
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 80

An Efficient Partition Technique to reduce the Attack Detection Time with

Web based Text and PDF files

Animesh Dubey
1
, Ravindra Gupta

2
, Gajendra Singh Chandel

3

Abstract

In this paper we propose an efficient partition

technique for web based files (jsp, html, php), text

(word, text files) and PDF files. We are working in

the direction of attack time detection. For this

motivation we are considering mainly two factors

first in the direction of minimizing the time, second

in the direction of file support. For minimizing the

time we use partitioning method. We also apply

partitioning method on PDF files. In this paper we

proposed an efficient hybrid approach which is the

combination of Key generation, partitioning and

encryption. In this approach admin register the

client after the connection request from the client.

Then client can approach for the data. Admin now

call the data preparation strategy for data

preparation for sending. In the preparation stage

admin first generate the key which is common for

server and client, then partition the data, so that the

file overhead is reduced and encrypt the file by java

default encryption method. After successfully

preparation, the data log will be maintained and the

data will be sending to the client by adding a hidden

bit. When any attacker updates the data the hidden

bit is automatically changes and an alert will be

generated to the server. Server record the time of

alert and inform to the client by changing the

hidden bit, client understands the attack by

checking their log file. If the hidden bit is changed

in the client side then client understand the attack

and send the request again for the same file. In the

result section we provide the comparison with the

traditional technique which shows the effectiveness

of our approach.

Keywords

Partition, Hidden Bit, Content Sniffing, Encryption.

Animesh Dubey, M.Tech Scholar, CSE, SSSIST, Sehore,

Bhopal, India.

Ravindra Gupta, Assistant Professor (CSE/IT), SSSIST,
Sehore, Bhopal, India.

Gajendra Singh Chandel, HOD (CSE/IT), SSSIST, Sehore,

Bhopal, India.

1. Introduction

If we analyze our daily routine, then we surprise to

observe that we are relying on Internet. It is our need.

For example email, e-shopping, trading, game etc. In

the meantime we share our crucial and confidential

data by HTML browser. Most of the data we share is

text files, doc file, PDF file and Images. So we are

very much concern on the security issue when we

exchange the data from source to destination. We can

understand the phenomena better in terms of client

and server side data exchange. Sending data usually

reside on a server-side and are accessed from its

client-side [17]. There are some approaches which is

either applied on client side as well as the server side

but overall the approaches are not well enough to

protect with the vulnerabilities. As a result users are

fear and sometimes he/she may be suffering from

those vulnerabilities [17].

If we understand the above scenario then we better

understand and realize the unwanted security threats.

personal information for example phishing websites

[1] instead of providing legitimate functionalities.

Thus, the mitigation of web-based security

vulnerability exploitations is extremely important to

reduce some of the consequences. Phishing is a

rapidly growing problem, with 9,255 unique phishing

sites reported in June of 2006 alone [2]. It is

unknown precisely how much phishing costs each

year since impacted industries are reluctant to release

figures; estimates range from $1 billion [3] to 2.8

billion [4] per year.

For this reason we study a number of common

program security problems and vulnerabilities [5][6].

Our study focuses that the number of web-based

attacks has increased in recent years [7][8], existing

research has addressed a subset of security

vulnerabilities in web applications for example SQL

Injection. Some security encryption technique like

RSA is also suggested in [9]. So data security is the

important concern [10][11][12]. After observation

from several research by different authors, we

analyze there are several numbers of vulnerabilities

are still in the communication process when we want

to access data from the web. So in this paper we

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 81

want to survey the aspects of content sniffing attacks.

What are the major precautions considered by

different authors with their pros and cons are

discussed. The remaining of this paper is organized

as follows. In Section 2 we discuss about content

sniffing attack. The related work in section 3.In

section 4 we discuss about problem domain. In

section 5 we discuss the analysis. The conclusions

and future directions are given in Section 6. Finally

references are given.

2. Literature Review

In 2010, Hossain Shahriar et al. [13] discuss about

Cross Site Request Forgery (CSRF) which allows an

attacker to perform unauthorized activities without

the knowledge of a user. An attack request takes

advantage of the fact that a browser appends valid

session information for each request. As a result, a

browser is the first place to look for attack symptoms

and take appropriate actions. According to the author

Current browser-based detection methods are based

on cross-origin policies that allow white listed third

party websites to perform requests to a trusted

website. To alleviate these limitations, they present a

CSRF attack detection mechanism for the client side.

Their approach relies on the matching of parameters

and values present in a suspected request with a

form’s input fields and values that are being

displayed on a webpage (visibility). To overcome an

attacker’s attempt to circumvent form visibility

checking, they also compare the response content

type of a suspected request with the expected content

type.

In 2011, Misganaw Tadesse Gebre et al. [14]

proposed a server-side ingress filter that aims to

protect vulnerable browsers which may treat non-

HTML files as HTML files. Their filter examines

user uploaded files against a set of potentially

dangerous HTML elements (a set of regular

expressions). The results of their experiment show

that the proposed automata-based scheme is highly

efficient and more accurate than existing signature-

based approach.

In 2011, Anton Barua et al. [15] developing a server

side content sniffing attack detection mechanism

based on content analysis using HTML and

JavaScript parsers and simulation of browser

behavior via mock download tests. They have

implemented our approach in a tool that can be

integrated in web applications written in various

languages. In addition, they have developed a

benchmark suite for the evaluation purpose that

contains both benign and malicious files. They have

evaluated our approach on three real world PHP

programs suffering from content sniffing

vulnerabilities. The evaluation results indicate that

their approach can secure programs against content

sniffing attacks by successfully preventing the

uploading of malicious files.

In 2012, Usman Shaukat Qurashi et al. [16] discusses

about AJAX (asynchronous JavaScript and XML)

based attack. According to the authors an AJAX

enabled web application is composed of multiple

interconnected components for handling HTTP

requests, HTML code, server side script and client’s

side script. These components work on different

layers. Each component adds new vulnerabilities in

the web application. The proliferation AJAX based

web applications increases the number of attacks on

the Internet. These attacks include but not limited to

CSR forgery attacks, Content-sniffing attacks, XSS

attacks, Click jacking attacks, Mal-advertising attacks

and Man-in-the-middle attacks against SSL etc.

Current security practices and models are focus on

securing the HTM. They focus on addressing security

issues observed in AJAX and Rich Internet

Applications (RIA) and compiling best practices and

methods to improve the security of AJAX based web

applications.

In 2012, Syed Imran Ahmed Qadri et al. [17] provide

a security framework for server and client side. In

this they provide some prevention methods which

will apply for the server side and alert replication is

also on client side. Content sniffing attacks occur if

browsers render non-HTML files embedded with

malicious HTML contents or JavaScript code as

HTML files. This mitigation effects such as the

stealing of sensitive information through the

execution of malicious JavaScript code. In this

framework client access the data which is encrypted

from the server side. From the server data is

encrypted using private key cryptography and file is

send after splitting so that we reduce the execution

time. They also add a tag bit concept which is

included for the means of checking the alteration; if

alteration performed tag bit is changed. Tag bit is

generated by a message digest algorithm. We have

implemented our approach in a java based

environment that can be integrated in web

applications written in various languages.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 82

In 2012, Sudhakar Parate et al. [18] provides a

comprehensive review on various techniques that

helps to improve the system, analysis of different

attack, detection of attack. It focuses on the critical

stages of preservation and acquisition of digital

evidence from the different source to be used as

evidence for aiding investigation.

3. Proposed Work

In this paper we have proposed a secure server client

environment for detecting content sniffing attack.

Our attack detection Framework works on below file

formats:

1) Text

2) HTML

3) PHP

4) PDF

5) Java Script

We explain our efficient methodology in the

subsequent sections. In this framework first admin

register the client so that client is authorized to access

the data. Then client request with the appropriate file

which he/she needed. Admin receives and

acknowledge the request. Then admin prepare the

data for send. Admin data preparation takes four

steps:

Key generation: In this phase a random key

generation technique is applied from the server side.

It will be generated every time when a fresh request

is arrived by the user.

Partition data: For reducing the overhead we

partition the data, so that the overhead of the files

will be maintained.PDF Splitting is not achieved in

[17]. We achieve page wise splitting of PDF files, so

that the time will be reduced.

Encryption data: Admin first encrypt the data by

Private Key cryptography, which uses the same key

to encrypt and decrypt the message. This type is also

known as symmetric key cryptography. In java we

can use Base64 encryption and decryption as defined

by RFC 2045 which provide a symmetric key

encryption. With symmetric encryption, both parties

use the same key for encryption and decryption

purposes. Creates a Base64 codec used for decoding

(all modes) and encoding in the given URL-safe

mode.

Hidden Bit: Then the admin add a hidden bit with

the encrypted file for the security of the file. If the

file is attacked or alters by any malicious attacker

then it is automatically changed and an alert will be

replicated to the server. Then the data send to the

client. The whole process is shown in figure 5. We

have implemented our approach in a java based

environment that can be integrated in web

applications written in various languages. We

develop server-side attack detection frameworks to

detect attack symptoms within response pages before

sending them to the client. The approaches are

designed based on the assumption that the server-side

program source is available for analysis, but we are

not allowed to alter the program code after sending in

the client environment. Admin of the server first

authorize a client to connect to the server. So that

proper log file of authorize client should be

maintained. Then client can request only supported

files from the server, in our case supported files are

web pages, text data and PDF. Otherwise request is

not granted as shown in Figure4. Then admin

generates key for decryption, by using key generation

algorithm as shown in figure 1. Then we apply

partition and default encryption scheme of java as

shown in figure 2 and figure 3. As per the above

algorithm if the size is less than or equal to100 KB it

is partition into 2 parts, if it is less than or equal to

250 KB then it is partition into 3 parts, if it is less

than or equal to 500 Kb then it is partition into 4

parts, otherwise it is partition into 6 parts. PDF split

page wise. Then From the server data is encrypted

using private key cryptography and file is send after

splitting so that we reduce the execution time. We

also add a hidden bit concept which is included for

the means of checking the alteration; if alteration

performed the hidden bit is changed. This approach

provides the security in the server side and alert the

client which reduces the non-secure violation with

data use. In this approach client want to establish a

secure connection from the server for gathering data

from the server. Client simply requests the data and

the admin provides the available resources from the

server database. Each user must possess the same key

to send encrypted messages to each other. The sender

uses the key to encrypt their message, and then

transmits it to the receiver. The receiver, who is in

procession of the same key, uses it to decrypt the

message. The security of this encryption model relies

on the end users to protect the secret key properly. If

an unauthorized user were able to intercept the key,

they would be able to read any encrypted messages

sent by other users. It’s extremely important that the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 83

users protect the key themselves, as well as any

communications in which they transmit the key to

another person. For time detection we also open the

link for the attacker so that we check the time of

attack. If the attacker attacks and successfully

updates the content then the hidden bit will be

changed automatically and an alert response will

generated at the server side. Servers maintain the

attack time and replicate the time to the client and

notify the client for the attack by the hidden bit. In

this manner we can detect the attack. The analysis of

detection is explained in the result analysis section to

show the effectiveness of the algorithm.

Figure 1: Key Generation Algorithm

Figure 2: Partition Algorithm

By the below combination we ready the data for

preprocessing, so that it is secure. If any way attacker

attacks then we add the hidden bit to detect, so that

by detection the client can re-request the file for

again preprocessing the data. So by approaching the

flowchart(figure 4) we can secure the data or alert the

server for the attack.

Figure 3: Encryption Algorithm

Figure 4: Flowchart

Key Generation Algorithm

Step 1: Random random = new Random();

Step2:Strings1=new

String("abcdefghijklmnopqrstvuwxyz");

Step3:Strings2=new

String("ABCDEFGHIJKLMNOPQRSTVUWXYZ");

Step 4:String s3=new String("0123456789");

Step 5: int r1 = random.nextInt(26);

Step 6:String key=new String();

Step 7: key=String.valueOf(s1.charAt(r1));

Step 8:r1 = random.nextInt(26);

Step 9:key=key+String.valueOf(s2.charAt(r1));

Step 10:r1 = random.nextInt(10);

Step 11:key=key+String.valueOf(s3.charAt(r1));

Step 12:r1 = random.nextInt(26);

Step 13: key=key+String.valueOf(s2.charAt(r1));

Step 14: r1 = random.nextInt(26);

Step 15: key=key+String.valueOf(s1.charAt(r1));

Step 16: r1 = random.nextInt(10);

Step 17: key=key+String.valueOf(s3.charAt(r1));

Step 18: return(key);

Partition Algorithm

Step 1: Initialization

int c=0; // counter is initializes to 0

int len=0; // Length of file is initializes to 0

Step 2: File f=new File(f1);

Step 3: long size=f.length()/1024;

Step 4: if(size<=100)

len=(int)f.length()/2;

Step 5: else if(size<=250)

len=(int)f.length()/3;

Step 6: else if(size<=500)

len=(int)f.length()/4;

Step 7: else

len=(int)f.length()/6;

Encryption Algorithm

Step 1: Cipher cipher = Cipher.getInstance(xform);

Step2: IvParameterSpec ips = new

IvParameterSpec(iv);

Step3:cipher.init (Cipher.ENCRYPT_MODE, key, ips);

Step 4: return cipher.doFinal(inpBytes);

Step 5: private static byte[] decrypt(byte[] inpBytes,

SecretKey key, String xform)

Step 6: Repeat step 1 and step 2.

Step7:cipher.init(Cipher.DECRYPT_MODE, key, ips);

Step 8: return cipher.doFinal(inpBytes);

For the above algorithm we use java packages like

crypto.KeyGenerator,crypto.SecretKey,crypto.spec.

IvParameterSpec and crypto.Cipher.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 84

Table 2: Server Side Database (After Send)

Table 3: Client Database

Client

Fname Tagcount Js Php Loc Hidden Bit Key Client Siize

ab.html 1 16 0 1527 0 jE5Jt4 u1 241889

fundemo2.html 4 2 0 20 0 oO8Mb7 user2 352

ajax1.html 4 1 0 43 0 oT0Yi3 user1 666

ajax1.html 4 1 0 43 0 oT0Yi3 user1 666

demo.html 3 1 0 19 1 oV8Oo1 u1 307

54.pdf 0 0 0 1700 0 pX1Qc4 u1 190143

Figure 5: Working Process

After send

Fname Tagcoun

t

Js Php Loc Tag Key Sendingtim

e

Rectime

ab.html 1 16 0 1527 1 jE5Jt4 2:58:42:290 2:58:42:368

54.pdf 0 0 0 1700 1 pX1Qc4 3:7:22:838 3:7:22:917

demo.html 3 1 0 19 1 oV8Oo1 3:11:28:587 3:11:28:670

ajax1.html 4 1 0 43 1 oT0Yi3 5:41:39:235 5:41:39:297

ajax1.html 4 1 0 43 1 oT0Yi3 6:0:16:987 6:0:17:50

fundemo2.

html

4 2 0 20 1 oO8Mb7 6:47:48:216 6:47:48:263

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 85

4. Result Analysis

For maintain the information we create two types of

databases one from the server side and one from the

client side. In server side we maintain two copies of

the same table one for Before Send and other for after

send. If the content is altered automatically the

hidden bit is changed which implies that there is a

change in the file. It is automatically alerted to the

client, so those clients re-request the data from the

server. Server also maintain the time of sending and

receiving of files.

Table 1: Server Side Database (Before Send)

Before send

Fname Script

Tag

Js Php Loc Hidden

Bit

Key

ab.html 1 16 0 1527 1 jE5Jt4

ab.html 1 16 0 1527 1 nH1Yo2

ajax1.html 4 1 0 43 1 oD5My3

fundemo2.html 4 2 0 20 1 oO8Mb7

ajax1.html 4 1 0 43 1 oT0Yi3

ajax1.html 4 1 0 43 1 pP1Ur7

54.pdf 0 0 0 1700 1 pX1Qc4

abc.html 4 4 0 18 1 qW5Gb1

If we analyze the above table1 then we see that the

server keeps the details of all the file which is send to

the client with the above table attributes. If we

analyze the table2 then we see that the server keeps

the details of the entire file which is send to the client

with the above table attributes and the receiving time

also of the client. If we analyze the table 3 which is

created in the client side then we see that the server

keeps the details of the entire file which is send to the

client with the above table attributes with the client

name also.

Server also maintains the file size with the response

and sending time in the separate table as shown in

table 4.

Table 4: before Attack

Before attack

Fname Size Response Sendtime

ab.html 241889 2:58:33:490 2:58:42:290

54.pdf 190143 3:6:44:703 3:7:22:838

demo.html 307 3:10:2:710 3:11:28:587

ajax1.html 666 5:41:29:160 6:0:16:987

ajax1.html 666 6:0:2:731 6:0:16:987

fundemo2.html 352 6:47:37:113 6:47:48:216

The result produce by the above algorithm is shown

in Table 5 and 6. When a client sends a request to the

server. Server first assign a key to the client for the

particular web file and the hidden bit is set to be 1.

Then server decomposes and encrypts it for the

purpose of sending data. In this stage if any content

sniffer change or delete the data, it is automatically

replicated to the server and the hidden bit is changed

to 0 instead of 1 which shows that the values are

changed by the outsiders. Then server replicates the

hidden bit to client also so that client must aware of

that data changes and beware of the use of data. Our

server alerts times shows this mechanism with time

calculation when server knows the information about

the change data. The time period which our

mechanism shows is in millisecond which shows that

it is better than the previous mechanism. The time of

attack is shown in table 5 and 6.

Table 5: Data after Attack

After attack

Fname Size Attacktime Servertime

ab.html 78827 3:4:6:426 3:4:6:567

54.pdf 190143 3:7:48:142 3:7:48:289

ajax1.html 295 6:29:15:694 6:29:15:788

fundemo2.html 164 6:50:57:781 6:50:57:859

For better comparison we consider the reference [15]

if we compare the size of our pdf then the size of

54.pdf is of 186 KB. According to [15] for pdf size

130.83 the response time is 203 ms but in our case

the response time is 140 ms which is reduced. If we

compare the text file used in [15] then the size is 0.02

KB and Response time is 42 but in our case for 30

Kb txt the response time is 62 ms. So we can say we

reduce the time of content sniffing in case of text

files by our approach. In our approach we also split

the PDF files.

Table 6: Data after Attack

After attack

Fname Size Attacktime Servertime ms

ab.html 78827 3:4:6:426 3:4:6:567 141

54.pdf 190143 3:7:48:142 3:7:48:289 140

Ab1.txt 13111 8:8:43:140 8:8:43:202 62

5. Conclusions

Web-based attacks due to program security

vulnerabilities are huge concerns for users. While

performing seemingly benign functionalities at the

browser-level, users might become victims without

their knowledge. These might lead to unwanted

malicious effects such as the execution of JavaScript

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-1 Issue-9 March-2013

 86

code that accesses and transfers credential

information to unwanted websites and the filling of

forms that result in stealing login credentials. In this

paper we survey several aspects of content sniffing

and analyses the pros and cons. So in this paper we

proposed an efficient approach in the above direction

and come with the result which reduces the attack

time detection in comparison to the previous

approach.

References

[1] D. Geer, “Security Technologies Go Phishing,”

Computer Archive, Volume 38, Issue 6, June

2005, pp. 18-21.

[2] Anti-Phishing Working Group, Phishing Activity

Trends Report. 2006.

[3] Keizer, G., Phishing Costs Nearly $1 Billion,

TechWebTechnology News.

[4] McMillan, R., Gartner: Consumers to lose $2.8

billion to phishers in 2006, NetworkWorld, 2006.

[5] H. Shahriar and M. Zulkernine, “Mitigating

Program Security Vulnerabilities: Challenges and

Approaches,” ACM Computing Surveys, Vol. 44,

Issue 3, September 2012.

[6] H. Shahriar and M. Zulkernine, “Taxonomy and

Classification of Automatic Monitoring of

Program Security Vulnerability Exploitations,”

Journal of Systems and Software, Elsevier

Science, Vol. 84, Issue 2, February 2011, p. 250-

269.

[7] Z. Mao, N. Li, and I. Molloy, “Defeating Cross-

Site Request Forgery Attacks with Browser -

Enforced Authenticity Protection,” Proc. of

Financial Cryptography and Data Security,

Barbados, Feb 2009, p. 238-255.

[8] Phishing Activity Trends Report, 2010, Accessed

from

www.antiphishing.org/reports/apwg_report_Q1_

2010.pdf.

[9] Ashutosh Kumar Dubey, Animesh Kumar

Dubey, Mayank Namdev, Shiv Shakti

Shrivastava,”Cloud-User Security Based on RSA

and MD5 Algorithm for Resource Attestation and

Sharing in Java Environment”, CONSEG 2012.

[10] Rakesh Kumar, Hardeep Singh, “Analysis of

Information Systems Security Issues and Security

Techniques”, International Journal of Advanced

Computer Research (IJACR), Volume-2

Number-4 Issue-6 December-2012.

[11] Amritpal Singh, Nitin Umesh, “Implementing

Log Based Security in Data Warehouse”,

International Journal of Advanced Computer

Research (IJACR) Volume-3 Number-1 Issue-8

March-2013.

[12] Ankita Bhatewara, Kalyani Waghmare,

“Improving Network Scalability Using NoSql

Database”, International Journal of Advanced

Computer Research (IJACR) Volume-2 Number-

4 Issue-6 December-2012.

[13] Hossain Shahriar and Mohammad Zulkernine,

“Client-Side Detection of Cross-Site Request

Forgery Attacks”, 2010 IEEE 21st International

Symposium on Software Reliability Engineering.

[14] Misganaw Tadesse Gebre, Kyung-Suk Lhee and

ManPyo Hong, “A Robust Defense against

Content-Sniffing XSS Attacks”, IEEE 2010.

[15] Anton Barua, Hossain Shahriar, and Mohammad

Zulkernine , “Server Side Detection of Content

Sniffing Attacks”, 2011 22nd IEEE International

Symposium on Software Reliability Engineering.

[16] Usman Shaukat Qurashi , Zahid Anwar, “AJAX

Based Attacks:Exploiting Web 2.0”,IEEE 2012.

[17] Syed Imran Ahmed Qadri, Kiran Pandey, “Tag

Based Client Side Detection of Content Sniffing

Attacks with File Encryption and File Splitter

Technique”, International Journal of Advanced

Computer Research (IJACR), Volume-2,

Number-3, Issue-5, September-2012.

[18] Sudhakar Parate, S. M. Nirkhi, “A Review of

Network Forensics Techniques for the Analysis

of Web Based Attack”, International Journal of

Advanced Computer Research (IJACR), Volume-

2 Number-4 Issue-6 December-2012.

Animesh Dubey was born in Madhya

Pradesh on 01 January 1987. He

received the B.E. degree in Computer

Science from Shree Institute of Science

Technology, Bhopal, India in 2009 and

pursuing M.Tech degree from SSSIST,

Sehore, Bhopal, India in Computer

Science Engineering.

http://www.antiphishing.org/reports/apwg_report_Q1_2010.pdf
http://www.antiphishing.org/reports/apwg_report_Q1_2010.pdf

