
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

179

Implementation of OpenSSL API’s for TLS 1.2 Operation

Maria Navin J R
1
, Suresh P

2
, Pradeep K R

3

Abstract

OpenSSL is a popular and effective open source

version of SSL/TLS, the most widely used protocol

for secure network communications to provide data

unity and secrecy between two different

applications. TLS 1.2 is currently the most secure

and up to date version of the standard. The main

advantages of TLS 1.2 over previous versions are: It

fixes cryptography flaws over previous version,

supports additional crypto algorithms and supports

flexibility in defining those algorithms. Fixing of

flaws increases security which can be achieved by

modifying the protocol to meet the better

requirement and constraints for security needed.

OpenSSL is a high quality package used by many of

the commercial products available in the market.

Achieving RFC compliance is very important for

commercial products, as OpenSSL does not support

TLS 1.2, the main objective of this paper is to show

how TLS 1.2 can be supported in OpenSSL.

Keywords

Message Integrity, Public Key Cryptography, OpenSSL,

Symmetric Cryptography, TLS.

1. Introduction

Data integrity and confidentiality between

communicating applications can be achieved using

the TLS protocol. The protocol is stacked with two

layers: namely the TLS Record and Handshake

protocols. These protocols are, layered on top of

some reliable transport protocol (e.g., TCP [1]). The

TLS Record Protocol provides security while making

connection which comprises of two basic properties:

This work was supported in part by the Department of CSE & ISE,
SVCE, Bangalore.

Maria Navin J R, Assistant Professor, Department of ISE,

SVCE, Bangalore.
Suresh P, Assistant Professor, Department of CSE, SVCE,

Bangalore, India.

Pradeep K R, Assistant Professor, Department of ISE, SVCE,
Bangalore, India.

The connection established is confidential and

encryption of data is done using symmetric

cryptography (e.g., AES [2], RC4 [3], etc.). The keys

for this symmetric encryption are generated uniquely

for each connection and are based on a secret key

negotiated by another protocol [4].

- The connection is reliable. The transport of message

includes a message integrity check using a keyed

Medium Access Control (MAC). Secure hash

functions (e.g., SHA-1, etc.) are used for

computations of MAC [5].

The TLS Record Protocol can operate without a

MAC, but is generally only used in message integrity

check mode while another protocol are working with

the help of Record Protocol as a transport for

negotiating security parameters. The TLS Record

Protocol can be used by encapsulating the various

higher-level protocols. The protocol allows

negotiating an encryption algorithm and

cryptographic keys between the server and the client

to authenticate each other before the application

protocol transmits or receives its first byte of data.

The TLS Protocol provides security while connecting

which has three basic properties:

- The identity of the peer's can be authenticated using

public key or asymmetric key cryptography (e.g.,

RSA [6], DSA [7], etc.). The authentication can be

made optional, but while communicating between

peer to peer one of the peer needs it.

 - The negotiation is secured by having secret key, the

negotiated secret key is unavailable to eaves droppers

and for any connection which is authenticated, the

secret key cannot be obtained even by an attacker

who can place himself in the middle of the

connection.

- The negotiation made between the peer's is reliable,

where no attacker can modify the negotiation made

between the peer's without being detected by the

parties while making the communication.

The advantage of using TLS is since it is independent

application protocol and higher-level protocols can

be placed on top of the TLS protocol transparently.

But the TLS standard does not specify how the

security is added to protocol. The decisions made on

to initiate TLS handshaking and interpretation of the

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

180

exchanging the authentication certificates are left to

the judgment of the designers and protocols

implementers which will run on top of TLS.

2. TLS 1.2 comparison with TLS 1.1

TLS 1.2 [6] protocol contains improved flexibility,

particularly in negotiation of cryptography

algorithms. Major differences compared with TLS

1.1 [7] are:

 The MD5-SHA-1 combination in the

pseudorandom function (PRF) was replaced

with SHA-256, with an option to use cipher-

suite specified PRFs.

 Cipher-Suite specific hash algorithms as an

option were introduced in SHA-256 which

replaced MD5-SHA-1 in the finished

message.

 The MD5-SHA-1 combination in the

digitally-signed element was replaced with a

single hash. Signed elements now include a

field that explicitly specifies the hash

algorithm used.

 Specification of hash and signature

algorithms by the clients and servers.

 Expansion of support for authenticated

encryption ciphers, used mainly for

Galois/Counter Mode (GCM) mode of

Advanced Encryption Standard encryption.

 Encrypted PreMasterSecret version numbers

verification.

3. OpenSSL basics

OpenSSL is a free, full-featured SSL implementation

currently available for use with the C and C++

programming languages. It is an inherited work from

SSLeay and is supported by UNIX and most versions

of Microsoft Windows operating systems. In

December 1998, development of SSLeay ceased, and

the first version of OpenSSL was released as 0.9.1c,

using SSLeay 0.9.1b. The OpenSSL toolkit is

licensed under an Apache-style license, which

basically means that you are free to get and use it for

commercial and non-commercial purposes subject to

some simple license conditions. OpenSSL is

essentially two tools in one: a cryptography library

and an SSL toolkit. There are no other SSL

implementations in C which are free and available for

commercial use.

4. System design

Fig. 1 shows the high level TLS 1.2 design and

OpenSSL Library modules are depicted in Fig. 2.

Secure communication can be achieved using TLS

1.2 protocol which is a part of SSL library.

Application data is passed through the reliable

transport protocol e.g. TCP through SSL library as

SSL packet. SSL packet is further divided into

transport layer packet and sent across to other entity.

TLS 1.2 Module: This module is used to allow peers

to agree upon security parameters for the record

layer, authenticate themselves, instantiate negotiated

security parameters and report error conditions to

each other.

TLS 1.2 API Module: This module provides the

additional user interface required for TLS 1.2 related

information (Supported sign-hash extensions for

client hello and certificate extensions) to SSL object.

TLS1.0 module: This module provides functionality

of TLS1.0.

Fig 1: High level TLS 1.2 design

S2 and S3 module: These modules support

functionality of SSL 2.0 and SSL 3.0 respectively.

S23 module: This module supports compatibility of

SSL 2.0 and SSL 3.0.

SSL ciphersuite module: This module supports all

SSL, TLS 1.0 and TLS 1.2 cipher suites.

SSL PKI handle module: This module supports

Public Key Infrastructure (i.e. certificate).

SSL cryptography module: This module supports

all kind of cryptographic operations.

SSL socket module: This module supports bind of

socket to SSL object.

SSL error handle and log module: This module

supports logging of all error messages.

The cryptographic parameters of the session state are

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

181

produced by the TLS Handshake Protocol which uses

messages to negotiate the cipher suite and

authenticate the server to the client and to exchange

information for building the cryptographic secrets.

Fig 2: Modules involved in OpenSSL

library for TLS 1.2

The TLS Handshaking is done in four phases:

- Establishing security capability through Client

Hello and Server Hello messages.

- Authentication is achieved by exchange of keys

between client and server.

- Client Key Exchange and authentication. The client

is authenticated to the server. Both the client and the

server know the pre-master secret.

- Finalizing and Finishing. Now the client and the

server are ready to exchange data.

The high level changes required in OpenSSL library

to support TLS 1.2 are:

- SHA256 is implemented in the cryptography

library. For SSL corresponding ID and cipher needs

to be supported.

- While using TLS1.2 the PRF function should use

SHA256.

- New TLS1.2 ciphersuite based on SHA256 should

be added.

- Protocol negotiation should now include TLS1.2

version checking.

Signature algorithm extension
Client uses this extension to indicate to the server

which signature/hash algorithm pairs may be used in

digital signatures.

1. Changes required in client for Client Hello

message: Client adds the hash and signature

algorithm pair that it can support as

extension

2. Changes required in server for Client Hello

message: Parsing of the signature algorithm

extension is required. While selecting cipher

suite the server must check all certificates

that are signed by a hash/signature algorithm

pair that appears in the extension. Extension

present is detected by whether there are

bytes following the compression methods at

the end of the Client Hello. If client doesn’t

send signature algorithms use SHA1, RSA

pair.

3. Changes required in Server Certificate

message: Selected certificates must be

signed by Signature and Hash algorithm

pairs protected by client.

4. Changes required in client for Server

Certificate message: Client must verify

server certificate chain provided by server is

signed with client supported sign-hash pair.

5. Changes in server required for Server key

exchange message: Signature and hash

algorithm used for singing parameter must

be one of the pair provided by client. The

hash and signature algorithms must be

compatible with the key in the server’s end-

entity certificate.

Certificate type and CA check in Certificate

Request

TLS 1.2 adds Certificate type and CA checks as part

of certificate request processing at client side.

Changes required in Client for Certificate request

message: Apart from parsing certificate types, client

must use certificate types for selecting the client

certificate. If the certificate authorities list in the

certificate request message is not empty, then one of

the certificates in the certificate chain should be

issued.

Signature/Hash Algorithm extension in Certificate

request

TLS 1.2 adds supported_signature_algorithms as part

of certificate request.

1. Changes required in Server for Certificate

Request message: In addition to cert types,

server adds the Hash and signature

algorithm pairs that server supports in

certificate request.

2. Changes required in Client for Certificate

Request message: End entity certificate

public key has to be compatible with

certificate types listed in Certificate request.

The certificates must be signed using an

acceptable hash/signature algorithm pair.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

182

3. Changes required in Client for Client

Certificate: Client sends the selected Client

certificate chain. If no certificate is match

server criteria, it must send the client

certificate message containing no certificate.

4. Changes required in Server for Client

Certificate: Server verifies the Client

certificate chain. During verification check

whether the certificate provided by client are

signed with server supported sign-hash

algorithm pairs.

5. Implementation

The list below shows the OpenSSL API call flow for

TLS 1.2 protocol.

1. Global system initialization

SSL_library_init();

SSL_load_error_strings()

2. Application creates a TCP socket connection

tem=accept(s,(structsockaddr*)&from,(void*)&len);

3. Get all the function ptr for TLS 1.2 implementation

meth=TLSv1_2_method();

4. Create a new global context to store all global

configurations

ctx=SSL_CTX_new(meth);

5. Load certificate and private key

SSL_CTX_use_certificate_chain_file(ctx, keyfile);

SSL_CTX_use_PrivateKey_file(ctx, keyfile,

SSL_FILETYPE_PEM);

6. Load the CAs we trust

SSL_CTX_load_verify_locations(ctx, CA_LIST,0);

7. Create a context per connection (SSL object)

ssl = SSL_new(ctx);

8. Create I/O abstraction for the socket

sbio = BIO_new_socket ((int)serverSocket,

BIO_NOCLOSE);

9. Associate the I/O abstraction with the SSL object

SSL_set_bio(ssl,sbio,sbio);

10. Perform SSL handshake

ret = SSL_accept(ssl);

11. Write data securely

ret = SSL_write(ssl,writeBuf,writeLen);

12. Read data securely

ret = SSL_read(ssl,buf,1024);

13. Send close_notify alert to securely teardown the

connection ret = SSL_shutdown(ssl);

14. Free the SSL context and close the connection

SSL_free(ssl);

closesocket(serverSocket);

Configurations:

1. SSL_METHOD *TLSv1_2_method(void)

function acts like a constructor for TLS 1.2

functionality. SSL_METHOD structure is

returned, which is populated with pointers to

function implementing TLS 1.2 operations.

2. The function static int tls1_P_hash(const

EVP_MD *md, const unsigned char *sec,

int sec_len, const void *seed1, int

seed1_len, const void *seed2, int seed2_len,

const void *seed3, int seed3_len, const void

*seed4, int seed4_len, const void *seed5, int

seed5_len, unsigned char *out, int olen)

should be modified to support the new hash

mechanism EVP_DigestSign instead of

HMAC_Update.

3. Attacks described in CBCATT [8] can be

prevented by adding an explicit Initialization

Vector to the function int tls1_enciv(SSL *s,

int send).

4. The function int tls1_final_finish_mac(SSL

*s, const char *str, int slen, unsigned char

*out) should be modified for calculating the

finished message. For TLS 1.2 the finished

message should be generated using the hash

algorithm that is used PRF function.

5. Add a function long ssl_get_algorithm2(SSL

*s) to get the digest algorithm to be used.

6. Function SSL_ctxSetCipherList has to be

modified to add new TLS 1.2 ciphers

7. The method function macro for TLS 1.2

IMPLEMENT_tls12_meth_func has to be

added.

Handshake Message flow

1. s3_clnt.c – Addition of sign-hash extensions

are done in ssl3_client_hello function. And

new TLS 1.2 ciphers introduced.

2. s3_srvr.c – The sign-hash extensions are

parsed in function ssl3_get_client_hello and

the cipher based on the certificate is

selected. (In this, check if the end entity

certificate is having the matching sign-hash

extensions as sent by the client).

3. s3_both.c – Function ssl3_output_cert_chain

is modified to perform the sign-hash check

for the CA. End entity certificate is taken

care in the ssl3_get_client_hello, choose

cipher itself.

4. s3_srvr.c–Function

ssl3_send_certificate_request is updated to

set the sign-hash pairs in the certificate

request message.

5. s3_clnt.c–Infunction

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-3 Number-3 Issue-12 September-2013

183

ssl3_send_client_certificate the client

certificate will be checked to see if it

matches the sign-hash pairs.

6. s3_enc.c – Calculating hash of all the

handshake messages is updated in function

ssl3_finish_mac.

7. T1_enc.c – The new PRF implementation

for TLS 1.2 is added.

6. Conclusion

SSL / TLS are the most widely deployed security

protocol standard for providing authentication,

integrity and secrecy. OpenSSL is primarily a library

that is used by developers to include support for

strong cryptography in their programs, but it is also a

tool that provides access to much of its functionality

from the command line. Computation of hash for file

contents can be performed easily by using command-

line tool. OpenSSL toolkit is licensed under an

Apache-style license, means that you are free to get

and use it for commercial and non-commercial

purposes. TLS 1.2 is currently the most secure and up

to date version of the standard. Achieving RFC

compliance is very important for commercial

products. In this paper how TLS 1.2 can be supported

in OpenSSL is shown there by meeting the stringent

security guidelines for commercial product.

References

[1] Postel, J., "Transmission Control Protocol", STD

7, RFC 793, September 1981.

[2] National Institute of Standards and Technology,

"Specification for the Advanced Encryption

Standard (AES)" FIPS 197. November 26, 2001.

[3] B. Schneier. "Applied Cryptography: Protocols,

Algorithms, and Source Code in C, 2nd ed.",

Published by John Wiley & Sons, Inc. 1996.

[4] Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.1", RFC 4346,

April 2006.

[5] Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246,

April 2008.

[6] R. Rivest, A. Shamir, and L. M. Adleman, "A

Method for Obtaining Digital Signatures and

Public-Key Cryptosystems", Communications of

the ACM, v. 21, n. 2, Feb 1978, pp. 120-126.

[7] NIST FIPS PUB 186-2, "Digital Signature

Standard", National Institute of Standards and

Technology, U.S. Department of Commerce,

2000.

[8] Moeller, B., "Security of CBC Ciphersuites in

SSL/TLS: Problems and Countermeasures",

http://www.openssl.org/~bodo/tls-cbc.txt.

Suresh P received his ME degree

from UVCE, Bangalore University,

Bangalore, India. He is presently

working as an Assistant Professor in

Dept. of CSE, SVCE, Bangalore. His

research interest includes Computer

Network Security, Mobile Computing,

Computer Architecture and

Distributed Systems.

Pradeep K R received his M Tech

degree from SJCE, VTU, Mysore,

India. He is presently working as an

Assistant Professor in Dept. of ISE,

SVCE, Bangalore. His research interest

includes Wireless Sensor Networks and

Cloud Computing.

Maria Navin J R received his ME

degree from UVCE, Bangalore

University, Bangalore, India. He is

presently working as an Assistant

Professor in Dept. of ISE, SVCE,

Bangalore. His research interest

includes Computer Network Security

and Distributed Systems.

http://www.openssl.org/~bodo/tls-cbc.txt

