions. 

Iterative processes are usually used in traditional 

design optimization approaches for RC frames, where 

the design variables are modified to satisfy specified 

objectives and restrictions [28]. These techniques 

have been utilized often for many years and are still 

not commonly employed in engineering practice [29]. 

Each of these conventional optimization techniques 

has advantages and disadvantages. The problem's 

complexity, the kind of design variables and 

constraints, and the available computer resources all 

influence the solution that is chosen [30, 31]. The 

exponential increase in design parameters with an 

increase in the complexity of RC framed structures 

makes it computationally tough and impractical to 

use heuristic optimization techniques every time for 

new problems [27]. The optimization tactics have 

proven to be beneficial, but their limited 

constructability has resulted in very little 

implementation in practical design [32]. 

 

In recent times, there has been a tremendous 

explosion of design variables and objective functions 

which has resulted in the enormous size of solution 

space making metaheuristic optimization techniques 

cumbersome and slow. For more effective and 

reliable design optimization of RC frames, 

contemporary metaheuristic, and ML-based 

optimization algorithms frequently supplement these 

conventional methods as computing tools progress 

[33]. The only review paper on the application of ML 

in the design of building structures [34] mainly 

focused on the performance and behaviour aspects.  

The application of ML techniques in optimizing the 

design of RC frames has gained significant attention 

in the civil engineering domain.  ML techniques 

coupled with optimization algorithms can be very 

effective in delivering practical and robust results for 

RC design optimization problems.  Prediction models 

for the improvement of RC frames are developed 

using ML techniques. To provide optimized frame 

designs that satisfy safety and cost criteria, these 

models make extensive use of datasets providing 

details on material qualities, load circumstances, and 

design limitations. The use of ML expands the 

capabilities of conventional approaches by allowing 

the exploration of complicated design areas and the 

quick creation of solutions. Figure 1 summarises the 

key elements to take into account when designing RC 

frames. However, integrating ML into the design 

optimization process presents various challenges and 

considerations that must be addressed to realize its 

full potential. These challenges include: 

 Data quality and quantity: Obtaining a high-

quality and sufficient quantity of data for training 

ML models can be challenging in the civil 

engineering domain. Incomplete or inaccurate 

datasets may lead to suboptimal model 

performance. 
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 Interpretability of ML models: ML models, 

especially complex ones, are often considered 

"black boxes," making it challenging to 

understand why a particular design is optimal or 

suboptimal. 

 Integration with engineering standards: ML 

models need to align with established 

engineering standards and codes to ensure that 

the resulting designs adhere to safety and 

regulatory requirements. 

 Ethical considerations: ML models may 

perpetuate biases present in the training data, 

leading to unfair or discriminatory outcomes. 

Lack of transparency in decision-making poses 

ethical challenges and raises concerns about 

model reliability and trustworthiness. 

 Computational complexity: Some ML models, 

especially complex ones, can be computationally 

demanding, hindering practical implementation 

in real-world design scenarios. 

 Validation and verification: Ensuring that ML-

driven design optimizations are theoretically 

sound and practically applicable requires 

rigorous validation against existing designs and 

engineering principles. 

 Human-AI collaboration: Achieving effective 

collaboration between structural engineers and 

ML models requires overcoming differences in 

language, objectives, and understanding. 

 
Figure 1 Essential element of RC frame design optimization 

 

With the current popularity and advantages of ML 

algorithms in the design optimization of RC frame 

structure, there is a need to understand the current 

trends and developments in ML-based design 

optimization of RC frames. Questions regarding the 

main challenges and considerations associated with 

integrating ML techniques with metaheuristic 

algorithms remain unanswered. The presented work 

aims to bridge the gap by providing a comprehensive 

study on ML application in the design optimization 

of RC frame structure. In order to achieve the same, 

the objective of this study is to outline the current 

trends and developments in ML-based design 

optimization of RC frame structure along with the 

main challenges and considerations associated with 

integrating ML into metaheuristic algorithms. To 

achieve the intended goal, the presented work 

critically evaluates the current literature on the use of 
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ML in the design optimization of RC structures while 

other applications such as structural health 

monitoring and collapse progression have not been 

considered. To obtain available literature from 

databases using keywords, a step-by-step holistic 

technique was used, and then selected articles were 

sorted into research themes. These study themes 

include existing research to provide more thorough 

insights into the current state of research, relevant 

research areas for future studies, and predicted future 

research orientations. Theses and reports were not 

considered in this study as many were not peer-

reviewed. This publication also presents a relatively 

full picture of the available related research that has 

been done thus far, as well as the research that is 

currently being conducted with all the problems 

being encountered during work. The work is such 

organized that it describes the complete methodology 

for the literature review along with the trends of 

timeline, type of paper, and geographical locations.  

The systematic review process involved several steps, 

including: 

 Identification of relevant databases and search 

terms related to ML-based optimization of RC 

frame designs. 

 Screening of articles based on inclusion and 

exclusion criteria. 

 Thorough reading and analysis of selected articles 

to extract key insights and findings. 

 Synthesis of results to identify trends, challenges, 

and future research directions. 

 

Figure 2 demonstrates the methodical step-by-step 

strategy for retrieving literature from digital 

databases, categorization, and statistical analysis. The 

approach for retrieving literature is built on the 

application of ML in the design optimization of RC 

frames. The major literature databases like Google 

Scholar and Scopus were searched. More than 500 

articles were acquired after the search and the 

keywords combinations used for the search for the 

published articles included “ML”, “machine 

learning”, “deep learning”, “neural network”, “AI”, 

“RC”, “design”, “optimization”, “optimal”, 

“minimization”, “optimal”, and “RC frame”, which 

are found to be adequate to cover the majority of 

articles within this field." 

 

The research articles were thoroughly read and 

analyzed, and content analysis was performed on the 

retrieved works as per the inclusion and exclusion 

criteria shown in Table 1. A total of 87 articles were 

found to be with the theme of the current work and 

were divided into distinct categories based on study 

objectives for further analysis. Additionally, the ML 

models are informed by the results of the bibliometric 

study, guaranteeing that the optimization procedure is 

influenced by the most recent and pertinent research 

trends. 

 
Figure 2 Literature retrieval framework 
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Table 1 Inclusion and exclusion criteria 

Criteria Inclusion Exclusion 

Publication period Studies published since 1997 Studies published before 1997 

Application focus Studies with a primary focus on RC frames 
Studies on other structural materials or 

elements 

Language English-language publications Publications in languages other than English 

Relevance to ML applications 

Studies demonstrating practical 

applications of ML in structural design 

optimization 

Studies only discuss theoretical concepts 

without practical implementation 

Data quality 
Studies with a clear description of data 

sources and considerations for data quality 

Studies lacking transparency in data sources 

or data quality considerations 

 

2.Literature review and analysis 
With a total of 87 published articles on the 

application of ML in the design optimization of RC 

frames, there has been a significant increase in the 

number of articles over the last few decades, from 1 

publication in 1997 to 19 publications in 2023. Based 

on this trend, it can be inferred that the number of 

publications is likely to continue increasing in the 

future due to the growing interest in thorough design 

optimization and ML, incorporating various 

multidisciplinary elements, among both academics 

and industry professionals. The data regarding year-

wise publications from 1997 to 2023 related to ML 

and the RC frame are depicted in Figure 3.

 

 
Figure 3 Year-wise publication trends related to ML and RC frames 

 

Out of the total 87 documents, 78 were identified as 

journal papers, 5 as conference papers, 3 as 

conference review papers, and 1 as a data paper. The 

complete picture of the type of paper is depicted in 

Figure 4. The amount of paper related to ML in the 

design optimization of the RC frame was maximum 

from China followed by the United States of 

America. The design guidelines coupled with ML are 

largely available for only these two countries while 

others are lagging in generating data for ML 

optimization. Though, 7 papers are available for 

Indian guidelines, yet full-fledged work on the design 

optimization of RC frames is missing. The complete 

detail of country-wise publication is presented in 

Figure 5. The lack of publications on the subject of 

ML and RC frames may be related to various 

multidisciplinary difficulties, resource limitations, 

data accessibility concerns, and the intrinsic 

complexity of structural engineering problems. Even 

though these challenges could have slowed down 

research and publishing in this area, it's crucial to 

remember that the subject is continuously 

developing. 

 

Data visualization was conducted by utilizing 

VoSviewer bibliometric analysis software version 

1.6.16. It is a well-acclaimed bibliometric analysis 

and visualization tool [35]. It builds overlay, density, 

and density visualization, co-occurrence maps, 

citation maps, and cluster analyses. Furthermore, the 

bibliometric study used in the current study utilizes 

overlay visualization methods from the 

LinLog/modularity framework to map the dynamic 

research environment for ML in RC frame design. It 
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demonstrates a rise in research production, 

highlighting the growing importance of ML in this 

area. The study also finds significant research 

collaborations and clusters, illuminating new trends 

and significant players. Numerous advantages come 

from using the LinLog/modularity function of 

VOSviewer for bibliometric analysis, including the 

ability to identify research communities, enhance 

literature reviews, better visualize complex networks, 

gain interdisciplinary insights, use quantitative 

metrics, and track changes over time. Researchers 

from a range of fields may utilize this feature to get 

valuable insights into the dynamics and structure of 

the scientific literature, which will enable them to 

conduct studies that are successful and more 

effective. 

 

 
Figure 4 Doughnut representation of published documents on the topic of ML and RC frames 

 

 
Figure 5 Country/territorial depiction of the publication on the topic of ML and RC frames 
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Comprehensively assessing the 87 retrieved 

documents, a total of 621 keywords were found.  The 

minimum number of co-occurrences of a keyword 

was taken as 5. Out of the 621 keywords, only 26 met 

the threshold. Two keywords were excluded because 

of repetitions leaving 24 keywords. The clusters were 

formed as cluster 1 (14 items) and cluster 2 (10 

items). The depiction of overlay visualization by 

LinLog/modularity analysis of keywords co-

occurrence on the topic of ML and RC frames is 

shown in Figure 6. Thus, unlocking the full potential 

of this multidisciplinary topic will depend on 

addressing the difficulties and encouraging 

cooperation between specialists in ML and civil 

engineering. It is expected that we will witness a 

sharp rise in publications and research projects in the 

fields of ML and RC frames over time as more data 

become accessible, computational capabilities 

advance, and interdisciplinary bridges are 

constructed. The top ten authors’ details on the topic 

of ML and RC frames retrieved from the bibliometric 

analysis are depicted in Figure 7. 

 

 
Figure 6 Overlay visualization by LinLog/modularity Analysis of keywords co-occurrence on the topic of ML and 

RC frames 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Top ten documents by authors published on the topic of ML and RC frames
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The analysis of the retrieved papers by numerous 

engineering disciplines has found a use for ML, 

including the design optimization of RC frames. The 

following are some examples of how ML is used to 

improve the design process: 

 Material characterization: Algorithms for ML can 

be used to examine the characteristics of 

reinforcing materials and concrete. This makes it 

possible for engineers to create precise material 

models, which are necessary for carrying out 

simulations and optimizations [6]. 

 Design exploration: By creating and analyzing 

various RC frame configurations, ML algorithms 

may effectively investigate a large variety of 

design alternatives. This can assist in locating the 

best designs that satisfy particular performance 

goals and limits [36]. 

 Optimization algorithms: The RC frame's design 

parameters may be automatically optimized using 

ML approaches such as genetic algorithms (GA), 

particle swarm optimization (PSO), or 

reinforcement learning (RL) [37]. Until an ideal 

solution is found, these algorithms iteratively 

improve the design based on performance 

feedback. 

 Sensitivity analysis: Engineers can use ML to do 

sensitivity assessments to determine how changes 

to various factors influence the functioning of the 

structure [38]. This aids in locating crucial design 

elements and comprehending how they affect the 

final product. 

 Predictive modelling: Under various loads and 

environmental circumstances, RC frame 

performance and behaviour may be predicted 

using ML algorithms. The viability and 

dependability of design choices are assessed with 

the aid of these prediction models [39]. 

 Structural health monitoring: Sensors and ML 

algorithms may be combined to track the 

performance and well-being of RC structures 

throughout their useful lives. For condition-based 

maintenance and performance optimization, this 

real-time monitoring delivers useful data [40]. 

 Design code compliance: Engineers may benefit 

from ML by ensuring that their designs adhere to 

all applicable construction rules and standards. It 

may evaluate the design and compare it to the 

relevant rules, lowering the possibility of mistakes 

and omissions [41].  

 Uncertainty quantification: ML may be used to 

quantify uncertainties [42]  in design parameters 

and material characteristics, enabling probabilistic 

design optimization that takes into account 

changes in real-world situations. 

 Data-driven design decisions: Large datasets from 

previous projects may be analyzed using machine-

learning techniques to uncover patterns and 

insights [43]. This data-driven method helps with 

decision-making during the design process, 

resulting in more dependable and efficient designs. 

 

Design collaboration and knowledge sharing: ML 

technologies can make it easier for design teams to 

collaborate by offering a common forum for 

exchanging information, design thoughts, and lessons 

from previous projects [44]. Depending on the 

optimization case, a variety of ML techniques is used 

in the optimization of RC frames, each with unique 

benefits. The various significant metaheuristic 

techniques that are being used in collaboration with 

ML approaches in the available literature are 

described in Table 2 where the characteristics 

describe the advantages of the associated technique. 

 

Table 2 Algorithms for optimizing the design of RC frames 

S. No. ML algorithms Characteristics References 

1.  Trial-and-Error Method 

 
 Engineers manually modify design parameters, such as 

section dimensions, reinforcement ratios, and member 

sizes, and then assess the performance of the frame 

using structural analysis software. This approach is an 

easy optimization technique. 

 The procedure is repeated until a workable resolution is 

found. 

[45] 

2.  LP  

 
 LP is a mathematical optimization approach to 

determine the best solution for linear objective 

functions subject to linear inequality constraints. 

 It may be used to optimize design variables under linear 

constraints, such as stress limitations, deflection 

restrictions, and material availability, in the context of 

RC frames. 

[46] 

[47] 

[48] 

3.  Non-linear programming  NLP encompasses LP to handle non-linear objective [49]  
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S. No. ML algorithms Characteristics References 

(NLP)  

 

functions and constraints.  

 It is appropriate for more difficult design issues 

involving nonlinear structural behaviour or material 

characteristics, which are frequently present in RC 

frames. 

4.  GA  GA is a population-based optimization method that uses 

heuristic search techniques and is motivated by genetics 

and natural selection.  

 Through selection, crossover, and mutation procedures, 

they produce a population of candidate solutions and 

iteratively develop them. 

 GA has been successfully used to optimize design 

variables in RC frames. 

 GA is particularly effective for exploring a large design 

space to find global optima.  

 It is suitable for optimization scenarios where the 

design space is discrete or continuous and contains 

multiple local optima. 

[50] 

[51] 

[52] 

[53] 

[54] 

[55] 

5.  Gradient-based 

optimization 

 

 Gradient-based optimization techniques employ the 

gradient of the objective function to iteratively locate 

the local optimum. Examples include the steepest 

descent method and the quasi-Newton method.  

 These techniques call for the computation of gradients, 

which for intricate structural models can be 

computationally demanding. 

[1] 

[56] 

[57] 

6.  Response surface 

methodology (RSM) 

 

 RSM entails creating a mathematical model (called a 

response surface) that roughly represents the association 

between the design factors and the goal function. 

 Once the reaction surface has been created, the best 

design may be quickly found using it. 

[37] 

7.  Sequential linear 

programming (SLP) 

 

 SLP is an iterative optimization technique that 

approximates the objective function while linearizing 

the nonlinear constraints. 

 The best answer is then obtained by solving a series of 

LP issues. 

[58] 

8.  Active set method 

 
 The active set technique is a specialized optimization 

algorithm used for problems with inequality constraints. 

 It finds active constraints (those that are fulfilled with 

equality) and iteratively updates the design variables to 

meet the active requirements until convergence.  

[59] 

9.  PSO  A swarm of particles, each of which represents a 

potential solution, is maintained using PSO, an 

optimization approach that draws inspiration from the 

social behaviour of fish schooling and birds flocking. 

 When the design variables are continuous and the 

objective function is reasonably smooth, PSO is ideally 

suited for continuous optimization problems with 

smooth and convex objective functions.  

 It can effectively discover the best solutions in the 

design of RC frames. 

[60] 

[61]  

[62] 

[63] 

10.  Modified genetic 

programming (GP) 

 

 GP represents solutions as tree structures rather than as 

fixed-length vectors.  

 In optimization situations where the design variables 

are hierarchical or have complicated interactions, GP 

might be useful. It can manage issues with layered or 

hierarchical design and record interactions between 

variables.  

[64] 

[65] 

[66] 

11.  Surrogate Models  Surrogate models are ML models that approximate the [67] 



Syed Aqeel Ahmad et al. 

446 

 

S. No. ML algorithms Characteristics References 

(Gaussian Processes, neural 

networks, etc.) 

 

behaviour of complex and computationally expensive 

simulations. 

 Surrogate models greatly minimize the number of 

structural studies necessary throughout the optimization 

process, making it more computationally efficient and 

suited when the structural analysis is computationally 

demanding and time-consuming. 

[68]  

[69]  

12.  RL 

 
 It is a type of ML where an agent learns to make 

decisions by interacting with an environment and 

receiving feedback in the form of rewards. 

 It can be applied to optimize RC frames in scenarios 

where the optimal solution is not well-defined or when 

the environment is uncertain.  

[70] 

[71] 

[10] 

13.  Evolutionary strategies 

(ES):  

 

 Based on the fitness of the solutions, ES updates the 

model parameters and generates new solutions using a 

probabilistic model.  

 ES works well for optimization issues involving 

stochastic objective functions and continuous design 

variables.  

 It is useful for the optimization of RC frames with 

unclear material qualities or loads because it can handle 

noisy or uncertain objective functions with efficiency. 

[72]  

[73]  

[71] 

14.  Simulated annealing (SA)  

 
 SA is a probabilistic optimization method that draws 

inspiration from the metallurgical annealing procedure. 

 By accepting less-than-optimal answers with a 

gradually diminishing probability, it enables the 

algorithm to escape local maxima. 

 When the design space is extremely non-convex and the 

objective function landscape is rough and has a large 

number of local optima, SA is appropriate for 

optimization scenarios. 

[74]  

[75] 

 

The nature of the design variables, the complexity of 

the objective function and constraints, the available 

computer resources, and the degree of problem 

uncertainty; all play an important role in determining 

which metaheuristic technique should be used in 

collaboration with ML. The GA and PSO are the 

most used metaheuristic techniques followed by LP 

and NLP. GA and PSO are the earliest space search 

methods to solve space search problems. Even 

though they are frequently used techniques, GA 

suffers from premature convergence, parameter 

sensitivity, and limited constraint handling; and PSO 

suffers from limited global exploration, poor 

convergence speed, and lack of adaptability.  SA 

algorithm is found to be very slow but guarantees the 

best solution for the objective function. The 

capability of SA techniques to overcome local 

minima-maxima while accepting the poor solution 

makes it an exceptional algorithm for optimization. 

There has been a constant flow of newly developed 

metaheuristic methods, which are still to be tested for 

the design optimization of RC frame structures. 

Furthermore, hybrid strategies that integrate several 

ML algorithms or combine ML with conventional 

optimization techniques can be successful in solving 

challenging optimization issues involving RC frames. 

The latest trend in the field of ML and RC frame 

optimization is shown in Figure 8.  Integrating 

physics-based constraints into ML models seeks to 

combine the strengths of physics-based models with 

the data-driven capabilities of ML, enhancing the 

accuracy and reliability of design optimizations [76]. 

Placing a greater emphasis on incorporating user 

preferences, stakeholder input, and human-centric 

factors in the design optimization process. This is 

being achieved by using an artificial neural network 

(ANN) [77, 78].  ML models are being designed to 

consider not only engineering constraints but also 

human-centric aspects. Addressing multiple 

conflicting objectives simultaneously in the design 

optimization process. ML models are being employed 

to navigate complex, multi-dimensional design 

spaces and identify trade-offs between different 

performance criteria. Continued emphasis on making 

ML models more explainable and interpretable. This 

trend ensures that engineers and stakeholders can 

understand the reasoning behind design 

recommendations, promoting trust and adoption. 
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Meta-heuristic algorithms are the past of artificial 

intelligence, but when coupled with ML can lead to 

simple but effective results [10]. 

 

 
Figure 8 Latest ML Techniques being used in the 

optimization of RC Frame 

 

The restrictions and elements that must be taken into 

account while developing and optimizing a concrete 

building frame are referred to as constraints in RC 

frame optimization [79]. These limitations cover a 

wide range of topics, such as structural specifications 

[80], material qualities [81], adherence to building 

standards [82], economic variables [83], aesthetics 

[84], safety [85], environmental considerations [86], 

and geotechnical elements [65]. A cost-effective and 

structurally sound design that satisfies project 

objectives and regulatory requirements must strike a 

balance between these restrictions. To work around 

these limitations and create the best concrete frame 

design that meets performance, safety, and efficiency 

standards, engineers employ specialized software and 

optimization techniques. Therefore, the optimization 

of RC frames in civil engineering depends critically 

on constraints [87]. These limitations aid in ensuring 

that the proposed structures adhere to particular 

standards for performance, safety, and use. RC frame 

optimization aims to provide safe, effective, and 

sustainable designs that fulfill particular project 

needs and abide by industry norms and regulations by 

properly identifying goal functions and limitations 

[69]. Finding the most effective and compatible 

design solution for RC frames in civil engineering 

projects involves balancing these limitations, which 

is a challenging process that frequently calls for the 

application of optimization techniques, including ML 

[88]. To produce a successful and useful design, 

engineers must carefully take these restrictions into 

account and manage them throughout the design 

process. The main restrictions are getting every 

constraint into the objective function that affects the 

optimization of RC frames are shown in Figure 9. 

 

3.Discussion  
The design of RC frames may be optimized by taking 

into account objective functions and limitations. For 

effectively managing complicated design constraints 

including structural stability, financial effectiveness, 

and environmental sustainability [35], ML offers a 

flexible framework. This study examines multiple 

ML-based optimization strategies and how well they 

may change with the goals of a design, giving 

engineers effective tools for producing the best 

possible frame designs. The target functions and 

constraints in RC frame optimization are essential for 

establishing the design goals [10] and assuring the 

frame's structural integrity, safety [89], and 

sustainability [90]. Following are a few typical goal 

functions and restrictions applied in this 

circumstance: 

 Minimization of material usage: Minimising 

overall material consumption while meeting 

structural performance standards is one of the key 

goals of optimizing RC frames  [91]. Lowering the 

quantity of concrete and reinforcing steel needed, 

can result in more affordable designs.  

 Maximization of structural performance: The goal 

is to maximize the frame's structural performance 

while taking factors like load-carrying capacity, 

stiffness, and serviceability constraints into 

account. This guarantees that the frame can 

support the imposed loads and function at its peak 

during its service life [92]. 

 Optimization of durability and service life: The 

goal is to increase the RC frame's toughness and 

service life by taking things like corrosion 

prevention into account [93], crack control [94], 

and suitable cover thickness [59]. 

 Sustainability and environmental impact: The goal 

is to include sustainability factors in the 

optimization process to minimize the structure's 

overall environmental effect [95]. This may entail 

reducing waste production [35], energy use, and 

carbon emissions [96]. 

 Cost-effectiveness: To create an economically 

feasible design, it is necessary to strike a balance 

between material utilization [97], building costs, 

and ongoing maintenance costs [98].  
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 Multi-objective optimization: Sometimes, 

competing goals are taken into account at the same 

time. For example, minimal material use while 

maximizing structural performance [99]. Engineers 

can select the best design solution by using multi-

objective optimization to determine the Pareto 

front [55], which represents trade-offs between 

several objectives.  

 

 
Figure 9 Constraints in RC frame optimization 

 

The use of ML to optimize the design of RC frames 

is a viable path for increasing efficiency and 

performance. The ML model's accuracy is an 

important parameter that is calculated by averaging 

the accuracy values across the test datasets. The 

common metrics used to evaluate models are 

coefficient of determination (R), root mean squared 

error (RMSE), mean absolute error (MAE), standard 

deviation (SD), and mean squared error (MSE). Some 

of the ML techniques used in collaboration with other 

optimization techniques are presented in Table 3. 

 

Table 3 Summary of ML techniques in collaboration with other algorithms 

Work ML Technique 
Optimization 

algorithm 
Structure type Objective 

ML performance 

metric 

[100] ANN PSO RC Frame 
Material 

minimization 
R 

[101] 

Linear regression, 

Decision tree regression, 

Elastic net regression, 

K-neighbor regression, 

Support vector regression, 

Random Forest regression, 

Gradient boosting regression, 

and Stacking models 

Harmony Search RC Column 

Carbon dioxide 

emission 

minimization 

R, RMSE, MAE, 

and MSE 

[102] ANN 

Generalized 

Reduced 

Gradient (GRG) 

RC Beam Cost minimization --- 

Constraints in reinforced 
concrete frame optimization 

Structural 
Constraints 

Material 
Constraints 

Code 
Compliance 

Economic 
Constraints 

Aesthetic and 
Functional 
Constraints 

Safety 
Constraints 

Environ-
mental 

Constraints 

Geo-technical 
Constraints 
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Work ML Technique 
Optimization 

algorithm 
Structure type Objective 

ML performance 

metric 

[37] ANN 
Evolutionary 

algorithms 
RC Frame Cost minimization R 

[103] 
Shapley Additive 

exPlanations (SHAP) 
Harmony Search RC Column Cost minimization 

R, MAE, and 

RMSE 

[104] Deep Learning 
Heuristic 

algorithm 
RC slab 

Cost and Carbon 

dioxide emission 

minimization 

RMSE 

[71] RL Bat algorithm RC Beam 
Weight 

minimization 
SD 

[69] ANN GA RC Frame Cost minimization --- 

[105] ANN GA RC Footing Cost minimization RMSE 

[106] ANN GA RC Beam Cost minimization RMSE 

[107] ANN GA RC Beam Cost minimization --- 

[108] ANN Harmony search RC Column Cost minimization RMSE, and MAE 

[109] ANN 
Heuristic 

algorithm 
RC Frame Cost minimization RMSE 

[110] Deep learning 
Heuristic 

algorithm 
RC Column 

Carbon dioxide 

emission 

minimization 

SD 

 

Among the various ML techniques suitable for 

integration with meta-heuristic algorithms, ANN 

stand out as one of the most accurate and widely used 

approaches. ANNs offer the capability to model 

complex nonlinear relationships and capture intricate 

patterns within the optimization problem space. 

When combined with meta-heuristic algorithms such 

as GA, PSO, or SA, ANNs can effectively guide the 

search process toward optimal or near-optimal 

solutions for RC frame structures. The only problem 

associated with ANN is that the process of 

optimization remains a “black box” for the users. 

Among the meta-heuristic techniques, the GA has 

been used most in combination with any ML 

techniques and new meta-heuristic technique 

collaboration is still missing. A diverse set of 

techniques exist for optimizing the design of RC 

frames using ML algorithms. Depending on the 

specific requirements of the optimization problem, 

engineers can choose the most appropriate approach 

or combine multiple approaches to achieve the 

desired design objectives efficiently and effectively. 

The values of R, RMSE, and SD are important 

matrices to measure the performance of the ML 

technique and together present a complete picture of 

the effectiveness of the applied algorithm. The 

significant performances of the various ML 

approaches for RC frame design can be evaluated 

based on several criteria such as efficiency, accuracy, 

robustness, scalability, and ease of implementation. A 

Likert chart representation of the performance and 

applicability of ML techniques in the design 

optimization of RC frame structure is presented in 

Table 4. 

 

Table 4 Likert Chart for ML approaches for RC frame design optimization 

ML Technique Efficiency Accuracy Robustness Scalability Ease of 

implementation 

Remarks 

Deep learning 

with ANN 

High High Medium to 

High 

High Medium to Low Requires large datasets, 

computational resources, 

and expertise 

Surrogate 

models 

Medium to 

High 

Medium to 

High 

Medium to 

High 

Medium to 

High 

Medium to High Useful for approximating 

complex models, 

interpretable results 

RL Medium to 

High 

Medium to 

High 

Low to 

Medium 

Medium to 

High 

Medium to Low Suitable for sequential 

decision-making tasks 

Q-learning Medium to 

High 

Medium to 

High 

Low to 

Medium 

Medium to 

High 

Medium to Low Basis of many RL 

algorithms 

Linear 

regression 

Low to 

Medium 

Low to 

Medium 

Low to 

Medium 

High High Simple, interpretable, 

suitable for linear 

relationships 

Support vector Medium to Medium to Medium to Medium to Medium to High Effective in high-
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ML Technique Efficiency Accuracy Robustness Scalability Ease of 

implementation 

Remarks 

machines High High High High dimensional spaces, can 

handle complex data 

K-nearest 

neighbor 

regression 

Low to 

Medium 

Medium to 

High 

Low to 

Medium 

Low to 

Medium 

High Simple, instance-based, 

sensitive to noise 

Decision tree 

regression 

Medium to 

High 

Medium to 

High 

Medium to 

High 

Medium to 

High 

Medium to High Easily interpretable, prone 

to overfitting 

Random forest 

regression 

High High High High Medium to High Reduces overfitting, 

handles high-dimensional 

data well 

 

However, ML techniques are not without difficulties. 

The complicated nature of structural engineering, 

along with the necessity for accurate and dependable 

forecasts, makes integrating ML models problematic. 

Addressing these issues necessitates a multifaceted 

strategy that includes enhanced data quality, rigorous 

model validation approaches, and a thorough 

understanding of structural behaviour. To tackle these 

challenges, structural engineers, data scientists, and 

ML experts must work together. The mitigation of 

obstacles will pave the way for more resilient, cost-

effective, and sustainable design solutions in the 

arena of RC frames by encouraging synergy between 

domain expertise and innovative technologies. The 

description of the challenges and their mitigation is 

presented in Table 5. 
 

Table 5 Challenges and mitigation in the application of ML in the design optimization of RC frames 
Challenges Description Mitigation Strategies 

Data quality and quantity  Obtaining high-quality and sufficient quantity 

of data for ML models.  

 Incomplete or inaccurate datasets may lead to 

suboptimal model performance. 

 Collaborate with industry partners for 

comprehensive datasets.  

 Implement data pre-processing techniques and 

quality assurance protocols. 

Interpretability of ML 

models 
 ML models, especially complex ones, are 

often considered as "black boxes."  

 Challenges in understanding why a particular 

design is optimal or suboptimal. 

 Explore explainable AI (XAI) techniques for 

insights into model decisions.  

 Use feature importance analysis and model-

agnostic interpretability methods. 

Integration with 

engineering standards 
 ML models need alignment with established 

engineering standards and codes.  

 Deviations from standards may hinder 

acceptance and adoption. 

 Collaborate with structural engineers to 

incorporate domain knowledge.  

 Ensure model outputs adhere to established 

standards. 

Ethical considerations  ML models may perpetuate biases present in 

the training data.  

 Lack of transparency in decision-making 

poses ethical challenges. 

 Implement fairness-aware ML practices. 

 Audit training datasets for biases.  

 Incorporate ethical considerations into the 

development process. 

Computational complexity  Some ML models, especially complex ones, 

can be computationally demanding.  

 Computational complexity may hinder 

practical implementation. 

 Balance model complexity with computational 

efficiency.  

 Explore model compression techniques.  

 Optimize algorithms for efficiency. 

Validation and 

verification 
 Ensuring ML-driven design optimizations are 

theoretically sound and practically applicable.  

 Real-world applicability may be uncertain. 

 Rigorous validation against existing designs 

and engineering principles.  

 Verification through physical testing and 

monitoring. 

Human-AI collaboration  Achieving effective collaboration between 

structural engineers and ML models. 

 Differences in language, objectives, and 

understanding may hinder collaboration. 

 Foster interdisciplinary collaboration.  

 Provide training to engineers on ML concepts.  

 Develop user-friendly interfaces facilitating 

interaction. 

 

By utilizing their distinct capabilities and 

methodologies, ML techniques have the potential to 

overcome some of the drawbacks of conventional 

design optimization techniques for RC frames. ML 

techniques with metaheuristic algorithms, such as 

GA, and PSO, are better able to thoroughly explore 

the design space and potentially overcome the local 

optima problem that is present in conventional 

approaches. These algorithms can efficiently look for 

global optima by employing population-based search 
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techniques [57]. Gaussian processes or neural 

networks are ML approaches. [111], may be used to 

create surrogate models that simulate intricate and 

costly computer structural evaluations [67]. The 

computing complexity of the optimization process is 

greatly reduced by these surrogate models, which 

enable quick assessments of the objective function 

and constraints. Discrete design variables may be 

handled well by ML-based optimization methods by 

adopting the right encoding techniques or algorithms 

created for combinatorial optimization issues [112]. 

As a result, more sensible and realistic design options 

are possible. By adding penalty functions or 

employing constraint-handling strategies like 

constraint satisfaction or repair mechanisms [113], 

these algorithms may manage a variety of constraints, 

including non-linear and interactive constraints [114]. 

To handle noisy data and offer probabilistic 

predictions, ML models may be trained on data that 

has intrinsic uncertainties [115]. Accepting 

fluctuations in material qualities, loads, and other 

input factors, enables more reliable optimization 

under unpredictable situations [116]. By using data-

driven insights from earlier designs and simulations, 

optimization may be directed [117]. ML can spot 

trends, patterns, and linkages that human skill alone 

would miss by examining a database of previous 

designs and their performance. By incorporating 

many performance criteria, such as structural 

strength, durability, and cost into a single objective 

function, ML approaches may solve interdisciplinary 

optimization challenges. This makes it possible to use 

an optimization strategy that is more thorough and 

integrated [118]. To extract key design factors and 

interactions, feature engineering may be automated 

with the use of ML, which eliminates the need for 

manual feature selection and domain-specific 

knowledge [119]. The algorithms' ability to 

dynamically adapt and change their search methods 

during the optimization process can result in greater 

performance and faster convergence to optimum 

solutions [120]. During the optimization process, the 

algorithms' search methods may be dynamically 

adjusted and adjusted, which can enhance 

performance and improve convergence to optimal 

solutions. By uniting surrogate models [11] and 

population-based optimization algorithms [121], ML 

techniques can considerably lessen the number of 

costly structural analyses required, resulting in more 

effectual optimization procedures. In conclusion, ML 

approaches open up fresh viewpoints and design 

methodologies for RC frame design optimization. 

They offer the potential to improve optimization by 

getting around some of the drawbacks of 

conventional techniques. [122], ultimately resulting 

in more reliable, effective, and data-driven design 

solutions [123]. 

 

Data preparation for ML algorithms requires a crucial 

step called feature engineering [119]. It entails 

converting unprocessed data and pertinent design 

criteria into appropriate features that can be fed into 

ML models. Feature engineering is the process of 

choosing, extracting, and converting design data into 

meaningful and representational features in the 

context of RC frame design. The steps involved in 

feature engineering are shown in Figure 10. 

 

For instance, while creating a RC frame, relevant 

design criteria could include section dimensions, 

reinforcement ratios, loads, material characteristics, 

and environmental factors, the following stages 

would be involved in feature engineering: 

 Selection: determining the most important design 

factors, such as column size, beam depth, and 

concrete strength, that have an impact on the 

frame's structural performance [124]. 

 Normalization: By scaling the chosen design 

parameters to a similar range (for example, 

between 0 and 1), biases caused by variations in 

units and magnitudes may be avoided [125]. 

 Interaction terms: Merging two or more design 

characteristics to create new features that capture 

how they interact. For instance, calculating the 

structural capacity by multiplying the column size 

by the concrete strength [28]. 

 Categorization: Transforming continuous design 

parameters into categorical features, where 

applicable. For instance, classifying reinforcement 

ratios as high, medium, or low [126]. 

 Encoding: Employing methods like one-hot 

encoding [127] or label encoding [128], to convert 

categorical information into numerical values so 

that ML algorithms can process them. 

 Dimensionality reduction: Using methods like 

Principle Component Analysis (PCA) or feature 

selection approaches to reduce the number of 

features will help to alleviate the effects of 

dimensionality and boost computing performance. 

 Handling missing data: Using imputation 

techniques like mean, median, or regression-based 

imputation to deal with missing data, making sure 

the dataset is full [129]. 

 

The dataset is organized and informatively generated 

through feature engineering, making it acceptable as 

an input to ML approaches. This strengthens the 

models' performance and interpretability and gives 
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engineers the information required to make informed 

decisions during the design optimization of RC 

frames. 

A complete list of abbreviations is summarized in 

Appendix I. 

 

 
Figure 10 Steps Involved in feature engineering 

 

4.Conclusion and future work 
In order to effectively optimize the design of RC 

frames, this study examines the revolutionary effects 

of ML, highlighting the vital significance of 

affordability, sustainability, and safety in the building 

industry. This study promotes the use of modern 

metaheuristic and ML-based algorithms to improve 

efficiency and reliability in the face of obstacles 

faced by classic design optimization methods. A 

detailed examination of the body of literature 

indicates a notable increase in publications, with the 

United States of America and China spearheading 

worldwide research initiatives. With the use of 

VoSviewer, the bibliometric analysis reveals 

important patterns, study groups, and cooperative 

networks, providing insightful information on the 

ever-changing field of ML in RC frame design. The 

integration of ML techniques with meta-heuristic 

algorithms for the design optimization of RC frame 

structures offer significant advantages along with 

some inherent limitations. Throughout this paper, 

various benefits have been highlighted such as 

improved efficiency, enhanced accuracy, and the 

ability to handle complex optimization problems 

efficiently. ANN is one of the most used ML 

techniques with the best performance due to its 

inherent nature of handling complicated relationships 

between design variables. GA is the most used 

metaheuristic technique to be used with the ML 

algorithm. Though, GA is slow and time-consuming, 

its ability to reach global minima enhances the 

performance of the ML algorithm. There are many 

other improved faster and consistent metaheuristic 

algorithms to be used in collaboration with ML 

techniques, which remain an unexplored area.  By 

harnessing the power of ML, engineers and 

researchers can explore vast design spaces, identify 

optimal solutions, and streamline the iterative design 

process. Further, the presented work also elaborates 

on the challenges and mitigation strategies to 

combine ML techniques with metaheuristic 

algorithms effectively and effortlessly. 

 

In the future, the study predicts that the fields of ML 

and RC frames anticipate an increase in publications 

and research initiatives. The full potential of this 

multidisciplinary topic is expected to emerge when 

computational capabilities progress, interdisciplinary 

collaboration becomes stronger, and data 

accessibility improves. The research gaps and 

obstacles that have been presented highlight the 

necessity of continuous efforts to address 

transdisciplinary issues, resource constraints, and 

data accessibility concerns. By presenting trends, 

challenges, and potential future directions, it provides 

a valuable resource for researchers, practitioners, and 

policymakers. The integration of ML not only holds 

promise for advancing design optimization but also 

for fostering a new era of sustainable, safe, and 

innovative construction practices. As the field 

continues to evolve, collaboration and knowledge-

sharing between ML and civil engineering experts 

will be instrumental in unlocking the full potential of 

this transformative approach to RC frame design.  
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Appendix I 
S. No. Abbreviation Description 

1 ANN Artificial Neural Network 

2 ES Evolutionary Strategies 

3 GA Genetic Algorithm 

4 GP Genetic Programming 

5 GRG Generalized Reduced Gradient 

6 LP Linear Programming 

7 MAE Mean Absolute Error 

8 ML Machine Learning 

9 MSE Mean Squared Error 

10 NLP Non-linear Programming 

11 PCA Principle Component Analysis 

12 PSO Particle Swarm Optimization 

13 R Coefficient of Determination 

14 RC Reinforced Concrete 

15 RL Reinforcement Learning 

16 RMSE Root Mean Squared Error 

17 RSM Response Surface Methodology 

18 SA Simulated Annealing 

19 SD Standard Deviation 

20 SLP Sequential Linear Programming 

21 XAI Explainable AI 

 


