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Abstract  
 

Mining frequent closed itemsets and theirs 

corresponding generators seem to be the most 

effective way to mine frequent itemsets and 

association rules from large datasets since it helps 

reduce the risks of low performance, big storage 

and redundancy. However, generator mining has 

not been studied as much as frequent closed 

itemsets mining and it has not reached the ultra-

optimization yet. In this paper, we consider the 

problem of enumerating generators from the lattice 

of frequent closed itemsets as the problem of 

“distributing M machines to solve N jobs” in order 

to introduce a close and legible point of view. From 

this, it is easy to infer some interesting 

mathematical results to solve the problem easily. 

Our proposed algorithm, GDP, can efficiently find 

all generators in very low complexity without 

duplicated or useless consideration. Experiments 

show that our approach is reasonable and effective. 
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1. Introduction 
 

Association rule (AR) is known to play an important 

role in data mining and to have many applications in 

reality. Association rule mining is usually divided into 

two sub problems: mining all frequent itemsets (FIs) 

from data and deriving association rules from those 

frequent mined ones [1]. However, the number of FIs 

is often numerous since they grow in exponent of the 

number of itemsets, therefore, algorithms that directly 

mine FIs or ARs from data usually face the challenges 

of performance and storage, as well as the problem of 

generating duplicated candidates.  

 
 

 

Manuscript received August 24, 2014. 

Pham Quang Huy, Department of Mathematics and 

Informatics, DaLat University, Vietnam. 
Truong Chi Tin, Department of Mathematics and Informatics, 

DaLat University, Vietnam. 

A more effective approach is to mine only the class of 

all frequent closed itemsets (FCIs) because they are 

commonly much fewer than the FIs and they are 

essential information for deriving all FIs as well as all 

ARs.  

 

Indeed, a closed itemset (also called a closure) is the 

largest itemset among the ones contained in the same 

set of transactions. Based on FCIs we can partition all 

FIs or ARs into equivalent classes. Then, together 

with their corresponding generators, it is possible to 

non-repeatedly derive all FIs and ARs, without the 

loss of their support and their confidence [2, 3, 4, 5, 

6]. As stated in [7], among the best and well-known 

FCI mining algorithms, there are Charm [6] and 

FPClose [8]. Charm’s search space is an IT-tree, in 

which each node is a pair of itemset and tidset (a list 

of transaction identifiers containing that itemset). 

Whereas, the search space of FPClose is the space of 

FP-trees, with each tree is a compression of a 

conditional dataset. FCIs can also be mined by 

analyzing the lattice of concepts (e.g., Titanic 

algorithm [9]). There are also parallel algorithms for 

FCI mining, such as PLCMQS [10], AFOPT-close 

[11]. 

 

On the other hand, generators are the minimal 

itemsets in each class [4, 12]. This definition is 

equivalent to the term of “minimal generator” in [6]. 

FCI and its generators are keys to induce all other FIs 

in their class. For instance, the authors in [2] proposed 

a structure of the FIs in each class via its closure and 

generators, allowing generating them quickly without 

replication. They also help to divide ARs into 

equivalent classes such that in each class, it is only 

necessary to mine only the basic rules and the 

consequent ones can be easily derived along with their 

support and confidence. For example, in [4], Pasquier 

et al proposed the basic rules in the form of G  C\G, 

where C is a closure and G is a generator (G  C). 

Zaki [6] mentioned the concept of the most general 

rule in the form of G  {m}, in which G is a 

generator and m is an item. If G and G  {m} have 

the same closure, they are exact rules; otherwise they 

are approximate rules. In [2, 5], based on FCIs and 

their generators, the authors partitioned the class of all 

ARs into equivalent classes, where each one is 

presented by a pair of FCIs, [L, S] (with L  S). Then, 
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the basic ARs (which are usually quite little) are also 

in form G  S\G, where G is a generator of L. The 

consequent ones can quickly be induced, without any 

duplication that happens in Pasquier approach in [4]. 

In addition, lattice of FCIs and their generators play 

also an important role in extracting FIs and ARs with 

constraints (that satisfy certain user needs). However, 

this is out of the scope of this paper. We refer readers 

to [3] for more information. 

 

Related works. While there have been a lot of 

researches on FCI mining, studies on generator 

mining are still limited and they have their own 

drawbacks. Generators can be mined from a given 

lattice of FCIs, such as MinimalGenerators[6, 13], 

Compute_hs_mingen [13] or directly from data as 

algorithm Touch [14] does. MinimalGenerators and 

Compute_hs_mingen base on the fact that “the 

minimal generators of a closed itemset C are the 

minimal itemsets that are subsets of C but not a subset 

of any of C’s (immediate) closed subsets” [p. 239, 6]. 

Since MinimalGenerators is an Apriori-like algorithm 

[1], it considers too many useless candidates and runs 

very slow. Whereas, Compute_hs_mingen,  a 

procedure coded in C/C++, gradually generates each 

candidate G that has the same closure as C then check 

for G to be minimal. Unfortunately, it requires many 

set computations and generates some duplicated 

candidates. Once it can not avoid all duplicated 

candidates during the main process, it has to perform 

a final check to eliminate duplicated generators at the 

end. The three main disadvantages in these two 

algorithms are that they use many set computations, 

their current steps cannot make use of previous steps 

and there are a lot of redundant candidates. 

Meanwhile, Touch [14] mines generators directly 

from data, based on an IT-tree. Firstly, it uses Charm 

for mining all FCIs. Then generators are mined and 

combined accordingly to its closure. Its idea is that “a 

new candidate G is a generator if there are no already 

found generators that are subsets of G having the 

same support”. A hash function is used to gather the 

closest related generators for this testing G and to 

combine G with its closure. This algorithm worked 

well on most of our experimental cases, except that it 

ran out of memory and failed to run for some cases 

when datasets are quite large (see Table 1, Section 5) 

or the minimum support threshold is not small 

enough. Touch might not be able to deal with very 

large datasets because it is not a parallel algorithm and 

it relies on IT-tree in which is hard to fix in memory 

when the tidset nodes are too long. In addition, in 

these algorithms, the time for mining generators are 

quite high as compared to those for mining FCIs. 

 

Recently, Tran et al introduced the algorithm 

GenClose [12] that mines FCIs and generators 

simultaneously based on IT-like-tree, in breadth-first 

search manner. They pointed out the necessary and 

sufficient condition to generate a generator of (k+1)-

items from its sub generators of k-attributes.  

 

Contributions. From the important roles mentioned 

of generators and the drawbacks of those cited 

algorithms, it is worthy to develop a more effective 

algorithm to mine generators. Our approach is also to 

enumerate all generators based on the lattice of FCIs 

by the following two reasons. First, the lattice of FCIs 

for input can be considered to be always available 

even for very large dataset as it does not depend on 

the number of transactions of dataset and there have 

been parallel algorithms for FCI. Second, for 

enumerating all generators of each FCI C, only its 

immediate frequent closed subsets, a piece of the 

lattice, are needed. Hence, it can be parallelized.  

By transforming the problem of finding all generators 

of a FCI based on its immediate closed subsets into a 

problem of distributing M machines to N jobs, we 

develop an efficient algorithm, called GDP which can 

find all generators of FCIs in a low complexity, 

without any duplicated or useless considerations. In 

addition, costly set computations are avoided by the 

idea of “finding the solution for the current step is 

based on the previous steps” and by recurrent 

expressions that compute on the cardinality of sets 

instead of on set. Experiment shows that GDP 

significantly outperforms MinimalGenerators, 

Compute_hs_mingen and Touch in every 

experimental case. Especially, its time for finding 

generators is much smaller than the time for mining 

FCIs (by Charm). 

 

The remainder of the paper is organized as follows. 

Section 2 provides some basic concepts and an 

important necessary and sufficient condition to find 

generators of a FCI based on its immediate closed 

subsets. In Sections 3, we transform this problem into 

a problem of distributing M machines to N jobs and 

then, present an effective way to solve this problem. 

The algorithm GDP is introduced in Section 4. All 

experimental results are listed in Section 5 and 

Section 6 is the conclusion. 
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2. Basic concepts 
 

Given a context (O, A, R) where O, A, R respectively 

are attribute set (or set of items), object set (or set of 

transactions) and the binary relation in O × A. Two 

Galois connections λ: 2
O
 → 2

A
, ρ: 2

A
 → 2

O
 are 

defined as follows: C, O:   C  A,   O  O, 

λ(O) = {a  A : (o, a)  R, o  O}, () = A and 

ρ(C) = {o  O: (o, a)  R, a  C}, () = O. Then, 

the operator h = λoρ in 2
A
 is a closure operator, and 

h(C) is the closure of C. The set C  A is closed iff1 

h(C) = C. Let [C] = {X  A: h(X) = h(C)} be the class 

of all itemsets having the same closure as C. 

Given a set C  A and a minimum threshold: 0 < 

minsupp  1. Let supp(C) = |(C)|/|A|, denotes the 

support of C, then C is frequent if supp(C)  minsupp. 

Denote FCS as the class of all FCIs and ≼A the order 

relation based on the inclusion relation on subsets of 

A. Then, LA  (FCS, ≼A) is the lattice of FCIs.  

 

From now on, for convenience, we always assume 

that: C  FCS,   G  C  A, and Gg  G\{g}, 

gG.  The sign “,” substitute for operator “” in 

some mathematical expressions. 

 

Definition 1. (Generator). G is a generator of C iff 

h(G) = h(C) and (G’: G’ G  h(G’)  h(G)). For 

simplicity, we omit the case where  is a generator of 

C (h() = C). Thus, we can denote Gen(C) = {G  

[C]: g  G, h(Gg)  h(G)} as the class of all 

generators of C. 

Denote SC  {Y  FCS: (Y  C)  (∄Z  FCS: Y  

Z  C}, the class of all FCIs that are immediate 

subsets of C. We have the following proposition: 

 

Proposition 1. G  [C]  Y  SC, G  Y  Y 

SC, g  G: g Y. 

 

Proof. “”: Assume that G[C]. If Y  SC: G  Y 

 C then h(G)  Y  C = h(G). This is a 

contradiction!  

“”: Assume that Y  SC, G  Y but G  [C], i.e. 

h(G)  C, then Y  SC: G  h(G) Y: 

Contradiction! Thus, G  [C].  

 

Then, we have the following simpler criterion to 

check for an itemset G to be a generator of a closure C 

based on SC.  

 

                                                           
1
 Iff: if and only if 

Theorem 1.C  FCS, G:   G  C  A, 


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
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Proof. By Proposition 1, (a1)  G  [C]. Now, under 

condition (a1) is satisfied, we just need to prove (b1) 

 g  G, h(Gg)  h(G). 

“”: g  G, h(Gg)  h(G) = C, then there exists 

YSC: Gg  h(Gg)  Y  C. Assume that, g  Y, 

then G   Y and C = h(G)  Y  C. This is a 

contradiction! Thus, g  Y. 

“”: g  G, Y SC: Gg Y  h(Gg)  Y  C = 

h(G). Thus, (b1)  g  G, h(Gg)  h(G).   

 

For simplicity, in our examples, we use 123 for the set 

{1, 2, 3}. 

 

{1, 2, 3, 4, 5}:1

{1, 3, 5}:2 {1, 4, 5}:2 {2, 3, 4, 5}:2

C

SC

Y1 Y2 Y3

 R = {o1 = {1, 2, 3, 4, 5}, o2 ={1, 3, 5}, 

o3 ={1, 4, 5}, o4 ={2, 3, 4, 5}}

(a) Dataset R

(b) The lattice of frequent closed itemsets coressponding to 

R and minsupp = 1. In which, C = {1, 2, 3, 4, 5},

SC = {Y1 = {1, 3, 5} . Y2 = {1, 4, 5}, Y3 ={2, 3, 4, 5}} 

{1, 5}:3 {3, 5}:3 {4, 5}:3

{5}:4

 
 

Figure 1: Dataset R. 

 

{1, 2, 3, 4, 5}:1

{1, 3, 5}:2 {1, 4, 5}:2 {2, 3, 4, 5}:2

C

SC

Y1 Y2 Y3

 R = {o1 = {1, 2, 3, 4, 5}, o2 ={1, 3, 5}, 

o3 ={1, 4, 5}, o4 ={2, 3, 4, 5}}

(a) Dataset R

(b) The lattice of frequent closed itemsets coressponding to 

R and minsupp = 1. In which, C = {1, 2, 3, 4, 5},

SC = {Y1 = {1, 3, 5} . Y2 = {1, 4, 5}, Y3 ={2, 3, 4, 5}} 

{1, 5}:3 {3, 5}:3 {4, 5}:3

{5}:4

 
 

Figure 2: The lattice of FCIs corresponding to R 

and minsupp = 1. In which, C = {1, 2, 3, 4, 5}, SC = 

{Y1 = {1, 3, 5}, Y2 = {1, 4, 5}, Y3 = {2, 3, 4, 5}}. 

 

Example 1. Given a dataset R as in Figure 1. With 

minsupp = 1, the corresponding lattice of FCIs is 

shown in Figure 2, in which each FCI is in form of 

itemset:support. Let find all generators of C = 12345 

in this lattice. By (a1), we can generate a candidate 

itemset in [C] and then check if it is minimal by (b1).  

We have SC = {Y1 = 135, Y2 = 145, Y3 = 2345}. Let 

Dj = C\Yj j  123. Thus, D1 = 24, D2 = 23, D3 = 

1. To generate a candidate G, for each Dj we must 

choose an item to add into G. g  G, j  123, we 
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say “j supports Gg” if g  Yj. If Gg is supported, for 

all g in G then (b1) is satisfied. 

Let’s consider G = 21. With G2 = G\2 = 1, there is j = 

1 that supports G2. With G1 = G\1 = 2, neither j = 1 

nor j = 2 supports G1 but j = 3 does. Thus, 21 is a 

generator of C.   

 

Let’s consider G = 231. With G2 = 13, there is 1 that 

supports G2. With G3 = 12, there is no j supporting it. 

Thus, 231 is not a generator of C.   

Let’s consider G = 421. With G4 = 12, there is no j 

supporting it. Thus, 421 is not a generator of C.  

Let’s consider G = 431. With G4 = 13, there is 1 that 

supports G4. With G3 = 14, 1 doesn’t support G3 but 2 

does. With G1 = 34, there is 3 supporting it. Thus, 

431 is another generator of C.  

Finally Gen(C) = {12, 431}.  

One can see in this example that for each candidate 

G, many set computations are required. Moreover, 

there are duplicated considerations, such as G2 = 13 

when G = 231 and G4 = 13 when G = 431 or G3 = 12 

when G = 231 and G4 = 12 when G = 421. These 

duplications should be eliminated. 

 

3. Our new approach 
 

In this section, we restate the problem of finding 

Gen(C) based on SC (denote as Gen(C, SC)) in the 

language of a problem of distributing M machines to 

N jobs which is closer to readers’ point of view. 

Then, we propose some theoretical results that turn 

costly conditions computing on sets in Theorem 1 to 

simpler ones to solve this problem effectively in a 

dynamic programming fashion. 

 

3.1. Transform Gen(C, SC) to the problem of 

distributing M machines to N Jobs 

Definition 2 (A problem of distributing M machines 

to N Jobs). Given a set C = {m1, m2, ..., mM} 

containing M machines, SC = {Y1, Y2, ..., YN} being a 

class of N subsets of C, and a set J = J(SC) = {1, 2, 

…, N} containing N jobs. For each j  J, m  C,   

G  C, machine m can solve the job j iff m  Yj.  

Let Mj = C\Yj be the set of all machines that can solve 

the job j, Tm = {j  J: m  Mj} be the set of all jobs 

that machine m can solve and T(G)= 
Gm

mT


= {j: m 

 G, j  Tm} be the set of all jobs that machines in G 

together can solve.  

The job j is solved (by G) if j  T(G), otherwise it is 

unsolved (by G).  

m  G, machine m is redundant (in G) iff Tm  

T(Gm). G is called minimal iff none of its machines is 

redundant. G is called a solution iff T(G) = J.  

Let DP(C, J) be the problem of finding all minimal 

solutions and [C, J] be the class of all minimal 

solutions, i.e., 

[C, J] = {G  C: T(G) = J  (Tm  T(Gm), m G)}. 

From now on we always assume that   G  C, C 

 FCS and the problem DP(C, J) are given. 

 

Proposition 2 (A criterion for G to be a generator of 

C based on T(G)). G Gen(C) iff G is a minimal 

solution, i.e., 










)()(,

)(|)(|
)(

2

2

bGTTGm

aNGT
CGenG

mm

 

 

Proof. We just need to prove that a1  a2 and b1  

b2. Given G  Gen(C) by Theorem 1 we have: 

Y SC, g  G: g  Y  j  J, g  G: g  Yj  

 j  J, g  G: j  Tg  J  T(G)  J = T(G) 

(since T(G)  J)  T(G) = |J| = N.  Thus, a1  a2. 

g  G, Y  SC: g  Y  g  G, j  J: g  Yj 

 g  G, j  J: (j  Tg, j  T(Gg))  

 m  G, Tm  T(Gm). Thus, b1  b2.  

 

Theorem 2. Gen(C, SC) is equivalent to DP(C, J(C)), 

where each item is a machine and Gen(C) = [C, 

J(C)]. 

 

Proof. It is a consequence of and Proposition 2.   

Example 2. Given C and SC as in Figure 2. Let’s 

check some candidate to be generator of C.  

Here, J = 123. We have M1 = C\Y1= 24, M2 = 23, M3 

= 1. T1 = 3, T2 = 12, T3 = 2, T4 = 1, T5 = ; T(12) = 

T1  T2 = 123, T(23) = 12, T(124) = 123, T(134) = 

123, ….  

Let’s consider G = 23. By (a2), it is not a generator 

(of C) since T(23)  J.  

Let’s consider G = 124. Since T(G) = J, by (a2), G is 

a solution. Let’s check (b2). 1 is not redundant in G 

because T1 = 3  T(G1) = T(24) = 12. By the same 

way, 2 is not redundant. However, 4 is redundant in 

124 because T4 = 1   T(12) = 123. Thus,  124  is not 

a generator.  

Let’s consider G = 12. Since T(G) = J, G is a 

solution. Furthermore, 1 is not redundant in G 

because T1 = 3  T(G1) = T(2) = 12. By the same 

way, 2 is not redundant. Thus, by (b2), 12 is minimal. 

Then it is a generator.   

…  

Eventually, Gen(C) = {12, 134}.  
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Remark 1. Note that Proposition 2 is simpler than 

Theorem 1 since (a2) is simpler than (a1). Now, the 

main task is to test for G to be minimal. This test can 

take about |G| × (|G| - 1) times computing the union 

of two sets (for each m  G, compute T(Gm)). Each 

union takes a complexity of O(|T.|), where |T.| is the 

average number of jobs that a machine can solve. 

Thus, the complexity of this test is O(|T.| × |G|
2
). 

 

3.2. Effectively solving DP(C, J) 

In our approach, all minimal solutions can be found 

by the following backtracking manner: initialize G as 

an empty set, we gradually add new machine into it 

so that the minimal property of the updated G is 

always preserved. This means each G in the 

underlying search tree is minimal and supersets of 

any redundant candidates will never be explored. The 

more machine is added, the more tasks are solved. As 

a result, a minimal solution will be found when no 

more jobs are left. 

 

As the principles of algorithm GDP in the next 

Section also allow to keep away from considering 

duplicated candidates and useless ones that are surely 

not in [C], this section is to present an efficient 

approach to check for a candidate G to be minimal.  

Recall that G is minimal iff no m in G is redundant, 

i.e., Tm  T(Gm) or |Tm\T(Gm)| > 0. However, it is not 

necessary to perform this check for all machines in G 

since there are machines irrelevant to the newly 

added one, i.e., this check on such machines will also 

returns true for the new G. Thus it is better to 

maintain the values of |Tm\T(Gm)|, for each m in G 

and try to update just the ones needed, then check 

only on them. By this way, the current step can make 

use of the computations on previous steps. The 

following U, F functions and the recurrent expression 

in Proposition 4 allow realizing this idea.  

 

From now on we always assume that the given 

itemset G ( C  FCS) is minimal and each machine 

is a unique positive integer.  

 

Definition 3. Denote 2
C*

  2
C
 \{}. Given a function 

U: C x 2
C* 

→ Z such that, m  C, if m  G then 

U(m, G) = UmG = |Tm\T(Gm)| = |{j Tm: (b  Gm: j 

 Tb|; otherwise UmG = -1. 

If m  G then UmG is the number of jobs uniquely 

solved by m, among the machines in G. 

 

Definition 4. Given a function F: J x 2
C* 

→ Z such 

that j  J,  








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If FjG = 0 then the job j is unsolved (by G); if FjG = m 

> 0 then m is the unique machine in G that can solve 

the job j; if FjG = -2 < 0 then there are at least two 

machines in G can solve the job j. 

Let FG = {FjG, j  J}, UG = {UmG, m  C}. 

 

Remark 2. UmG = 0  Tm\T(Gm) =   Tm  T(Gm) 

 m is redundant (in G).  

 

From Proposition 2 and Remark 2 we have the 

following proposition: 

 

Proposition 3. (A criterion for G to be a generator of 

C based on FG and UG). C FCS, G:   G  C, 
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Proof. We just need to prove (b2)  (b3). Given G  

Gen©. m G, we have: Tm  T(Gm)  Tm\ T(Gm) 

   UmG  0. Thus, (b2)  (b3)   

After adding a new machine b into a given minimal 

candidate G, all new values of UG and FG must be 

available to check if G is minimal by (b3). However, 

instead of recalculating all these values by Definition 

3, we just need to recurrently update those element 

values related to Tb as the following proposition.  

 

Proposition 4 (recurrently calculate UG and FG). C 

 FCS, G  C, b C\G, NG = G  {b}, m  C, j  

J, we have: 

FjNG = b if FjG = 0 and j  Tb; (a4) 

FjNG = -2 if FjG = m > 0 and j  Tb;  (b4) 

FjNG = FjG for other cases (FjG = < 0 or j  Tb).  (c4) 

UbNG = |{j  Tb: FjG = 0}| = | {j  Tb: FjNG = b}|; d4) 

m  G: (j Tb: FjG = m), UmNG = UmG - |{j Tb: 

FjG = m}|; (e4) 

UmNG = UmG for other cases. (f4) 

 

Proof. It is obvious that j  Tb, FjNG = FjG 
(i)

.  

j  Tb, we have: 

FjG = 0  j  T(G)  !b  NG: j   Tb  FjNG 

= b. We have (a4); 

FjG = m > 0  !m  G: j  Tm and  m ≺NG b  

FjNG = -m. We have (b4);  

FjG = -2  FjNG = -2 = FjG 
(ii)

. From 
(i) 

and
 (ii) 

we 

have (c4). 

UbNG = |Tb\T(G)| = |{j  Tb: j  T(G)}| = |{j  Tb: FjG 

= 0}| = |{j  Tb: FjNG = b}|. We have (d4). 
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m  G, m  b,  Tm\T(NGm) = Tm\T(Gm  {b}) = 

Tm\T(Gm)\Tb. Thus, UmNG = |Tm\T(NGm)| = |Tm\T(Gm)| 

- |Tb[Tm\T(Gm)]| = UmG - |{j  Tb: FjG = m}| 
(iv)

. We 

have (e4);  

m  NG, UmNG = UmG = -1. By 
(iv)

 we have m  

G, ({j  Tb: FjG = m} = )   UmNG = UmG). Thus, 

we have (f4).  

 

Remark 3. Proposition 4 points out a less costly way 

to update the values of UG and FG as well as which 

are needed to be updated. Updating the values of FNG 

is very straightforward. For the values of UNG, we 

just need to care about the cases (d4) and (e4). 

Especially, in case (e4), we only update UmNG when 

there is j in Tb such that FjG = m. In other words, we 

just update UmNG if machine m is relevant to the new 

added machine b. Such machines are the only ones 

that might become redundant. Thus, only in these 

cases, if UmNG = 0 then m is redundant. For other 

cases UmNG is equal to UmG, thus, we do nothing.  

 

In reality, Proposition 4 can be implemented without 

any expensive computations on sets (such as union, 

intersection, difference or inclusion) but just a loop 

through Tb to compute on scalar values. The 

complexity of this test is just O(|Tb|), (see procedure 

Update in Figure 5), which is significantly reduced as 

compared to the analysis in Remark 1. Thus, 

Proposition 4 simplifies Proposition 3. 

 

Example 3. Given C and SC = {Y1, Y2, Y3} in Figure 

2. Let’s illustrate the way a generator of C is 

generated. 

With G = 1, !1 G and T1 = 3  U1G = 1, U2G = 

U3G = U4G = U5G = -1, F1G = F2G = 0, F3G = 1. Since 

there exists such F1G = 0, by (a3), G  Gen©. 

Add machine b = 2 into G we have: NG = G  2 = 12 

and Tb = 12. By (a4), F1G = F2G = 0, then F1NG = F2NG 

= 2. By (c4), 3  T2, then F3NG = F3G = 1. By (f4), {j  

T2: FjG = 1} = , then U1NG = U1G = 1. By (d4), F1G = 

F2G = 0, then U2NG = 2. The machines 3, 4, 5 are not 

in NG, then, by (f4), U3NG = U4NG = U5NG = -1. By (a3) 

and (b3), all jobs are solved and NG = 12 is minimal, 

thus NG  Gen©. 

Assumed that we continue to add machine 3 into NG. 

We have G’ = NG  {3} = 123, T3 = 2. By (c4), 1 

and 3  T3, then F1G’ = 2, F3G’ = 1. By (b4), 2  T3 

and F2NG = 2, then F2G’ = -2. By (f4), {j  T3: FjNG = 

1} = , then U1G’ = 1. By (f4), U2NG- |{j  T3: FjNG = 

2}| = U2NG- |2| = 1. By (d4), T3 = 2 and F2G’ = -2  2, 

then U3G’ = 0 or machine 3 is redundant in G’. By 

(b3), G’ = 123  Gen©. 

4. The proposed algorithm GDP 
 

In this section we introduce the dynamic 

programming algorithm GDP which applies 

Proposition 3 and Proposition 4 to find all generators 

for each FCI in a lattice of FCIs. It only skips any of 

the following useless considerations: supersets of 

non-minimal candidate, duplicated candidates and the 

ones that are surely not in [C] based on the following 

principles: 

a. Candidate G is generated by backtracking 

and depth-first manner. At the beginning, G 

is initialized as an empty set, UG and FG are 

accordingly initialized as {-1, ..., -1} and {0, 

..., 0}. When one by one adding new 

machine b into G, new candidate NG (NG = 

G  {b}) must also be minimal to be 

extended further; otherwise, NG and its 

supersets are pruned. Concurrently, UG and 

F values are updated by Proposition 4. 

b. Newly added machine b must be to solve a 

new job j that hasn’t yet been solved by G; 

otherwise b will be redundant in NG. Thus, 

b must be selected from such an Mj that FjG 

= 0. By this way b will never be collapsed to 

any machine in G (j  J: FjG = 0  Mj  

G =   b  Mj, j  Tb\T(G), i.e., b is not 

redundant in NG). If there is no more such 

job j then G is a generator since in this case 

it is a minimal solution. Therefore, the 

search for such j is also the test for G to be a 

solution.  

c. When new machine b is added, by 

Proposition 4, it is only necessary to follow 

cases (a4), (b4), (d4) and especially case (e4) 

to update the related values of UG and FG. 

Because all these cases require the condition 

“j  Tb” is satisfied, it is better to loop 

through Tb to perform them. Furthermore, 

for each j in Tb, such machine m in case (e4) 

is extracted by expression “FjG = m, where 

m > 0”. Then, UmNG = UmNG - 1 and just only 

at this time, it is necessary to test UmNG = 0 

to verify if b causes m redundant in NG. If 

so, we restore these values. 

d. To avoid duplication, no superset of G is 

allowed to contain b, except NG and 

supersets of NG. Similarly, to avoid useless 

steps, b shouldn’t be added again into any 

superset of NG. Thus, before processing 

NG, b is temporary removed from Mk, for 

all unsolved jobs k that b can solve. (Every 

such Mk is restored after all machines in Mj 
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are tried, so no generator is missed). This is 

also to reduce the sub search spaces as any 

Mk can shrink. As a result, no candidate is 

considered more than once.  

 

By level by level applying these principles, not only 

all duplicated candidates and the surely non-minimal 

ones are eliminated from consideration but also all 

candidates that are not solutions are implicitly 

skipped. The reason is that after all machines in an Mj 

(of the current unsolved job j) are tried to add into G, 

they are removed from Mk (of any unsolved job k). 

Thus, no superset of G generated after this time can 

solve job j, i.e., they could not be solutions. By 

adding at least one machine from Mj into G, GDP 

automatically pruned these unuseful sets. 

 

Our approach is presented via the algorithms GDP, 

Try and Update in Figure 3, Figure 4 and Figure 5 

respectively. 

 

4.1. The algorithm GDP 

In GDP, we first calculate Mj for each job j and Tm 

for each machine m (lines 3, 4). Then, a set 

composed of a machine m will be a generator if m 

can solve all jobs and it will be removed permanently 

to reduce the search space (line 5 to line 7). After 

that, we initialize G, FG, UG and call Try to begin the 

backtracking process (line 8, 9). 

 
Input: LA – lattice of FCIs. 

Output: Gen(C), C  LA. 

Method: GDP(LA). 

1. C  LA 

2.  Gen(C) = ; 

3.  j  J, Mj = C\Yj; 

4.  m  C, Tm = {j  J: m  Mj}; 

5.  m  C: if (|Tm| = |SC|) then  

6.   Gen(C). Add({m});  

7.   j  Tm, Mj.Remove(m);  

8.  G = ;  F = {0,…,0}; U = {-1,…,-1}; 

9.  Try (C, G, F, U, 0);  

 

Figure 3: Algorithm GDP. 

 

4.2. The algorithm Try 

Input: C – a FCI, 

G - current minimal candidate, 

U - UG, 

F - FG, 

i - starting index to find the first unsolved 

job. 

Output: Gen(C). 

Method: (C, G, F, U, i). 

1. If  (j  J: (j > i)  FjG = 0) then 

2.  MList = {k:(b  Mj: k  Tb  FkG = 0)}; 

3.  k  MList, backup Mk; 

4.  b  Mj,  

5.   G.Add(b);  

6.   Backup those values of FG and UG  

 related to Tb; 

7.    Minimal = Update(U, F, G, b, j); 

8.   k  Tb: FkG = 0,   

9.    Mk.Remove(b); 

10.   if(Minimal = true) then  

11.    Try(C, G, F, U, j); 

12.   G. Remove (b); 

13.   Restore those values of FG and UG  

 related to Tb; 

14.  k  MList, Restore Mk;  

15. else: Gen(C).Add(G);  

 

Figure 4: Algorithm Try. 

 

The procedure Try tries to extend the current minimal 

candidate G in backtracking and depth-first manner 

until G can solve all jobs. It first searches for the next 

unsolved job j. If not so, the current candidate G is a 

generator (line 15); otherwise, each machine in Mj is 

one by one add into G and G is extend further if new 

machine does not cause redundancy (lines 11). Then, 

every set Mk of every unsolved job k that can be 

solved by any machine in Mj is saved (lines 3). The 

reason is that each time a machine b is added into G, 

it is temporarily removed from such Mk (lines 8, 9) to 

reduce the search space and to avoid replicated 

candidates. However, after trying all machines in Mj, 

these Mk must be restored (line 14) for backtracking 

purpose. Similarly, before provoking the function 

Update to update those values of FG and UG relevant 

to b and to check for G  {b} to be redundant, these 

values are saved (line 6). After considering all 

candidates containing G  {b} or finding out that G 

 {b} is redundant, G, FG and UG are restored (line 

12, 13). 

 

4.3. The algorithm Update 

 

Input:  U - UG, 

 F - FG, 

 G - the current minimal candidate, 

 b - the new added machine, 

  j - the first unsolved job. 

Output: U – updated UG , 

  F- updated FG, 

Returns true if G  {b} is minimal; 

otherwise returns false. 

Method: Update(U, F, G, b, j). 
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1. UbG = 0;  

2. k  Tb, 

3.  if (FkG = 0) 

4.   FkG = b;  

5.   UbG = UbG+ 1;   

6.  else If (FkG > 0)  

7.   m = FkG;  

8.   UmG = UmG-1;  

9.   If (UmG = 0) return false;   

10.  FkG = -2;     

11. return  true; 

 

Figure 5: Algorithm Update. 

 

The algorithm Update applies Proposition 4 to update 

the values of FG and of UG that are related to Tb, 

where b is the new added machine and to verify if the 

updated G (i.e., G  {b}) is minimal. It first 

initializes UbG as 0 (line 1) and then loop through 

each job k that b can solve. In case FkG = 0, b will be 

the first machine to solve job k, then UbG is increased 

by 1 (line 4, 5). In case FkG = m > 0, k will no longer 

be the job uniquely solved by m because b will be the 

second machine to solve it, then UmG is decreased by 

1 (line 8) and FkG is set to -2 (line 10). At this time, if 

UmG is zero, the function will return false to indicate 

that b causes a machine in G redundant (line 9). If no 

machine is redundant in G, the function will return 

true. The complexity this function is  O(|Tb|). 

 

4.4. The complexity of GDP 

Because Try(0) is the main operation in GDP, the 

complexity of GDP can be estimated to that of Try(0) 

× |FCS|. Moreover, Update is the main operation of 

the function Try and its complexity is O(|T.|), where 

|T.| is the average estimated number of jobs that a 

machine can solve. In the worst case, we must loop 

through all jobs and try choosing machines for each 

job. Thus, the complexity of Try(0) is evaluated to a 

linear degree of O(|J| × |M.| × |T.|), where |M.| is the 

average estimated number of machines that can solve 

a job. Denote AJ as the average size of J, with regard 

to a given FCI C (i.e., the average number of 

intermediate closed subsets of C). Then, the 

complexity of GDP can be estimated to O(AJ × |M.| × 

|T.| × |FCS|). Since AJ × |M.| × |T.| is too small in 

comparison to |FCS|, GDP can be considered as 

linear to |FCS|. 

 

Example 4. Given C and SC as in Figure 2. Let’s 

compute Gen(C).  

First we initialize G = , FG = {0, …, 0}, UG = {-1, 

…,-1}. Since M3 = 1 (M3 contains only one machine), 

machine 1 is added into G first to solve job 3 and 1 is 

removed from M3. Now, F3G = 1, U1G = 1. Let’s try 

machine for the first unsolved job. With j = 1 we 

have M1 = 24. After adding machine 2 into G, we 

have U1G = 1, U2G = 2, U3G = U4G = U5G = -1, F1G = 

F2G = 2, F3G = 1. G = 12 is a generator since no more 

job is left. After removing machine 2 from M1 and 

M2, we have M1 = 4, M2 = 3. Then, we restore G into 

1 and try another machine for job 1. Since M1 and M2 

each contains only a machine, we just add 4 and 3 

into G without the need to check for redundancy. By 

the same reason, G = 143 is another generator. Thus, 

Gen(C) = {12, 134}. 

 

As one can see in this example, the process to 

generate Gen(C) is much simpler than the previous 

examples and there are no computations on set such 

as union, intersection, and difference… are needed.  

 

5. Experiments 
 

In this section we compare the time for mining all 

generators of GDP to those of MinimalGenerators 

(MG), Compute_hs_mingen (HS), Touch (TG) and to 

the time for mining all FCIs by Charm on several 

experimental datasets, for different minimum 

supports. Dense datasets (DB) include MushRoom 

(M), Connect (Co), C73d10k (C73), C20d10k (C20), 

T40i10d100K (T40) and sparse ones are Retail (R), 

T20i6d100K (T20) [15, 16]) thresholds (MS). All 

algorithms are tested on a laptop HP Compaq 6520s 

Intel(R) Core 2 Duo CPU T7250 @2GHz 1GB of 

RAM, running in Windows XP. The running time of 

these algorithms on all testing datasets are shown in 

Table 1. 

  

Table 1: Running time of GDP, MG, HS, TG and 

Charm on our test cases. 

 

DB _MS 

(%) 

#G M

CT 

(s) 

GT (s) 

G

DP 

M

G 

HS TG 

M_1 103516 3.5 0 oT 28 2.7 

M_0.5 164525 5.3 0.3 oT 43 4.2 

M_0.1 360165 8.9 1.7 oT 97 8.7 

Co_70 35875 7.2 0 oT 7.8 5.9 

Co_60 68349 16.7 0.3 oT 17 8.5 

Co_50 130101 29.2 1 oT 33.8 13.3 

Co_40 239372 51.7 2.1 oT 66.5 21.2 

C2_0.5 170259 4.7 0.9 oT 38 3.5 

C2_0.1 449352 11 3 oT 97.8 9.6 
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C2_0.05 604013 17.4 4 oT 533 15.4 

C2_0.001 823633 23.2 5 oT oT 29.5 

C7_70 29007 1.8 0 oT 8.3 2.7 

C7_60 166917 4.2 1.2 oT 60.7 6.6 

C7_50 765448 122 8 oT 327 oM 

T4_1 66278 31.3 0 18.4 14.4 oM 

T4_0.75 498785 252 6 oT 253 oM 

T4_0.5 1280246 548 52 oT 614 oM 

R_0.05 19698 3 0 0.7 1.4 fR 

R_0.01 191265 26.8 2 10.4 17.9 fR 

R_0.005 801352 161 9 oT 117 fR 

T2_0.15 249051 58.5 2 118 61.1 88.7 

T2_0.1 357200 120 3 176 90.4 193 

T2_0.075 457305 180 4 289 111 368 

Abbreviation. DB_MS: dataset_minsup, #CS: 

number of FCIs, #G: number of generators, MCT: 

time for mining FCIs by Charm, GT: time for mining 

all generators, oT: out of time (more than 650 

seconds), oM: out of memory, fR: failed to run. 

 

In experiments, we use the code of MG and HS 

downloaded at [13]. All MG, HS and GDP use 

CharmL [17], extended version of Charm, to mine 

the lattice of FCIs for input. Executive version of 

Touch, can be downloaded at [16]. Touch doesn’t 

need to create the lattice of FCIs but it must take a 

minus amount of time to combine each FCI with its 

generators. This additional time can be considered 

equal to the time to create the lattice from all FCIs in 

MG, HS and GDP. The version of Charm in Touch 

runs a little bit faster than CharmL code in [17] 

except the cases it ran out of memory (denoted by 

oM) or failed to run (denoted by fR) as in Table 1. 

Due to this reason, the minimum time for mining 

FCIs, shown in column MCT in Table 1, is usually 

the one of Charm implemented in execute version of 

Touch. Every test case ran more than 650 seconds is 

considered to be out of time, denoted by oT. 

Comparisons on the running time of these algorithms 

on several datasets are shown on Figure 6, Figure 7, 

Figure 8 and Figure 9. 

 

We just tested the algorithm MinimalGenerators for a 

few cases because it ran very slow on dense datasets 

and it was almost unresponsive to even highest 

testing minimum support thresholds, while others 

algorithms can finish in a few minutes. 
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Figure 6: Running time on Mushroom. 
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Figure 7: Running time on T20i6d100k. 
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Figure 8: Running time on Connect. 
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Running times on Retail
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Figure 9: Running time on Retail. 
 

Compute_hs_mingen one by one generates an itemset 

in a subspace of [C], with C is a FCI and check for 

that itemset to be minimal by the similar idea (b3). It 

generates quite many redundant candidates since 

redundancy already happened when generating their 

subsets. Let |M.| be the average estimated number of 

machines that can process a job and AG be the 

average estimated size of a candidate belonging to 

[C]  then, the complexity of Compute_hs_mingen is 

O(AJ × |M.| × AG
4 

× |FCS|). Thus, the ratio between 

Compute_hs_mingen and GDP is AG
4
/|T.|. Moreover, 

as this procedure can not eliminate duplicate 

candidates during the search, it must perform an extra 

step to remove duplicate generators. It was 

sometimes slower than MinimalGenerators on sparse 

datasets. Touch worked well on most of test cases. It 

ran usually faster than MinimalGenerators and 

Compute_hs_mingen.  

 

Experiments showed that GDP is the fastest 

algorithm in all test cases. When the minimum 

support threshold gets low, it is usually faster than 

Touch more than 4 times and significantly 

outperforms the others, especially for dense datasets.  

It is noteworthy that the time for mining generators 

and for combining them with their closure of Touch 

takes from about 50% to a little bit more than 100% 

of the minimum time for mining FCIs. In contrast, 

the corresponding rate of GDP is much smaller.  

 

6. Conclusion 
 

Since FCIs and theirs generators are essential 

information, they are keys to mine FIs and ARs. 

Therefore, it is worth to study effective approaches to 

mine all generators. We found out that finding 

generators based on lattice of FCIs, which is easy to 

be available, is more reasonable than mining them 

directly from datasets by certain mentioned reasons. 

By interpreting the problem of finding all generators 

of a FCI based on its immediate closed subsets into a 

problem of distributing M machines to N jobs, we 

derived some interesting theoretical results that turn 

complex criteria computing on sets to the much less 

costly ones that do not require any set computations. 

The proposed algorithm GDP can efficiently find 

enough generators in a low complexity without 

duplication and useless consideration. Experiments 

showed that our algorithm is more effective than the 

compared competitors. Especially, its time for 

finding all generators is very minus as compare to the 

time for mining all FCIs.  

 

As GDP can be implemented in parallel, in the future, 

we will integrate it with a parallel or distributed FCI 

mining algorithm and experiment them on big data. 
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