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Abstract 
 

This paper presents how fuzzy goal programming 

(FGP) method can be efficiently used modeling and 

solving power generation and dispatch (PGD) 

problems in power system operation and planning 

horizon. In the proposed approach, the objectives of 

a problem involved with optimal power flow 

computation are considered fuzzy in nature in an 

uncertain decision environment.  

 

In the model formulation of the problem, nonlinear 

in characteristics of objective functions are first 

converted into their equivalent linear forms by 

using Taylor Series approximation technique. Then, 

the defined fuzzy goals are characterized by their 

membership functions for measuring the degree of 

achievement of goal levels of the objectives specified 

in the decision situation.  

 

In the solution process, minsum FGP methodology 

is addressed to minimize the deviations from the 

aspired goal levels and thereby to reach a 

satisfactory decision on the basis of needs and 

desires of the decision maker (DM) in the decision 

making context.   

 

The power generation problem of the standard 

IEEE 6-Generator 30-Bus System is considered to 

illustrate the potential use of the approach.  

 

Keywords 
 

Fuzzy goal programming, goal programming, 

membership function, optimal power flow, Taylor Series 
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1. Introduction 
 

The thermal power system operation and planning 

problems are actually optimization problems with  

various system constraints in the environment of 

generating power and dispatching to demand centers. 

The Optimal PGD problem in power system was first 

studied by Carpentier [1] in the early 1960s. The 

general mathematical programming model for 

optimal power generation was introduced by 

Dommel and Tinney [2] in 1968. A Comprehensive 

Survey on environmental power dispatch models 

developed from 1960s to 1970s was first surveyed in 

[3]. Thereafter, different mathematical programming 

approaches have been studied [4-11] for efficient 

management of PGD problems. 

 

Thereafter, different mathematical programming 

approaches have been studied [4-11] for efficient 

management of PGD problems.Since the PGD 

problem is multiobjective in nature, goal 

programming (GP) approach [12] based on the 

satisficing philosophy (coined by Simon [13]), one of 

the prominent tool for multiobjective decision 

analysis in crisp decision environment, has been used 

[14] to obtain the goal-oriented solution for 

economic-emission power dispatch problems. The 

crazy swarm optimized economic load dispatch for 

various types of cost functions has been investigated 

in [15]. 

 

Now, in most of the practical decision situations, it is 

to be observed that various parameters involved with 

a problem are often inexact in nature. The most 

prominent approaches for decision analysis in an 

uncertain environment is stochastic programming 

(SP) [16, 17]. The SP approaches to PGD problems 

have been studied [4, 5] in the past. A multiobjective 

stochastic search technique for economic load 

dispatch was presented in [18]. 

 

In some decision situations, inexactness of decision 

parameters are not probabilistic in nature, but they 

are fuzzily described owing to the imprecise in nature 

of human judgments as well as inherent imprecision 

in model parameters. To cope with such a situation, 

fuzzy programming (FP) approach [19, 20] based on 

Fuzzy Set Theory (FST) [21] has appeared as robust 

tool for solving decision problems with multiplicity 

of objectives. 

The use of fuzzy set-theoretic approaches to various 

practical decision systems, viz., traffic and 

transportation [22], robot selection [23] and industrial 
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safety engineering [24] have already been well 

documented in the literature. In the field of power 

engineering, although fuzzy programming (FP) [20] 

methods have been applied to some areas of PGD 

problems [25, 26], the extensive study in this field is 

yet to be widely circulated in the literature.  

 

In this article, the FGP [27, 28, 29] approach, which 

is an extension of conventional goal programming 

(GP) [12] for multiobjective decision making 

(MODM) in the area of FP, is considered for 

modeling and solving optimal PGD problems having 

the characteristics of nonlinear programming 

problems in an uncertain decision environment. In 

the model formulation, the nonlinear objectives are 

transformed into the linear ones by using Taylor 

series approximation method [30].Then, the 

individual best and worst decisions regarding 

optimization of the objectives are taken into account 

under the crisply defined system constraints towards 

fuzzy description of them in the decision making 

context.  

 

Further, in the sequel of model description, algebraic 

description of membership functions of the fuzzy 

goals are considered to reach the solution in terms of 

degree of achievement of the stated fuzzy goals. 

In the solution process, achievement of the highest 

value (unity) of the membership goals defined for the 

membership functions to the extent possible on the 

basis of their weights of importance by minimizing 

the associated under-deviational variables is 

considered to reach a most satisfactory decision in 

the decision making environment. A case example of 

IEEE 6-Generator 30-Bus System is solved to 

expound the effectiveness of the proposed approach.  

 

2. General FGP Problem 

Formulation 

 

In a fuzzy decision making environment, instead of 

crisp description of objectives and constraints, the 

fuzzy version of them is taken into consideration and 

that depends on the needs and desires of DM in the 

decision making situation. 

In the present FGP formulation, the fuzzy version of 

achieving the aspired levels of the objective goals is 

considered in the decision making horizon. 

Now, the description of fuzzy goals is presented in 

the following Section 2.1. 

 

2.1 Definition of Fuzzy Goal 

Let gk be the imprecisely defined aspiration level of 

the k-th objective Fk (X), (k = 1,2,...., K). Then, the 

fuzzy goals may appear in one of the following 

forms: 

Fk (X) 
~
  gk and Fk(X) 

~
 gk, 

where X ( 0) is the vector of decision variables, gk is 

the fuzzy aspiration level of the k-th objective Fk(X) 

(k = 1, 2,..., K), and 
~
  and

~
  refer to fuzziness of 

the aspiration levels and is to be understood as 

„essentially greater than‟ and  „essentially less than‟, 

respectively, in the sense of Zimmermann [20]. 

 

2.2 Characterization of Membership 

Function 

Let l

k
t  and u

k
t be the lower- and upper-tolerance 

ranges, respectively, for achievement of the aspired 

level gk of the k-th fuzzy goal. 

Then, the membership function, say kμ (X), for the 

fuzzy goal Fk(X) can be characterized as [28]: 

 

For 
~
  type of restriction, kμ (X) takes the form: 
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where (gk - l

k
t ) represents the lower-tolerance limit 

for achievement of the stated fuzzy goal.  

 

Again, for 
~
  type of restriction, kμ (X) becomes: 
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where (gk + 
u

k
t ) represents the upper-tolerance limit 

for achievement of the stated fuzzy goal.  

Now, formulation of the standard FGP model is 

presented in the Section 2.3. 

 

2.3 FGP Model Formulation 
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In an FGP model, the membership functions are 

transformed into membership goals by assigning the 

highest degree (unity) as the aspiration level and 

introducing under- and over-deviational variables to 

each of them. Then, in the goal achievement function, 

the under-deviational variables are minimized on the 

basis of importance of achieving the aspired goal 

levels in the decision making environment. 

Now, since multiple goals are involved with the 

problem and goals often conflict each other for 

achieving their aspired levels, the minsum FGP [27] 

model, the simplest and most widely used version of 

FGP methodology, can be presented as follows.  

Find ),...,,( Nxxx
21

X  so as to: 

Minimize KkdZ kk ...,,,; 21 
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 X  0,   

           (3) 

where X is the decision vector of order (N, 1), A is a 

real matrix, b is a constant vector and Z represents 

the fuzzy achievement function consisting of the 

weighted under- deviational variables 
kd , and where 

)0(, 
kk dd with 0. 

kk dd , k = 1,2,..., K represent 

the under- and over-deviational variables 

respectively, associated with the k-th membership 

goal, and where )( 0
kw denotes the numerical 

weight of importance of achieving the k-th fuzzy goal 

relative to others in the decision-making environment 

and they are determined as [27]: 
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(4) 

Now, in the context of solving the present PGD 

problem, it may be mentioned that the objectives and 

some of the constraints are non-linear in nature. 

Therefore, computational complexity generally arises 

owing to involvement of non-linear functions. To 

overcome the difficulty, different linearization 

approaches have been studied in the area of nonlinear 

programming [30]. In the present decision situation, 

since simple quadratic and exponential functions are 

involved there, the Taylor series approximation 

method [31] can simply be used for linearization of 

the nonlinear functions.  

 

2.4 Taylor Series Approximation Method 

The Taylor series approximation of a nonlinear 

function F(X), say, can be presented in the following 

simple steps [32]: 

 Step 1. Determine ),,...,,( **
2

*
1

*
NxxxX  where 

*
X indicates the initial solution as an approximate 

one, around which linear approximation of F(X) is 

taken into account. 

 Step 2. Transform the function F(X) by using 

first  order Taylor series expansion as:  

    
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)()()(

X
XX             (5)                                                                           

Here, in the expression (5), )(*
XF  represents the 

linear approximation of the function F(X). 

Now, formulation of PGD problem in the framework 

of the proposed FGP model is described in the 

following Section 3. 

 

3. Model Formulation for PGD 

Problem 
 

The different types of parameters and decision 

variables involved with PGD problem having 

generators Gi (i= 1,2,…,N) in a power generation 

system are introduced as follows:   

 Definition of parameters: 
PD : Total power demand (in power-unit (p.u.)) 

TL : Total transmission loss (in p.u) of power in 

the system 

 Decision variable: 

GiP  : Generation of power from the i-th generator 

Gi 

Then, a general PGD problem is defined as 

follows. 

 

3.1 PGD problem Formulation 
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A general PGD problem involves two types of 

objective functions for minimization them   subject to 

a set of system constraints in the decision making 

environment. The objectives and system constraints 

are described as follows. 

 

3.1.1 Definitions of Objective Functions 

 

 Fuel-Cost Function 

The total fuel- cost ($/hr) function including valve 

point loading for an PGD problem [11] is defined as 

follows:      

,])]([)[( min

iG
iGiiiGii

2
Gii

N

1i

PPSinPPTC  


                     (6)   

where TC indicates total fuel cost (in $/hr) involved 

with all the generators and iii ,,  are fuel cost 

coefficients associated with the generator Gi , and 

i and i are the fuel cost coefficients which denote 

the valve-point effect of the i-th generating unit, and 

where „min’ stands for minimum. 

 

 Emission Function:  

The major atmospheric pollutants created by fossil-

fuelled thermal units are the sulphur oxides (SOx), 

carbon oxides (COx) and the oxides of nitrogen 

(NOx).  

The total emission can be presented as [11]: 

   
])[( GiPih

iiGii
2

Gii

N

1i

2 edcPbPa10TE 




      (7) 

where TE is the total emission (in ton/hr) of all the 

generators and ai, bi, ci, di, hi are the emission 

coefficients associated with generation of power from 

generator Gi.  

 

3.1.2 Description of System Constraints 

 

The system constraints associated with generation of 

power are defined as follows: 

 

 Power Balance Constraint:  

The total power generation must have to cover the 

total demand PD and total transmission loss TL.  

Therefore, the power balance constraint can be 

expressed as: 

    




N

1i
Gi PDTLP

                       (8)              

The expression of TL can be modelled as a function 

of generator output, and that can be expressed as:
 

    

 
  


N

1i

N

1j

N

1i
00Gii0GjijGi BPBPBPTL

              (9) 

where Bij, B0i and B00 are  called Kron’s loss 

coefficients or B-coefficients [9] associated with the 

transmission network of a system. 

 

 Generation Capacity Constraint: 

 Following the conventional power generation and 

dispatch system, the constraints on generator outputs 

can be introduced as: 

   ,maxmin

iGiGiG PPP   i= 1, 2,…, N        (10)  

where „min‟ and „max‟ stand for minimum and 

maximum.  

Now, it is to be followed that the objectives in (6) 

and (7) and constraint in (9) are non-linear in nature. 

Here, linearization technique defined in Section 2.4 

can be used to formulate the linear FGP model of the 

problem. Then, following the proposed procedure, 

the membership goals of the defined membership 

functions associated with the linear fuzzy goals and 

there by modeling of the problem are presented via a 

case example presented in the following Section 4. 

 

4. A Demonstrative Case Example 
 

The standard IEEE 6-Generator 30-Bus test system 

[4] is considered for modelling and solving the PGD 

problem within the framework of the proposed 

minsum FGP approach.  

 

The diagrammatic representation of the single-line 

diagram of IEEE 6-Generator 30-Bus test system is 

presented in the Figure 1.  

 

 

Figure 1: Single-line diagram of IEEE 30-Bus test 

system 
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The system in Fig. 1 shows that there are 6 generators 

and 41 lines. The total system demand for the 30 

buses is 2.834 in power unit (p.u). 

The data of the parameters associated with the 

problem are presented in Table 1 – Table 3. 

 

Table 1: Data description for Cost coefficients 

 

             Coefficient                 

Generator  
α β γ δ λ 

G1 100 200 10 15 6.283 

G2 120 150 10 10 8.976 

G3 40 180 20 10 14.784 

G4 60 100 10 5 20.944 

G5 40 180 20 5 25.133 

G6 100 150 10 5 18.48 

 

Table 2: Data description for Emission coefficients 

 

             Coefficient                 

Generator 
a b c d h 

G1 6.490 -5.554 4.091 2.0E-4 2.857 

G2 5.638 -6.047 2.543 5.0E-4 3.333 

G3 4.586 -5.094 4.258 1.0E-6 8.000 

G4 3.380 -3.550 5.326 2.0E-3 2.000 

G5 4.586 -5.094 4.258 1.0E-6 8.000 

G6 5.151 -5.555 6.131 1.0E-5 6.667 

 

Table 3: Power generation limits 

 
            Generator 

     Limits 
G1 G2 G3 G4 G5 G6 

min

iGP  0.05 0.05 0.05 0.05 0.05 0.05 

max

iGP  0.50 0.60 1.00 1.20 1.00 0.60 

 

The B-coefficients [9] for the determination of total 

transmission loss are presented as follows: 

  ,

0244.00005.00033.00066.00041.00008.0
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    (11) 

Now, using the data tables, Table 1 and Table 2, and 

following the expressions in (6) and (7), the objective 

functions of the problem are obtained as follows:   

 

 Fuel-Cost Function   
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 Emission Function 
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       (13) 

Then, using B-coefficients in (11) and the data    

Table 3, the power balance constraint, generator 

output constraints and security constraints are 

obtained as follows:  

 

 Power balance constraint 

Using the power demand data, the power balance 

constraint takes the form:  



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N

1k

k 834.2TLp

          (14)                                

             

where TL are obtained as [15]: 

4
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 Generator output constraints: 

,50.005.0
1
 GP              ,60.005.0

2
 GP  
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3
 GP              ,20.105.0

4
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,00.105.0
5
 GP              .60.005.0

6
 GP  

  (16) 

Now, the individual best solutions of the nonlinear 

objectives in (12) and (13) and the constraint in (15) 

by considering it as an objective function are 

successively found as:  

);,,,,,(
654321

FCPPPPPP GGGGGG  

= (0.121, 0.286, 0.584, 0.993, 0.524, 0.352; 642.794), 

);,,,,,(
654321

TEPPPPPP GGGGGG   

= (0.500, 0.221, 0.758, 0.050, 0.759, 0.590; 0.1916), 

and );,,,,,(
654321

TLPPPPPP GGGGGG  

= (0.050, 0.050, 1.000, 1.200, 0.508, 0.050; 0.0239), 
respectively.  

Now, considering the above power generation 

decisions as the approximate solutions of the 

respective nonlinear functions and using the 

expression in (5), the linear equivalent of the 

nonlinear expressions in (12), (13) and (15) are 

successively obtained as: 
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(19) 

 

Then, in the sequel of linear transformation, the 

power balance constraint in (14) takes the form: 

765432P99900P989490P974970

P989300P994120P997450

6G5G4G

3G2G1G

....

...





           (20) 

Now, following the procedure, the aspiration levels 

and tolerance limits of the defined linear fuzzy goals 

are computed and presented in the Table 4.  

 

Table 4:  Description of Aspiration Levels and 

Tolerance Limits of Fuzzy goals 

 

Goal 
Aspiration 

Level 

Upper Tolerance 

Limit 

Fuel-cost  ( $/hr) 606.030 646.355 

Emission  (ton/hr) 0.19418 0.22635 

Then, following the procedure, the executable 

minsum FGP model of the problem can be obtained 

as:   

Find ),,,,,(
654321 GGGGGG PPPPPP so as to: 

Minimize Z=   21 d
0325.0

1
d

325.40

1
 

and satisfy 

1355646325401 111   ddFC ).().(:
*  

1226350032201 222   ddTE ).().(:
*  

subject to the system constraints defined in (16) 

and (20), 

(21) 

where )0(, 
kk dd  with 0dd kk  . , (k=1,2) are the 

under- and over-deviational variables associated with 

the respective fuzzy goals,. 

The LINGO (ver. 12.0) solver (the permissible size 

of instance is 500 variables and 250 constraints) is 

used to solve the problem. The model (variable size 

10, constraint size 16) is executed in Pentium IV 

CPU with 2.66 GHz Clock-pulse and 2GB RAM. 

The required CPU time is 0.01 second.   

The resulting decision is presented in the Table 5. 

Note: The solution achievement for the use of 

additive FGP approach [29], where maximization of 





2

1k
k , subject to taking ,1k  without conversion 

to membership goals, is considered in the same 

decision environment.  Further, without linearization 

of the nonlinear functions, the goal achievement 

under the framework of proposed model is also 

considered to show the effectiveness of the proposed 

method.   

The solutions obtained under the above two 

approaches are presented in the Table 5. 

 

Table 5:  Solution under the Proposed  

Approach and other Approaches 

 

G
en

er
a

to
r 

O
u

tp
u

t 

(p
.u

.)
 

       Approach 

 

 Solution 

Proposed Additive 

FGP 

FGP without 

Linearization 

PG1 0.500000 0.050000 0.278962 

PG2 0.5830288 0.050000 0.280951 

PG3 0.3447798 0.280657 0.547752 

PG4 0.2609836 1.200000 0.915079 
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PG5 0.5529588 1.000000 0.497716 

PG6 0.5697988 0.228000 0.340786 

Total Generation 

Cost ($/hr) 

636.74 654.381 650.711 

Total Emission                    

(ton/hr) 

0.19442 0.2772 0.23903 

 

The schematic presentation of the results in Table 5 is 

presented in the Figure 2 and Figure 3. 

 

 
 

Figure 2: Schematic Presentation of Total 

Generation Cost under Different Approaches 

 

 
 

Figure 3: Schematic Presentation of Total 

Emission under Different Approaches 

 

The graphs show that the both the fuel-cost and 

emission discharge are minimum under the proposed 

approach in comparison to the results obtained by 

using the other two approaches. Therefore, it may be 

said that the FGP approach presented here is superior 

over the other ones from the view point of making 

proper power generation decision with regard to 

balancing the objectives of minimizing both the 

power generation cost and environmental emission in 

an uncertain decision environment. 

 

5. Conclusion 
 

The main advantage of the proposed approach is that 

the decision trouble with nonlinearity in objectives 

can easily be avoided here with the use of the Taylor 

series approximation technique. In the framework of 

the proposed model, consideration of other objectives 

and environmental constraints may be taken into 

account in the context of power plant operations, 

which may be a problem in future, study. Finally, it is 

hoped that the solution approach presented here may 

lead to future research towards proper planning for 

optimal thermal power generation as well as 

controlling pollutions for preserving health of the 

Earth‟s environment.   
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