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Abstract  
 

SVM have met the significant success in numerous 

real-world applications. The SVM is widely used 

classifier. Obtaining the best result with SVM 

requires an understanding of their working and 

various ways a user an influence their accuracy, so 

we provide the concept about the SVM algorithm. 

We introduce a algorithm for performing image 

compression based on the SVM algorithm. This 

algorithm is used to form the clustering. We also to 

use the SVM algorithm for image recognition 

application. 
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1. Introduction 
 

SVMs (Support Vector Machines) are a useful 

technique for data classification. Al-though SVM is 

considered easier to use than Neural Networks, users 

not familiar with it often get unsatisfactory results at 

first. Here we outline a \cookbook" approach which 

usually gives reasonable results.  

 

Note that this guide is not for SVM researchers nor 

do we guarantee you will achieve the highest 

accuracy. Also, we do not intend to solve challenging 

or difficult problems. Our purpose is to give SVM 

novices a recipe for rapidly obtaining acceptable 

results.  

 

Although users do not need to understand the 

underlying theory behind SVM, we brie y introduce 

the basics necessary for explaining our procedure. A 

classification task usually involves separating data 

into training and testing sets. Each instance in the 

training set contains one “target value" (i.e. the class 

labels) and several “attributes" (i.e. the features or 

observed variables). The goal of SVM is to produce a 

model (based on the training data) which predicts the 

target values of the test data given only the test data 

attributes. 

Given a training set of instance-label pairs (xi; yi); i = 

1; : : : ; l where xi   Rn and y   f{1; -1 }the support 

vector machines (SVM)  (Boser et al., 1992; Cortes 

and  Vapnik, 1995) require the solution of the 

following optimization problem: 

 
Here training vectors xi are mapped into a higher 

(maybe infinite) dimensional space by the function. 

SVM finds a linear separating hyperplane with the 

maximal margin in this higher dimensional space. C 

> 0 is the penalty parameter of the error term. 

Furthermore, K(xi; xj) (xi)T (xj) is called the kernel 

function. Though new kernels are being proposed by 

researchers, beginners may find in SVM books the 

following four basic kernels: 

 

linear:  K(xi; xj) = xTi xj. 

polynomial:  K(xi; xj) = (  xiT xj + r)d,    > 0. 

radial basis function (RBF): K(xi; xj) = exp(     kxi      

xjk2),    > 0. 

sigmoid:  K(xi; xj) = tanh(  xiT xj + r). 

Here   , r, and d are kernel parameters. 

 

 
 

Fig 1. a) Training data and an over fitting 

classifier   (b) Applying an over fitting classifier on 

testing data 
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(c) Training data and a better classifier           

(d) Applying a better classifier on testing data 

 

2. Image Cluster Compression 
 

Extending image compression to multiple images has 

not attracted much research so far. The only 

exceptions are the areas of hyper spectral 

compression and, of course, video compression, 

which both handles the special case of compressing 

highly correlated images of exactly the same size. 

compression, we Concerning generalized image 

group recently researched an algorithm which works 

by building a special eigenimage library for 

extracting principal component based similarities 

between images.  

While the algorithm presented in is quite fast, and 

manages to merge low-scale redundancy from 

multiple images, it fails to detect more global scale 

redundancies (in particular, similar image parts which 

are both translated and scaled), and also has the 

problem of becoming “saturated” quite fast (i.e., the 

more images in a group, the worse the additional 

compression rate of the individual images), which 

limits the size of possible image groups. 

 

In this paper, we present a novel algorithm for image 

groups, which is based on SVM compression and 

thus manages to exploit several high-level 

redundancies, in particular scaled image parts. 

Compression of image sequences using PIFS was 

done previously (in the context of video 

compression)  . However, in these papers, both the 

frames/images contributing to one compression group 

as well as the order of those images is predetermined 

by the video sequence. Furthermore, images need to 

be of the same size, which can’t be assumed for most 

real-world image databases. Here, they specify a 

multi-image PIFS algorithm which works on images 

of arbitrary sizes, and also allows to cluster image 

databases into groups so that compression of each 

group is optimized.   

The rest of previous paper is organized as follows: 

they first derive the multi-image PIFS algorithm by 

generalizing the single-image PIFS algorithm. We 

also describe a way to optimize said algorithm using 

DFT lookup tables. Afterwards, they take on the 

problem of combining the “right” images into groups, 

by first describing efficient ways to compute a 

distance function between two images, and then, in 

the next session, comparing a number of clustering 

algorithms working on such a distance. The final 

algorithm is evaluated by compression runs over a 

photo database consisting of 3928 images. 

 

 
 

Fig. 2 Database images 

 

they found that by using clustering algorithms (a type 

of algorithm usually more common in the fields of 

data analysis and image segmentation), they can find 

approximations to the image grouping problem while 

using significantly less computing time.  

 

They considered a number of different clustering 

algorithms, which all have different advantages and 

disadvantages, and which will described in the 

following. 

 

• MST clustering: An algorithm which 

calculates the spanning tree from the 

distance metric, and then splits the tree into 

clusters by cutting off edges.  

• nCut clustering: A hierarchical method 

which treats the complete data set as one big 

cluster, and then starts split-ting the nodes 

into two halves until the desired number of 

clusters is reached (Splitting is done by 

optimizing the nCut metric ).  

• SAHN clustering: Another hierarchical 

method, which in each step, combines a 

node (or cluster) and another node (or 

cluster), depending on which two 

nodes/clusters have the smallest distance to 

each other. Distances between clusters are 

evaluated using the sum over all distances 

between all nodes of both clusters, divided 

by the number of such distances.  

• Relational k-Means: An extension of the 

“classical” k-Means of multidimensional 

data [21], which computes centers not by the 

arithmetic mean, but by finding a “median” 

node with the lowest mean distance to all 

other nodes .  

• Random clustering: Distributes nodes 
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between clusters arbitrarily. This algorithm 

was included for comparison purposes.  

They did a comparison run of the aforementioned 

clustering algorithms on a small image database (128 

images) using both 

 

 

 

 

 

 

 

 

the Gabor filter metric as well as the full NCD 

metric, in order to evaluate how much difference a 

more precise distance metric makes. 

 

We have introduce the svm algorithm based image 

clustering using image compression first to find the 

Maximal margin = distance between 
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Fig.3 SVC formulations (the soft margin hyper 

plane) 

li

bxwy

Cww

i

ii

T

i

l

i

i

T

bw

,,1,0

,1)))(((

)(
2

1
min

1
,,





 









 

 

Expect: if separable,  

constant:

:

0

1

aC

termpenaltyC
l

i

i

i










 

1

1 1

1 1

( ) 0, , ( ) 0

find necessary condition

if x is an opt. and x satisfied  regularity cond. 

( ) ( ) ( )

( ) ( )

( ) 0

0, ( ) 0

( ) 0

m

m m

n n

i i

i i

j

h x h x

f x g x g x

h x h x

g x

g x

h x

 

 





 

      

   



 



Ho

w to solve an opt. problem with constraints? Using 

Lagrangian multipliers Given an optimization 

problem 

)()()(

)()()(),,(

 asfunction  Lagrangian  dgeneralise  thedefine we

,,1,0)(                 

,1,0)( subject to

)(min

11

whwgwf

whwgwfwL

miwh

liwg

wf

TT

l

i

ii

l

i

ii

i

i




















 

Consider the following primal problem 

li

libxwytosubject

Cww

i

ii

T

i

l

i

i

T

bw

,,1,0

,,1,1))((

minimise
1

,,









 








 

(P) # variables: w dimension of  (x) ( very big 

number)  ,  b1,  l  ,(D) # variables: 

11

11..

w

2
max

,,

w

2
distance







i

T

i

T

yifbxw

yifbxwts

solvebwfind



International Journal of Advanced Computer Research (ISSN (print): 2249-7277   ISSN (online): 2277-7970)  

Volume-2 Number-1 Issue-3 March-2012 

58          

 

lDerive its dual. The primal Lagrangian for the 

problem is :  
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The linear classifier relies on dot product between 

vectors K(xi,xj)=xi
T
xj  

 

If every data point is mapped into high-dimensional 

space via some transformation Φ:  x → φ(x), the dot 

product becomes: K(xi,xj)= φ(xi) 
T
φ(xj)  A kernel 

function is some function that corresponds to an inner 

product in some expanded feature space. 

 

Example: 2-dimensional vectors x=[x1   x2];  let 

K(xi,xj)=(1 + xi
T
xj)

2
, Need to show that K(xi,xj)= φ(xi) 

T
φ(xj): 

 

K(xi,xj)=(1 + xi
T
xj)

2
 = 1+ xi1

2
xj1

2 
+ 2 xi1xj1

 
xi2xj2+ 

xi2
2
xj2

2 
+ 2xi1xj1 + 2xi2xj2 = [1  xi1

2  
√2 xi1xi2   xi2

2  
√2xi1  

√2xi2]
T 

[1  xj1
2  

√2 xj1xj2   xj2
2  

√2xj1  √2xj2] = φ(xi) 
T
φ(xj),    where φ(x) =  [1  x1

2  
√2 x1x2   x2

2   
√2x1  

√2x2] 

 

For some functions K(xi,xj) checking that  K(xi,xj)= 

φ(xi) 
T
φ(xj) can be cumbersome. Mercer’s theorem:  

Every semi-positive definite symmetric function is a 

kernel .Semi-positive definite symmetric functions 

correspond to a semi-positive definite symmetric 

Gram matrix: 

 

 
 

Fig. 4 Examples of Kernel Functions 
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Linear: K(xi,xj)= xi 
T
xj . Polynomial of power p: 

K(xi,xj)= (1+ xi 
T
xj)

p 

 

Gaussian (radial-basis function 

network): )
2

exp(),(
2

2



ji

ji

xx
xx


K  

Sigmoid: K(xi,xj)= tanh (β0xi 
T
xj + β1)

     

 

 
Fig.5 Example 

 

3. Image recognition 
  

Face recognition is a rapidly growing field day for is 

many uses in the fields of biometric authentication, 

security, and many other areas. There are many 

problems that exist due to the many factors that can 

affect the photos. When processing images one must 

take into account the variations in light, image quality, 

the persons pose and facial expressions along with 

others. In order to successfully be able to identify 

individuals correctly there must be some way to 

account for all these variations and be able to come up 

with a valid answer. 

 

 
 

Fig. 6 Differences in Lighting and Facial 

Expression 

 

4. Approach 
 

In order to come up with a method that will help 

increase the chances of correct matches I propose to 

apply methods we have learned this year to 

“preprocess” the images before they are sent into the 

database to be matched. This should help to remove 

some of the major differences that can show up in the 

images. In order to verify the results of this processing 

I am going to implement the eigenface approach 

proposed by Turk and Pentland which can be found in 

there paper here. 

 

5. Process 
 

First we implemented the calculations for the 

eigenfaces which I will give a brief overview of taken 

from Turk and Pentland. 

1)   Acquire an initial set of face images (the training 

set)      Γ1, Γ2,....ΓM 

2) Calculate the eigenfaces from the training set, 

keeping the M best images and there corresponding 

eigenvalues to make up the face space.  In order to 

calculate the eigenfaces I followed the method I have 

outlined below Recognition Process. 

 

Once the eigenfaces are know you can take an input 

image and in the same way calculate it’s eigenfaces 

from the known data and use this to classify it to a 

known face value. I chose to use the Euclidean 

distance as done by Turk and Pentland to calculate 

the known face. 

 

Characteristics of regions face 

An area of skin contains at least two non-skin regions 

(eg eyes) (Fig 7). The ratio of area surface must be 

between certain values (Fig 7). There is a distance d 

belongs to interval [d0, d1] between two sets of non-

skin regions in this region. (The eyes should be 

distributed between the left and right side of the face 

for example) (Fig 7). In addition, non-skin regions 

should exist in the upper face. The distance between 

the ordinates of the centres of gravity of non-skin 

regions of the current region must belong to a certain 

interval (Fig 7). 

 

 
 

Fig. 7 Characteristics of regions face 
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Fig. 8 Flow Chart 

 

6. Conclusion 

 

In this paper, we have addressed the problem of 

image clustering based on PFS and also explain the 

image clustering based on the svm algorithm. It is 

used in the image compression application. We have 

introduced concept of svm based image recognition, 

it is used in the face detection application. Future 

work will focus on svm based image compression 

and recognition using VLSI. 
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