
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

212

Performance evaluation of searching using various indexing techniques in

Lucene with Relational Databases

Chetan Khilosiya

1
, H. P. Channe

2

Abstract

The Organizations commonly use relational

databases for transaction processing, but big

portion of database operations involve select

operation. As data grows beyond few million

records selection tends to take much time in whole

transaction. One approach is to build indexes in

database on columns which are frequently used in

selection. If there are more than one table (which is

general case) selection takes more time. Another

approach is to use searching framework for

searching records. Apache lucene is very popular,

fast open source searching framework used in many

projects. So here we are trying to evaluate use of

lucene searching to find records fast so as to get

performance benefits from lucene's fast searching

capabilities and offload selection work from

databases. We will evaluate different indexing types

in lucene to see which best fits to our need. At last

we evaluate that is this arrangement can provide

performance benefits, and which index type is best

suited for that.

Keywords

Performance evaluation, Search Process, Indexing

methods.

1. Introduction

Relational databases are required and optimized to

support ACID properties. Selection operations are

very common, but don't require ACID property.

There are many organizations that do less

insertion/update queries related to selection queries.

For large databases selection tend to take much time

and resources. To get more performance more servers

can be added, but cost off licensing increases as

servers increase for popular commercial databases.

On the other hand searching frameworks are designed

to provide better performance for retrieving records,

Manuscript received March 07, 2014.

Chetan Khilosiya, Computer Engineering, University of Pune,

Pune, India.
H. P. Channe, Computer Engineering, University of Pune,

Pune, India.

on expense of requiring more time for insertion and

updates. As organization need relational database to

provide transaction management support they can't

replace databases with searching framework which

provide better performance for searching. So by

using external searching framework we can offload

work of fetching records from databases, so that

databases remain free to do other transactional work.

We are using Apache Lucene framework to provide

searching facility [1]. We are trying to evaluate the

framework in which the records are searched in

lucene [2], and then they are used in database

operations. For our analysis we are using MySQL

database.

Lucene internally stores indexing in form of

documents. The documents internally contain fields.

Each field has field name. With each field name its

value is stored. In a document we can add multiple

fields. So for searching we can search on a field of

documents. So while adding database entries from

mysql database, we treat each row as a document and

each column as fields. Each document is stored with

its unique document ID. While searching lucene only

provides document IDs. Using document IDs we can

retrieve documents. The document IDs are unique but

not permanent. We can add documents and delete

documents entries also. So the IDs for deleted

documents do remain unused. Periodically lucene

performs compression of index in which the

document IDs of deleted documents are collected for

reuse, at this time the document IDs change, that's

why one cannot rely on lucene document Ids [3].

There is another framework apache solr which is a

open source enterprise search platform from the

apache lucene project but it is used for web searching

purpose. Solr internally uses lucene for indexing and

searching purpose and builds the server above that to

provide scaling the searching using index replication

on multiple servers. The centre server adds the

indexing entries and then the server replicates the

indexes. The searching can be performed using any

replication servers.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

213

2. Related Work

Lucene provides many indexing types. We are using

SimpleFSDirectory which uses JAVA IO API to

store index on hard disk, NIOFSDirectory uses

JAVA NIO API to store index on hard disk, and

RAMDirectory which uses physical memory to store

index. RAMDirectory gives best performance for

small indexes; it has limitation of physical memory

available on system [1]. Lucene shows search results

in relevance order, so more relevant results shown

first. The automatic indexing is performed on

documents, and the vector of document containing

the words in documents and the weight of the word in

document [4]. We can calculate the precision and

recall of the term search. But in our requirement

relevance is not required as all records are necessary

for transaction processing. Lucene search queries can

be used to search on multiple fields. The automatic

text classification can be done using pre-classified

documents set and using machine learning. But this

method produces vectors which are not human

understandable. The author gives genetic algorithms

to classify documents and produce classification

which is human readable [5]. Even in lucene we can

provide fuzzy search [6] in which small error in input

can be tolerated [7]. Lucene divides each input string

in tokens (single word). Multiple word input is

divided into tokens to search. Multiple keywords can

be used on same column to search. Complex

identifier indexing is now in active research area [8],

but it is not supported by lucene.

In 2011, Guoliang Li et al. [9], studied different

approaches for type-ahead search. As users enters

query, every keystroke generates a new query. They

are using fuzzy search to mitigate minor errors. They

use tree with inverted lists at leaf nodes as data

structures. In 2011, Jimmy Lin et al. [10], proposes to

use full-text indexing for map-reduce framework to

optimize selection operations on text fields within

records. Results show moderate improvement in

query processing time and processing time savings at

worker nodes. In 2003, James Abello et al. [11]

shows indexing mechanisms can also be used for

graph databases. They propose hierarchical two-level

indexing schema called gkd*-tree, which composed

of first-level kd-tree index with second-level of

redundant R*-tree that indexes leaf pages of gkd-tree.

In 2001, Maayan Geffet et al. [12] create

Bibliography on Web project and uses hierarchical

index to which entries are linked. So search results

would give hierarchy of results of relevant topics. In

2005 H. V. Jagadish et al. [13] presents a efficient

B+-tree based indexing method for k-nearest

neighbour search in high-dimensional metric space.

Data partitions are flattened into single dimensional

value for indexing and KNN-search performed using

range search. In 2005, Paolo Ferragina et al. [14]

propose two compressed data structures for full-text

indexing so that while searching, decompression of

data would not require. So that data storage will be

less and overall processing required for searching

will be less. In 2012, Rushdi Shams et al. [15]

propose that using text denoising method that extracts

denoised text, the indexer performs better than full-

text trained indexer. Text denoising can reduce text

size up to 30% of original size. Nutch is a search

engine which is very scalable and uses apache lucene

as core indexing technique. In 2007, Jose E. Moreira

et al. [16] analyse performance and scalability of

various configurations of nutch.

3. Programmer’s Design

We created three different indexes, and mysql

database to evaluate record fetching performance.

Below is workflow diagram.

Figure 1: Workflow of Evaluation

Mathematical Model

S = System

S = {I, O, BD, BLI, PED, PEL, A}

Input:

 I = {RF}

 RF = Input raw file.

Output:

 O = {DB, SI, NI, RI, R}

 Where,

 DB = mysql Database.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

214

 SI = Simple File System Directory Index

 NI = NIO File System Directory Index

 RI = RAM Directory Index

 R = Result of Analysis

Functions:

 BD (RF) ∈ RF → DB

 Build mysql database from raw file data.

 BL (RF) ∈ RF → SI, NI, RI

 Build indices in lucene from raw file data.

 PED (DB, Q) ∈ DB, Q → Td

 Get query time (performance measure) for

selection queries from mysql database.

 PEL (SI, NI, RI, Q) ∈ SI, NI, RI, Q → Tl

 Get performance measure in lucene for different

indexes.

 A (Td, Tl) ∈ Td, Tl → R

 Get Analysis Result from two performance

measures.

Below given the system configuration used to take

performance measure.

Processor: 1.7 GHz, Core i5

RAM: 4GB, Hard disk: 160 GB,

OS: Fedora 17, java environment: openjdk-1.7.

Apache Lucene 3.6, mysql 5.5

The last RAM index stored is the method in which

we store index on hard disk as well as in RAM. So

next time when we restart server the index can be

loaded in RAM which is very fast compared to build

index again. The database system used is mysql.

We use default 16MB cache for indexes. Lucene

query for user Lara smith shows 3 results than 1

shown in mysql. This is due to lucene shows extra

results which contain search keyword as sub

keyword. But exact match keywords are displayed

due to lucene scoring formula [3].

t (t f(t in d) idf(t) boost(t field in d) lengthNorm(t

field in d)) coord(q,d) queryNorm(q).

We can formulate different lucene query which only

do exact match on keywords so that it will give same

results as mysql and we don't need to process excess

results.

Dynamic Programming and Serialization

As different users can give different, many users have

part of the query common.

Figure 2: Mapping function of users to queries

Each query is then executed on all indexes to

evaluate performance of each index.

Figure 3: Mapping function of queries to Lucene

Index

Data independence and Data Flow Architecture

The user uses two searching mechanisms one is

mysql search and other is lucene search. Mysql

search uses mysql database to store data and search.

Lucene search uses lucene indexes to search records.

Administrator builds database from input of raw data.

And also build indexes from same data.

Figure 4: Data Flow Architecture

4. Results and Discussion

Figure 5: MySQL searching performance

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

215

We used 1 million records general user information

with 28 columns, which is inserted in mysql as well

as used to create index in lucene. The user ID is used

as primary key to identify particular user information

record. The searching is performed in three phases

using 10,000 records, 100,000 records and 1 million

records. Figure 5 is showing the mysql searching

performance for three phases. Regardless of search

query the searching time in mysql is nearly constant,

because mysql searches entire table for any search

query which requires the same time for same number

of records. The sharp increase in searching time

shows that searching time is linearly proportional to

number of records. Searching time is not related to

how many number of records matches our search

query.

Figure 6: Lucene Indexing performance using

single thread

Figure 6 shows Lucene Indexing performance while

running single thread for indexing. It shows that

RAM Index takes less time that Simple Index and

NIO Index.

Figure 7 shows Lucene Indexing performance while

running 4 threads. Building Lucene Indices required

slightly less time than single threading approach.

With multithreading approach size of Index increases

slightly. As RAM index stores data completely in

physical memory the RAM index with stored fields is

not practical for indices greater than few hundred

megabytes in size.

Figure 8,9,10 shows Lucene Searching Performance

for 10000, 100000, 1 million records. It shows that

overall lucene takes very less time for searching than

mysql database. RAM Searching provides best

searching time for any type of query. But it has

limitation of physical memory present on the system.

Figure 7: Lucene Indexing performance using 4

threads

Figure 8: Lucene searching performance for

10,000 records

Figure 9: Lucene searching performance for

100,000 records

Figure 10: Lucene searching performance for 1

million records

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-1 Issue-14 March-2014

216

Lucene searching time depends on how many records

present in index and how many records matches the

search query. Searching time for stored field indices

is slightly greater than searching time for indices

without stored fields.

5. Conclusion and Future Work

Lucene searching is very fast, so we can use it to

retrieve records in large databases. Although

inserting is slow multiple threads can be used to build

index. Index with data stored give less performance

than index without data stored, and in our scenario

data storage is not required as we can retrieve data

from database. Multithreading approach saves some

time for building lucene indices. The difference

between single thread approach and multithread

approach increases as the preprocessing for data

increases. Multithreading approach recommended

only if the data needs to be processed heavily before

adding to index. Lucene index does not provide real

time searching. So search results are retrieve older

documents. We can evaluate the near real time

searching in future to check if this can provide good

solutions for retrieving recent documents in search

results.

References

[1] Apache Team , “Apache documentation”, Online

At

http://lucenen.apache.org/core/3_6_1/index.html

(as of 7 January, 2014).

[2] Deng Peng Zhou, “Delve inside the Lucene

indexing mechanism”, Online At

http://www.ibm.com/developerworks/library/wa-

lucene/ (as of 14 January 2014).

[3] Michael McCandless, Erik Hatcher, Otis

Gospodnetic, "Lucene in Action" 2nd edition,

Manning Publications Co, 2010.

[4] C. T. YU, G. Salton, "Precision Weighting - An

effective Automatic indexing method", journal

of Association for Computing Machinery, Vol.

23, No 1, January 1976.

[5] Laurence Hirsch, Robin Hirsch, Masoud Saeedi,

"Evolving Lucene Search Queries for Text

Classification", GECCO'07, July 7-11, 2007,

London, England, United Kingdom. Copyright

2007 ACM 978-1-59593-697-4/07/0007.

[6] Amol Sonawane, "Using Apache Lucene to

search text" Online At

“http://www.ibm.com/developerworks/

opensource/ library/os-apache-lucenesearch/” (as

of 11 December 2013).

[7] Shengyue Ji, Guoliang Li, Chen Li, Jianhua

Feng, "Efficient Interactive Fuzzy Keyword

Search", Apr 20-24, 2009, ACM 978-1-60558-

487-4/09/04.

[8] Gerard Salton, "Automatic text indexing using

complex identifiers", 1988 ACM 0-89791-291-8.

[9] Guaoliang Li, Shenguye Ji, Chen Li, Jianhua

Feng, “Efficient fuzzy full-text type-ahead

search”, The VLDB Journal (2011) 20:617–640

DOI 10.1007/s00778-011-0218-x.

[10] Jimmy Lin, Dmitriy Ryaboy, Kevin Weil, “Full-

text indexing for optimizing selection operations

in large-scale data analytics”, ACM, San Jose,

California, USA, 978-1-4503-0700-0/11/06,

June, 2011.

[11] James Abello, Yannis Kotidis, “Hierarchical

graph indexing”, ACM, 1581137230/03/0011,

Nov 2003.

[12] Maayan Geffet, Dror G. Feitelson, “Hierarchical

indexing and document matching in BoW”, ACM

1-58113-345-6/01/0006, June 2001.

[13] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan,

Cui Yu, Rui Zhang, “iDistance: an adaptive B+-

tree based indexing method for nearest neighbor

search”, ACM Transactions on Database

Systems, Vol. 30, No. 2, June 2005.

[14] Paolo Ferragina, Giovanni Manzini, “Indexing

compressed text”, ACM, Vol. 52, No. 4, July

2005.

[15] Rushdi Shams, Robert E. Mercer, “Investigating

keyphrase indexing with text Denoising”, ACM

978-1-4503-1154-0/12/06, June 2012.

[16] Jose E. Moreira, Dilma Da Silva, Parijat Dube,

Maged M. Michael, Doron Shiloach, Li Zhang,

“Scalability of nutch search engine”, ACM 978-

1-59593-768-1/07/0006, June 2007.

Chetan P. Khilosiya, has done his BE-

IT from University of Pune, and

currently doing his ME-Computer at

PICT, University of Pune. His area of

interest include Information Retrieval,

Networking and Data Mining.

Hemlata P. Channe has done her ME-

Computer from Mumbai University.

Her area of interest includes Computer

Networks, Network Security and

Distributed Computing.

http://lucenen.apache.org/core/3_6_1/index.html
http://www.ibm.com/developerworks/library/wa-lucene/
http://www.ibm.com/developerworks/library/wa-lucene/
http://www.ibm.com/developerworks/%20opensource/%20library/
http://www.ibm.com/developerworks/%20opensource/%20library/

