
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

741

An Efficient Lattice-Based Approach for Generator Mining

Pham Quang Huy
1
, Truong Chi Tin

2

Abstract

Mining frequent closed itemsets and theirs

corresponding generators seem to be the most

effective way to mine frequent itemsets and

association rules from large datasets since it helps

reduce the risks of low performance, big storage

and redundancy. However, generator mining has

not been studied as much as frequent closed

itemsets mining and it has not reached the ultra-

optimization yet. In this paper, we consider the

problem of enumerating generators from the lattice

of frequent closed itemsets as the problem of

“distributing M machines to solve N jobs” in order

to introduce a close and legible point of view. From

this, it is easy to infer some interesting

mathematical results to solve the problem easily.

Our proposed algorithm, GDP, can efficiently find

all generators in very low complexity without

duplicated or useless consideration. Experiments

show that our approach is reasonable and effective.

Keywords

Generator, minimal generator, generator mining, lattice

of closed frequent itemsets, lattice-based algorithm,

dynamic programming algorithm, parallel algorithm.

1. Introduction

Association rule (AR) is known to play an important

role in data mining and to have many applications in

reality. Association rule mining is usually divided into

two sub problems: mining all frequent itemsets (FIs)

from data and deriving association rules from those

frequent mined ones [1]. However, the number of FIs

is often numerous since they grow in exponent of the

number of itemsets, therefore, algorithms that directly

mine FIs or ARs from data usually face the challenges

of performance and storage, as well as the problem of

generating duplicated candidates.

Manuscript received August 24, 2014.

Pham Quang Huy, Department of Mathematics and

Informatics, DaLat University, Vietnam.
Truong Chi Tin, Department of Mathematics and Informatics,

DaLat University, Vietnam.

A more effective approach is to mine only the class of

all frequent closed itemsets (FCIs) because they are

commonly much fewer than the FIs and they are

essential information for deriving all FIs as well as all

ARs.

Indeed, a closed itemset (also called a closure) is the

largest itemset among the ones contained in the same

set of transactions. Based on FCIs we can partition all

FIs or ARs into equivalent classes. Then, together

with their corresponding generators, it is possible to

non-repeatedly derive all FIs and ARs, without the

loss of their support and their confidence [2, 3, 4, 5,

6]. As stated in [7], among the best and well-known

FCI mining algorithms, there are Charm [6] and

FPClose [8]. Charm’s search space is an IT-tree, in

which each node is a pair of itemset and tidset (a list

of transaction identifiers containing that itemset).

Whereas, the search space of FPClose is the space of

FP-trees, with each tree is a compression of a

conditional dataset. FCIs can also be mined by

analyzing the lattice of concepts (e.g., Titanic

algorithm [9]). There are also parallel algorithms for

FCI mining, such as PLCMQS [10], AFOPT-close

[11].

On the other hand, generators are the minimal

itemsets in each class [4, 12]. This definition is

equivalent to the term of “minimal generator” in [6].

FCI and its generators are keys to induce all other FIs

in their class. For instance, the authors in [2] proposed

a structure of the FIs in each class via its closure and

generators, allowing generating them quickly without

replication. They also help to divide ARs into

equivalent classes such that in each class, it is only

necessary to mine only the basic rules and the

consequent ones can be easily derived along with their

support and confidence. For example, in [4], Pasquier

et al proposed the basic rules in the form of G  C\G,

where C is a closure and G is a generator (G  C).

Zaki [6] mentioned the concept of the most general

rule in the form of G  {m}, in which G is a

generator and m is an item. If G and G  {m} have

the same closure, they are exact rules; otherwise they

are approximate rules. In [2, 5], based on FCIs and

their generators, the authors partitioned the class of all

ARs into equivalent classes, where each one is

presented by a pair of FCIs, [L, S] (with L  S). Then,

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

742

the basic ARs (which are usually quite little) are also

in form G  S\G, where G is a generator of L. The

consequent ones can quickly be induced, without any

duplication that happens in Pasquier approach in [4].

In addition, lattice of FCIs and their generators play

also an important role in extracting FIs and ARs with

constraints (that satisfy certain user needs). However,

this is out of the scope of this paper. We refer readers

to [3] for more information.

Related works. While there have been a lot of

researches on FCI mining, studies on generator

mining are still limited and they have their own

drawbacks. Generators can be mined from a given

lattice of FCIs, such as MinimalGenerators[6, 13],

Compute_hs_mingen [13] or directly from data as

algorithm Touch [14] does. MinimalGenerators and

Compute_hs_mingen base on the fact that “the

minimal generators of a closed itemset C are the

minimal itemsets that are subsets of C but not a subset

of any of C’s (immediate) closed subsets” [p. 239, 6].

Since MinimalGenerators is an Apriori-like algorithm

[1], it considers too many useless candidates and runs

very slow. Whereas, Compute_hs_mingen, a

procedure coded in C/C++, gradually generates each

candidate G that has the same closure as C then check

for G to be minimal. Unfortunately, it requires many

set computations and generates some duplicated

candidates. Once it can not avoid all duplicated

candidates during the main process, it has to perform

a final check to eliminate duplicated generators at the

end. The three main disadvantages in these two

algorithms are that they use many set computations,

their current steps cannot make use of previous steps

and there are a lot of redundant candidates.

Meanwhile, Touch [14] mines generators directly

from data, based on an IT-tree. Firstly, it uses Charm

for mining all FCIs. Then generators are mined and

combined accordingly to its closure. Its idea is that “a

new candidate G is a generator if there are no already

found generators that are subsets of G having the

same support”. A hash function is used to gather the

closest related generators for this testing G and to

combine G with its closure. This algorithm worked

well on most of our experimental cases, except that it

ran out of memory and failed to run for some cases

when datasets are quite large (see Table 1, Section 5)

or the minimum support threshold is not small

enough. Touch might not be able to deal with very

large datasets because it is not a parallel algorithm and

it relies on IT-tree in which is hard to fix in memory

when the tidset nodes are too long. In addition, in

these algorithms, the time for mining generators are

quite high as compared to those for mining FCIs.

Recently, Tran et al introduced the algorithm

GenClose [12] that mines FCIs and generators

simultaneously based on IT-like-tree, in breadth-first

search manner. They pointed out the necessary and

sufficient condition to generate a generator of (k+1)-

items from its sub generators of k-attributes.

Contributions. From the important roles mentioned

of generators and the drawbacks of those cited

algorithms, it is worthy to develop a more effective

algorithm to mine generators. Our approach is also to

enumerate all generators based on the lattice of FCIs

by the following two reasons. First, the lattice of FCIs

for input can be considered to be always available

even for very large dataset as it does not depend on

the number of transactions of dataset and there have

been parallel algorithms for FCI. Second, for

enumerating all generators of each FCI C, only its

immediate frequent closed subsets, a piece of the

lattice, are needed. Hence, it can be parallelized.

By transforming the problem of finding all generators

of a FCI based on its immediate closed subsets into a

problem of distributing M machines to N jobs, we

develop an efficient algorithm, called GDP which can

find all generators of FCIs in a low complexity,

without any duplicated or useless considerations. In

addition, costly set computations are avoided by the

idea of “finding the solution for the current step is

based on the previous steps” and by recurrent

expressions that compute on the cardinality of sets

instead of on set. Experiment shows that GDP

significantly outperforms MinimalGenerators,

Compute_hs_mingen and Touch in every

experimental case. Especially, its time for finding

generators is much smaller than the time for mining

FCIs (by Charm).

The remainder of the paper is organized as follows.

Section 2 provides some basic concepts and an

important necessary and sufficient condition to find

generators of a FCI based on its immediate closed

subsets. In Sections 3, we transform this problem into

a problem of distributing M machines to N jobs and

then, present an effective way to solve this problem.

The algorithm GDP is introduced in Section 4. All

experimental results are listed in Section 5 and

Section 6 is the conclusion.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

743

2. Basic concepts

Given a context (O, A, R) where O, A, R respectively

are attribute set (or set of items), object set (or set of

transactions) and the binary relation in O × A. Two

Galois connections λ: 2
O
 → 2

A
, ρ: 2

A
 → 2

O
 are

defined as follows: C, O:   C  A,   O  O,

λ(O) = {a  A : (o, a)  R, o  O}, () = A and

ρ(C) = {o  O: (o, a)  R, a  C}, () = O. Then,

the operator h = λoρ in 2
A
 is a closure operator, and

h(C) is the closure of C. The set C  A is closed iff1

h(C) = C. Let [C] = {X  A: h(X) = h(C)} be the class

of all itemsets having the same closure as C.

Given a set C  A and a minimum threshold: 0 <

minsupp  1. Let supp(C) = |(C)|/|A|, denotes the

support of C, then C is frequent if supp(C)  minsupp.

Denote FCS as the class of all FCIs and ≼A the order

relation based on the inclusion relation on subsets of

A. Then, LA  (FCS, ≼A) is the lattice of FCIs.

From now on, for convenience, we always assume

that: C  FCS,   G  C  A, and Gg  G\{g},

gG. The sign “,” substitute for operator “” in

some mathematical expressions.

Definition 1. (Generator). G is a generator of C iff

h(G) = h(C) and (G’: G’ G  h(G’)  h(G)). For

simplicity, we omit the case where  is a generator of

C (h() = C). Thus, we can denote Gen(C) = {G 

[C]: g  G, h(Gg)  h(G)} as the class of all

generators of C.

Denote SC  {Y  FCS: (Y  C)  (∄Z  FCS: Y 

Z  C}, the class of all FCIs that are immediate

subsets of C. We have the following proposition:

Proposition 1. G  [C]  Y  SC, G  Y  Y

SC, g  G: g Y.

Proof. “”: Assume that G[C]. If Y  SC: G  Y

 C then h(G)  Y  C = h(G). This is a

contradiction!

“”: Assume that Y  SC, G  Y but G  [C], i.e.

h(G)  C, then Y  SC: G  h(G) Y:

Contradiction! Thus, G  [C].

Then, we have the following simpler criterion to

check for an itemset G to be a generator of a closure C

based on SC.

1
 Iff: if and only if

Theorem 1.C  FCS, G:   G  C  A,










)(),(:,

)(:,
)(

1

1

bYGYgSYGg

aYgGgSY
CGenG

gC

C

Proof. By Proposition 1, (a1)  G  [C]. Now, under

condition (a1) is satisfied, we just need to prove (b1)

 g  G, h(Gg)  h(G).

“”: g  G, h(Gg)  h(G) = C, then there exists

YSC: Gg  h(Gg)  Y  C. Assume that, g  Y,

then G  Y and C = h(G)  Y  C. This is a

contradiction! Thus, g  Y.

“”: g  G, Y SC: Gg Y  h(Gg)  Y  C =

h(G). Thus, (b1)  g  G, h(Gg)  h(G). 

For simplicity, in our examples, we use 123 for the set

{1, 2, 3}.

{1, 2, 3, 4, 5}:1

{1, 3, 5}:2 {1, 4, 5}:2 {2, 3, 4, 5}:2

C

SC

Y1 Y2 Y3

 R = {o1 = {1, 2, 3, 4, 5}, o2 ={1, 3, 5},

o3 ={1, 4, 5}, o4 ={2, 3, 4, 5}}

(a) Dataset R

(b) The lattice of frequent closed itemsets coressponding to

R and minsupp = 1. In which, C = {1, 2, 3, 4, 5},

SC = {Y1 = {1, 3, 5} . Y2 = {1, 4, 5}, Y3 ={2, 3, 4, 5}}

{1, 5}:3 {3, 5}:3 {4, 5}:3

{5}:4

Figure 1: Dataset R.

{1, 2, 3, 4, 5}:1

{1, 3, 5}:2 {1, 4, 5}:2 {2, 3, 4, 5}:2

C

SC

Y1 Y2 Y3

 R = {o1 = {1, 2, 3, 4, 5}, o2 ={1, 3, 5},

o3 ={1, 4, 5}, o4 ={2, 3, 4, 5}}

(a) Dataset R

(b) The lattice of frequent closed itemsets coressponding to

R and minsupp = 1. In which, C = {1, 2, 3, 4, 5},

SC = {Y1 = {1, 3, 5} . Y2 = {1, 4, 5}, Y3 ={2, 3, 4, 5}}

{1, 5}:3 {3, 5}:3 {4, 5}:3

{5}:4

Figure 2: The lattice of FCIs corresponding to R

and minsupp = 1. In which, C = {1, 2, 3, 4, 5}, SC =

{Y1 = {1, 3, 5}, Y2 = {1, 4, 5}, Y3 = {2, 3, 4, 5}}.

Example 1. Given a dataset R as in Figure 1. With

minsupp = 1, the corresponding lattice of FCIs is

shown in Figure 2, in which each FCI is in form of

itemset:support. Let find all generators of C = 12345

in this lattice. By (a1), we can generate a candidate

itemset in [C] and then check if it is minimal by (b1).

We have SC = {Y1 = 135, Y2 = 145, Y3 = 2345}. Let

Dj = C\Yj j  123. Thus, D1 = 24, D2 = 23, D3 =

1. To generate a candidate G, for each Dj we must

choose an item to add into G. g  G, j  123, we

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

744

say “j supports Gg” if g  Yj. If Gg is supported, for

all g in G then (b1) is satisfied.

Let’s consider G = 21. With G2 = G\2 = 1, there is j =

1 that supports G2. With G1 = G\1 = 2, neither j = 1

nor j = 2 supports G1 but j = 3 does. Thus, 21 is a

generator of C.

Let’s consider G = 231. With G2 = 13, there is 1 that

supports G2. With G3 = 12, there is no j supporting it.

Thus, 231 is not a generator of C.

Let’s consider G = 421. With G4 = 12, there is no j

supporting it. Thus, 421 is not a generator of C.

Let’s consider G = 431. With G4 = 13, there is 1 that

supports G4. With G3 = 14, 1 doesn’t support G3 but 2

does. With G1 = 34, there is 3 supporting it. Thus,

431 is another generator of C.

Finally Gen(C) = {12, 431}.

One can see in this example that for each candidate

G, many set computations are required. Moreover,

there are duplicated considerations, such as G2 = 13

when G = 231 and G4 = 13 when G = 431 or G3 = 12

when G = 231 and G4 = 12 when G = 421. These

duplications should be eliminated.

3. Our new approach

In this section, we restate the problem of finding

Gen(C) based on SC (denote as Gen(C, SC)) in the

language of a problem of distributing M machines to

N jobs which is closer to readers’ point of view.

Then, we propose some theoretical results that turn

costly conditions computing on sets in Theorem 1 to

simpler ones to solve this problem effectively in a

dynamic programming fashion.

3.1. Transform Gen(C, SC) to the problem of

distributing M machines to N Jobs

Definition 2 (A problem of distributing M machines

to N Jobs). Given a set C = {m1, m2, ..., mM}

containing M machines, SC = {Y1, Y2, ..., YN} being a

class of N subsets of C, and a set J = J(SC) = {1, 2,

…, N} containing N jobs. For each j  J, m  C,  

G  C, machine m can solve the job j iff m  Yj.

Let Mj = C\Yj be the set of all machines that can solve

the job j, Tm = {j  J: m  Mj} be the set of all jobs

that machine m can solve and T(G)= 
Gm

mT


= {j: m

 G, j  Tm} be the set of all jobs that machines in G

together can solve.

The job j is solved (by G) if j  T(G), otherwise it is

unsolved (by G).

m  G, machine m is redundant (in G) iff Tm 

T(Gm). G is called minimal iff none of its machines is

redundant. G is called a solution iff T(G) = J.

Let DP(C, J) be the problem of finding all minimal

solutions and [C, J] be the class of all minimal

solutions, i.e.,

[C, J] = {G  C: T(G) = J  (Tm  T(Gm), m G)}.

From now on we always assume that   G  C, C

 FCS and the problem DP(C, J) are given.

Proposition 2 (A criterion for G to be a generator of

C based on T(G)). G Gen(C) iff G is a minimal

solution, i.e.,










)()(,

)(|)(|
)(

2

2

bGTTGm

aNGT
CGenG

mm

Proof. We just need to prove that a1  a2 and b1 

b2. Given G  Gen(C) by Theorem 1 we have:

Y SC, g  G: g  Y  j  J, g  G: g  Yj

 j  J, g  G: j  Tg  J  T(G)  J = T(G)

(since T(G)  J)  T(G) = |J| = N. Thus, a1  a2.

g  G, Y  SC: g  Y  g  G, j  J: g  Yj

 g  G, j  J: (j  Tg, j  T(Gg))

 m  G, Tm  T(Gm). Thus, b1  b2. 

Theorem 2. Gen(C, SC) is equivalent to DP(C, J(C)),

where each item is a machine and Gen(C) = [C,

J(C)].

Proof. It is a consequence of and Proposition 2. 

Example 2. Given C and SC as in Figure 2. Let’s

check some candidate to be generator of C.

Here, J = 123. We have M1 = C\Y1= 24, M2 = 23, M3

= 1. T1 = 3, T2 = 12, T3 = 2, T4 = 1, T5 = ; T(12) =

T1  T2 = 123, T(23) = 12, T(124) = 123, T(134) =

123, ….

Let’s consider G = 23. By (a2), it is not a generator

(of C) since T(23)  J.

Let’s consider G = 124. Since T(G) = J, by (a2), G is

a solution. Let’s check (b2). 1 is not redundant in G

because T1 = 3  T(G1) = T(24) = 12. By the same

way, 2 is not redundant. However, 4 is redundant in

124 because T4 = 1  T(12) = 123. Thus, 124 is not

a generator.

Let’s consider G = 12. Since T(G) = J, G is a

solution. Furthermore, 1 is not redundant in G

because T1 = 3  T(G1) = T(2) = 12. By the same

way, 2 is not redundant. Thus, by (b2), 12 is minimal.

Then it is a generator.

…

Eventually, Gen(C) = {12, 134}.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

745

Remark 1. Note that Proposition 2 is simpler than

Theorem 1 since (a2) is simpler than (a1). Now, the

main task is to test for G to be minimal. This test can

take about |G| × (|G| - 1) times computing the union

of two sets (for each m  G, compute T(Gm)). Each

union takes a complexity of O(|T.|), where |T.| is the

average number of jobs that a machine can solve.

Thus, the complexity of this test is O(|T.| × |G|
2
).

3.2. Effectively solving DP(C, J)

In our approach, all minimal solutions can be found

by the following backtracking manner: initialize G as

an empty set, we gradually add new machine into it

so that the minimal property of the updated G is

always preserved. This means each G in the

underlying search tree is minimal and supersets of

any redundant candidates will never be explored. The

more machine is added, the more tasks are solved. As

a result, a minimal solution will be found when no

more jobs are left.

As the principles of algorithm GDP in the next

Section also allow to keep away from considering

duplicated candidates and useless ones that are surely

not in [C], this section is to present an efficient

approach to check for a candidate G to be minimal.

Recall that G is minimal iff no m in G is redundant,

i.e., Tm  T(Gm) or |Tm\T(Gm)| > 0. However, it is not

necessary to perform this check for all machines in G

since there are machines irrelevant to the newly

added one, i.e., this check on such machines will also

returns true for the new G. Thus it is better to

maintain the values of |Tm\T(Gm)|, for each m in G

and try to update just the ones needed, then check

only on them. By this way, the current step can make

use of the computations on previous steps. The

following U, F functions and the recurrent expression

in Proposition 4 allow realizing this idea.

From now on we always assume that the given

itemset G ( C  FCS) is minimal and each machine

is a unique positive integer.

Definition 3. Denote 2
C*

  2
C
 \{}. Given a function

U: C x 2
C*

→ Z such that, m  C, if m  G then

U(m, G) = UmG = |Tm\T(Gm)| = |{j Tm: (b  Gm: j

 Tb|; otherwise UmG = -1.

If m  G then UmG is the number of jobs uniquely

solved by m, among the machines in G.

Definition 4. Given a function F: J x 2
C*

→ Z such

that j  J,

















)(),(:,(,2

 :! ,

)(,0

),(

bmMbmGbmif

TjGmifm

GTjif

FGjF

j

mjG

If FjG = 0 then the job j is unsolved (by G); if FjG = m

> 0 then m is the unique machine in G that can solve

the job j; if FjG = -2 < 0 then there are at least two

machines in G can solve the job j.

Let FG = {FjG, j  J}, UG = {UmG, m  C}.

Remark 2. UmG = 0  Tm\T(Gm) =   Tm  T(Gm)

 m is redundant (in G).

From Proposition 2 and Remark 2 we have the

following proposition:

Proposition 3. (A criterion for G to be a generator of

C based on FG and UG). C FCS, G:   G  C,










)(0,

)(
)(

3bUGm

NGT
CGenG

mG

Proof. We just need to prove (b2)  (b3). Given G 

Gen©. m G, we have: Tm  T(Gm)  Tm\ T(Gm)

   UmG  0. Thus, (b2)  (b3) 

After adding a new machine b into a given minimal

candidate G, all new values of UG and FG must be

available to check if G is minimal by (b3). However,

instead of recalculating all these values by Definition

3, we just need to recurrently update those element

values related to Tb as the following proposition.

Proposition 4 (recurrently calculate UG and FG). C

 FCS, G  C, b C\G, NG = G  {b}, m  C, j 

J, we have:

FjNG = b if FjG = 0 and j  Tb; (a4)

FjNG = -2 if FjG = m > 0 and j  Tb; (b4)

FjNG = FjG for other cases (FjG = < 0 or j  Tb). (c4)

UbNG = |{j  Tb: FjG = 0}| = | {j  Tb: FjNG = b}|; d4)

m  G: (j Tb: FjG = m), UmNG = UmG - |{j Tb:

FjG = m}|; (e4)

UmNG = UmG for other cases. (f4)

Proof. It is obvious that j  Tb, FjNG = FjG
(i)

.

j  Tb, we have:

FjG = 0  j  T(G)  !b  NG: j  Tb  FjNG

= b. We have (a4);

FjG = m > 0  !m  G: j  Tm and m ≺NG b 

FjNG = -m. We have (b4);

FjG = -2  FjNG = -2 = FjG
(ii)

. From
(i)

and
 (ii)

we

have (c4).

UbNG = |Tb\T(G)| = |{j  Tb: j  T(G)}| = |{j  Tb: FjG

= 0}| = |{j  Tb: FjNG = b}|. We have (d4).

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

746

m  G, m  b, Tm\T(NGm) = Tm\T(Gm  {b}) =

Tm\T(Gm)\Tb. Thus, UmNG = |Tm\T(NGm)| = |Tm\T(Gm)|

- |Tb[Tm\T(Gm)]| = UmG - |{j  Tb: FjG = m}|
(iv)

. We

have (e4);

m  NG, UmNG = UmG = -1. By
(iv)

 we have m 

G, ({j  Tb: FjG = m} = )  UmNG = UmG). Thus,

we have (f4).

Remark 3. Proposition 4 points out a less costly way

to update the values of UG and FG as well as which

are needed to be updated. Updating the values of FNG

is very straightforward. For the values of UNG, we

just need to care about the cases (d4) and (e4).

Especially, in case (e4), we only update UmNG when

there is j in Tb such that FjG = m. In other words, we

just update UmNG if machine m is relevant to the new

added machine b. Such machines are the only ones

that might become redundant. Thus, only in these

cases, if UmNG = 0 then m is redundant. For other

cases UmNG is equal to UmG, thus, we do nothing.

In reality, Proposition 4 can be implemented without

any expensive computations on sets (such as union,

intersection, difference or inclusion) but just a loop

through Tb to compute on scalar values. The

complexity of this test is just O(|Tb|), (see procedure

Update in Figure 5), which is significantly reduced as

compared to the analysis in Remark 1. Thus,

Proposition 4 simplifies Proposition 3.

Example 3. Given C and SC = {Y1, Y2, Y3} in Figure

2. Let’s illustrate the way a generator of C is

generated.

With G = 1, !1 G and T1 = 3  U1G = 1, U2G =

U3G = U4G = U5G = -1, F1G = F2G = 0, F3G = 1. Since

there exists such F1G = 0, by (a3), G  Gen©.

Add machine b = 2 into G we have: NG = G  2 = 12

and Tb = 12. By (a4), F1G = F2G = 0, then F1NG = F2NG

= 2. By (c4), 3  T2, then F3NG = F3G = 1. By (f4), {j 

T2: FjG = 1} = , then U1NG = U1G = 1. By (d4), F1G =

F2G = 0, then U2NG = 2. The machines 3, 4, 5 are not

in NG, then, by (f4), U3NG = U4NG = U5NG = -1. By (a3)

and (b3), all jobs are solved and NG = 12 is minimal,

thus NG  Gen©.

Assumed that we continue to add machine 3 into NG.

We have G’ = NG  {3} = 123, T3 = 2. By (c4), 1

and 3  T3, then F1G’ = 2, F3G’ = 1. By (b4), 2  T3

and F2NG = 2, then F2G’ = -2. By (f4), {j  T3: FjNG =

1} = , then U1G’ = 1. By (f4), U2NG- |{j  T3: FjNG =

2}| = U2NG- |2| = 1. By (d4), T3 = 2 and F2G’ = -2  2,

then U3G’ = 0 or machine 3 is redundant in G’. By

(b3), G’ = 123  Gen©.

4. The proposed algorithm GDP

In this section we introduce the dynamic

programming algorithm GDP which applies

Proposition 3 and Proposition 4 to find all generators

for each FCI in a lattice of FCIs. It only skips any of

the following useless considerations: supersets of

non-minimal candidate, duplicated candidates and the

ones that are surely not in [C] based on the following

principles:

a. Candidate G is generated by backtracking

and depth-first manner. At the beginning, G

is initialized as an empty set, UG and FG are

accordingly initialized as {-1, ..., -1} and {0,

..., 0}. When one by one adding new

machine b into G, new candidate NG (NG =

G  {b}) must also be minimal to be

extended further; otherwise, NG and its

supersets are pruned. Concurrently, UG and

F values are updated by Proposition 4.

b. Newly added machine b must be to solve a

new job j that hasn’t yet been solved by G;

otherwise b will be redundant in NG. Thus,

b must be selected from such an Mj that FjG

= 0. By this way b will never be collapsed to

any machine in G (j  J: FjG = 0  Mj 

G =   b  Mj, j  Tb\T(G), i.e., b is not

redundant in NG). If there is no more such

job j then G is a generator since in this case

it is a minimal solution. Therefore, the

search for such j is also the test for G to be a

solution.

c. When new machine b is added, by

Proposition 4, it is only necessary to follow

cases (a4), (b4), (d4) and especially case (e4)

to update the related values of UG and FG.

Because all these cases require the condition

“j  Tb” is satisfied, it is better to loop

through Tb to perform them. Furthermore,

for each j in Tb, such machine m in case (e4)

is extracted by expression “FjG = m, where

m > 0”. Then, UmNG = UmNG - 1 and just only

at this time, it is necessary to test UmNG = 0

to verify if b causes m redundant in NG. If

so, we restore these values.

d. To avoid duplication, no superset of G is

allowed to contain b, except NG and

supersets of NG. Similarly, to avoid useless

steps, b shouldn’t be added again into any

superset of NG. Thus, before processing

NG, b is temporary removed from Mk, for

all unsolved jobs k that b can solve. (Every

such Mk is restored after all machines in Mj

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

747

are tried, so no generator is missed). This is

also to reduce the sub search spaces as any

Mk can shrink. As a result, no candidate is

considered more than once.

By level by level applying these principles, not only

all duplicated candidates and the surely non-minimal

ones are eliminated from consideration but also all

candidates that are not solutions are implicitly

skipped. The reason is that after all machines in an Mj

(of the current unsolved job j) are tried to add into G,

they are removed from Mk (of any unsolved job k).

Thus, no superset of G generated after this time can

solve job j, i.e., they could not be solutions. By

adding at least one machine from Mj into G, GDP

automatically pruned these unuseful sets.

Our approach is presented via the algorithms GDP,

Try and Update in Figure 3, Figure 4 and Figure 5

respectively.

4.1. The algorithm GDP

In GDP, we first calculate Mj for each job j and Tm

for each machine m (lines 3, 4). Then, a set

composed of a machine m will be a generator if m

can solve all jobs and it will be removed permanently

to reduce the search space (line 5 to line 7). After

that, we initialize G, FG, UG and call Try to begin the

backtracking process (line 8, 9).

Input: LA – lattice of FCIs.

Output: Gen(C), C  LA.

Method: GDP(LA).

1. C  LA

2. Gen(C) = ;

3. j  J, Mj = C\Yj;

4. m  C, Tm = {j  J: m  Mj};

5. m  C: if (|Tm| = |SC|) then

6. Gen(C). Add({m});

7. j  Tm, Mj.Remove(m);

8. G = ; F = {0,…,0}; U = {-1,…,-1};

9. Try (C, G, F, U, 0);

Figure 3: Algorithm GDP.

4.2. The algorithm Try

Input: C – a FCI,

G - current minimal candidate,

U - UG,

F - FG,

i - starting index to find the first unsolved

job.

Output: Gen(C).

Method: (C, G, F, U, i).

1. If (j  J: (j > i)  FjG = 0) then

2. MList = {k:(b  Mj: k  Tb  FkG = 0)};

3. k  MList, backup Mk;

4. b  Mj,

5. G.Add(b);

6. Backup those values of FG and UG

 related to Tb;

7. Minimal = Update(U, F, G, b, j);

8. k  Tb: FkG = 0,

9. Mk.Remove(b);

10. if(Minimal = true) then

11. Try(C, G, F, U, j);

12. G. Remove (b);

13. Restore those values of FG and UG

 related to Tb;

14. k  MList, Restore Mk;

15. else: Gen(C).Add(G);

Figure 4: Algorithm Try.

The procedure Try tries to extend the current minimal

candidate G in backtracking and depth-first manner

until G can solve all jobs. It first searches for the next

unsolved job j. If not so, the current candidate G is a

generator (line 15); otherwise, each machine in Mj is

one by one add into G and G is extend further if new

machine does not cause redundancy (lines 11). Then,

every set Mk of every unsolved job k that can be

solved by any machine in Mj is saved (lines 3). The

reason is that each time a machine b is added into G,

it is temporarily removed from such Mk (lines 8, 9) to

reduce the search space and to avoid replicated

candidates. However, after trying all machines in Mj,

these Mk must be restored (line 14) for backtracking

purpose. Similarly, before provoking the function

Update to update those values of FG and UG relevant

to b and to check for G  {b} to be redundant, these

values are saved (line 6). After considering all

candidates containing G  {b} or finding out that G

 {b} is redundant, G, FG and UG are restored (line

12, 13).

4.3. The algorithm Update

Input: U - UG,

 F - FG,

 G - the current minimal candidate,

 b - the new added machine,

 j - the first unsolved job.

Output: U – updated UG ,

 F- updated FG,

Returns true if G  {b} is minimal;

otherwise returns false.

Method: Update(U, F, G, b, j).

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

748

1. UbG = 0;

2. k  Tb,

3. if (FkG = 0)

4. FkG = b;

5. UbG = UbG+ 1;

6. else If (FkG > 0)

7. m = FkG;

8. UmG = UmG-1;

9. If (UmG = 0) return false;

10. FkG = -2;

11. return true;

Figure 5: Algorithm Update.

The algorithm Update applies Proposition 4 to update

the values of FG and of UG that are related to Tb,

where b is the new added machine and to verify if the

updated G (i.e., G  {b}) is minimal. It first

initializes UbG as 0 (line 1) and then loop through

each job k that b can solve. In case FkG = 0, b will be

the first machine to solve job k, then UbG is increased

by 1 (line 4, 5). In case FkG = m > 0, k will no longer

be the job uniquely solved by m because b will be the

second machine to solve it, then UmG is decreased by

1 (line 8) and FkG is set to -2 (line 10). At this time, if

UmG is zero, the function will return false to indicate

that b causes a machine in G redundant (line 9). If no

machine is redundant in G, the function will return

true. The complexity this function is O(|Tb|).

4.4. The complexity of GDP

Because Try(0) is the main operation in GDP, the

complexity of GDP can be estimated to that of Try(0)

× |FCS|. Moreover, Update is the main operation of

the function Try and its complexity is O(|T.|), where

|T.| is the average estimated number of jobs that a

machine can solve. In the worst case, we must loop

through all jobs and try choosing machines for each

job. Thus, the complexity of Try(0) is evaluated to a

linear degree of O(|J| × |M.| × |T.|), where |M.| is the

average estimated number of machines that can solve

a job. Denote AJ as the average size of J, with regard

to a given FCI C (i.e., the average number of

intermediate closed subsets of C). Then, the

complexity of GDP can be estimated to O(AJ × |M.| ×

|T.| × |FCS|). Since AJ × |M.| × |T.| is too small in

comparison to |FCS|, GDP can be considered as

linear to |FCS|.

Example 4. Given C and SC as in Figure 2. Let’s

compute Gen(C).

First we initialize G = , FG = {0, …, 0}, UG = {-1,

…,-1}. Since M3 = 1 (M3 contains only one machine),

machine 1 is added into G first to solve job 3 and 1 is

removed from M3. Now, F3G = 1, U1G = 1. Let’s try

machine for the first unsolved job. With j = 1 we

have M1 = 24. After adding machine 2 into G, we

have U1G = 1, U2G = 2, U3G = U4G = U5G = -1, F1G =

F2G = 2, F3G = 1. G = 12 is a generator since no more

job is left. After removing machine 2 from M1 and

M2, we have M1 = 4, M2 = 3. Then, we restore G into

1 and try another machine for job 1. Since M1 and M2

each contains only a machine, we just add 4 and 3

into G without the need to check for redundancy. By

the same reason, G = 143 is another generator. Thus,

Gen(C) = {12, 134}.

As one can see in this example, the process to

generate Gen(C) is much simpler than the previous

examples and there are no computations on set such

as union, intersection, and difference… are needed.

5. Experiments

In this section we compare the time for mining all

generators of GDP to those of MinimalGenerators

(MG), Compute_hs_mingen (HS), Touch (TG) and to

the time for mining all FCIs by Charm on several

experimental datasets, for different minimum

supports. Dense datasets (DB) include MushRoom

(M), Connect (Co), C73d10k (C73), C20d10k (C20),

T40i10d100K (T40) and sparse ones are Retail (R),

T20i6d100K (T20) [15, 16]) thresholds (MS). All

algorithms are tested on a laptop HP Compaq 6520s

Intel(R) Core 2 Duo CPU T7250 @2GHz 1GB of

RAM, running in Windows XP. The running time of

these algorithms on all testing datasets are shown in

Table 1.

Table 1: Running time of GDP, MG, HS, TG and

Charm on our test cases.

DB _MS

(%)

#G M

CT

(s)

GT (s)

G

DP

M

G

HS TG

M_1 103516 3.5 0 oT 28 2.7

M_0.5 164525 5.3 0.3 oT 43 4.2

M_0.1 360165 8.9 1.7 oT 97 8.7

Co_70 35875 7.2 0 oT 7.8 5.9

Co_60 68349 16.7 0.3 oT 17 8.5

Co_50 130101 29.2 1 oT 33.8 13.3

Co_40 239372 51.7 2.1 oT 66.5 21.2

C2_0.5 170259 4.7 0.9 oT 38 3.5

C2_0.1 449352 11 3 oT 97.8 9.6

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

749

C2_0.05 604013 17.4 4 oT 533 15.4

C2_0.001 823633 23.2 5 oT oT 29.5

C7_70 29007 1.8 0 oT 8.3 2.7

C7_60 166917 4.2 1.2 oT 60.7 6.6

C7_50 765448 122 8 oT 327 oM

T4_1 66278 31.3 0 18.4 14.4 oM

T4_0.75 498785 252 6 oT 253 oM

T4_0.5 1280246 548 52 oT 614 oM

R_0.05 19698 3 0 0.7 1.4 fR

R_0.01 191265 26.8 2 10.4 17.9 fR

R_0.005 801352 161 9 oT 117 fR

T2_0.15 249051 58.5 2 118 61.1 88.7

T2_0.1 357200 120 3 176 90.4 193

T2_0.075 457305 180 4 289 111 368

Abbreviation. DB_MS: dataset_minsup, #CS:

number of FCIs, #G: number of generators, MCT:

time for mining FCIs by Charm, GT: time for mining

all generators, oT: out of time (more than 650

seconds), oM: out of memory, fR: failed to run.

In experiments, we use the code of MG and HS

downloaded at [13]. All MG, HS and GDP use

CharmL [17], extended version of Charm, to mine

the lattice of FCIs for input. Executive version of

Touch, can be downloaded at [16]. Touch doesn’t

need to create the lattice of FCIs but it must take a

minus amount of time to combine each FCI with its

generators. This additional time can be considered

equal to the time to create the lattice from all FCIs in

MG, HS and GDP. The version of Charm in Touch

runs a little bit faster than CharmL code in [17]

except the cases it ran out of memory (denoted by

oM) or failed to run (denoted by fR) as in Table 1.

Due to this reason, the minimum time for mining

FCIs, shown in column MCT in Table 1, is usually

the one of Charm implemented in execute version of

Touch. Every test case ran more than 650 seconds is

considered to be out of time, denoted by oT.

Comparisons on the running time of these algorithms

on several datasets are shown on Figure 6, Figure 7,

Figure 8 and Figure 9.

We just tested the algorithm MinimalGenerators for a

few cases because it ran very slow on dense datasets

and it was almost unresponsive to even highest

testing minimum support thresholds, while others

algorithms can finish in a few minutes.

Running times on Mushroom

0

20

40

60

80

100

120

1 0.5 0.1 Minsup(%)

T
im

e
(s

)

HS

TG

MCT

GDP

Figure 6: Running time on Mushroom.

Running times on T20i6d100K

0

50

100

150

200

250

300

350

400

0.15 0.1 0.08 Minsup(%)

T
im

e
(s

)

MCT

GDP

MG

HS

TG

Figure 7: Running time on T20i6d100k.

Running times on Connect

0

10

20

30

40

50

60

70

80

70 60 50 40 Minsup(%)

T
im

e
(s

)

HS

TG

MCT

GDP

Figure 8: Running time on Connect.

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

750

Running times on Retail

0

100

200

300

400

500

600

700

0.05 0.01 0.005 Minsup(%)

T
im

e
(s

)

HS

MCT

GDP

MG

Figure 9: Running time on Retail.

Compute_hs_mingen one by one generates an itemset

in a subspace of [C], with C is a FCI and check for

that itemset to be minimal by the similar idea (b3). It

generates quite many redundant candidates since

redundancy already happened when generating their

subsets. Let |M.| be the average estimated number of

machines that can process a job and AG be the

average estimated size of a candidate belonging to

[C] then, the complexity of Compute_hs_mingen is

O(AJ × |M.| × AG
4

× |FCS|). Thus, the ratio between

Compute_hs_mingen and GDP is AG
4
/|T.|. Moreover,

as this procedure can not eliminate duplicate

candidates during the search, it must perform an extra

step to remove duplicate generators. It was

sometimes slower than MinimalGenerators on sparse

datasets. Touch worked well on most of test cases. It

ran usually faster than MinimalGenerators and

Compute_hs_mingen.

Experiments showed that GDP is the fastest

algorithm in all test cases. When the minimum

support threshold gets low, it is usually faster than

Touch more than 4 times and significantly

outperforms the others, especially for dense datasets.

It is noteworthy that the time for mining generators

and for combining them with their closure of Touch

takes from about 50% to a little bit more than 100%

of the minimum time for mining FCIs. In contrast,

the corresponding rate of GDP is much smaller.

6. Conclusion

Since FCIs and theirs generators are essential

information, they are keys to mine FIs and ARs.

Therefore, it is worth to study effective approaches to

mine all generators. We found out that finding

generators based on lattice of FCIs, which is easy to

be available, is more reasonable than mining them

directly from datasets by certain mentioned reasons.

By interpreting the problem of finding all generators

of a FCI based on its immediate closed subsets into a

problem of distributing M machines to N jobs, we

derived some interesting theoretical results that turn

complex criteria computing on sets to the much less

costly ones that do not require any set computations.

The proposed algorithm GDP can efficiently find

enough generators in a low complexity without

duplication and useless consideration. Experiments

showed that our algorithm is more effective than the

compared competitors. Especially, its time for

finding all generators is very minus as compare to the

time for mining all FCIs.

As GDP can be implemented in parallel, in the future,

we will integrate it with a parallel or distributed FCI

mining algorithm and experiment them on big data.

References

[1] Agrawal, R., Imielinski, T., and Swami, N.

“Mining association rules between sets of items

in large databases”. Proceedings of the 1993

ACM SIGMOID Conference, Washington DC,

USA, pp. 207-216. 1993.

[2] Anh, T., Tin, T., and Bac, L. “Structures of

Association Rule Set”. ACIIDS 2012, LNAI

7197, Part II, pp.361–370. 2012.

[3] Hai, D., Tin, T., Bay, V. “Efficient method for

mining frequent itemsets with double

constraints”. Eng. Appl. of AI 27, pp. 148-154.

2014.

[4] Pasquier, N., Taouil, R., Bastide, Y., Stumme, G.,

and Lakhal, L. “Generating a condensed

representation for association rules”. J. of

Intelligent Information Systems, Vol. 24, No. 1,

pp. 29-60. 2005.

[5] Tin, T., and Anh, T. “Structure of set of

association rules based on concept lattice”.

ACIIDS 2010, Advances in Intelligent

Information and Database Systems, SCI, Vol.

283, pp. 217-227. 2010.

[6] Zaki, M.J. “Mining non-redundant association

rules”. Data mining and knowledge discovery,

Vol. 9, No. 3, pp. 223-248, Kluwer Academic

Publishers. 2004.

[7] Goethals, Bart, and Mohammed J. Zaki.

"FIMI’03: Workshop on frequent itemset mining

implementations." In Third IEEE International

Conference on Data Mining Workshop on

http://www.informatik.uni-trier.de/~ley/pers/hd/d/Duong:Hai_V=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Truong:Tin_C=.html
http://www.informatik.uni-trier.de/~ley/db/journals/eaai/eaai27.html#DuongTV14
http://www.springerlink.com/content/978-3-642-12089-3/
http://www.springerlink.com/content/978-3-642-12089-3/

International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970)

Volume-4 Number-3 Issue-16 September-2014

751

Frequent Itemset Mining Implementations, pp. 1-

13. 2003.

[8] Grahne, G., and Zhu, J.“Efficiently Using Prefix-

trees in Mining Frequent Itemsets”. In 1st

Proceedings of the IEEE ICDM Workshop on

Frequent Itemset Mining Implementations FIMI.

2003.

[9] Lakhal, L., and Stumme, G. “Efficient mining of

association rules based on formal concept

analysis”. Formal concept analysis, Lecture

Notes in Computer Science, Vol. 3626, pp. 180-

195. Springer Berlin Heidelberg. 2005.

[10] Negrevergne, B., Termier, A., Méhaut, J., Uno,

T. “Discovering Closed Frequent Itemsets on

Multicore: Parallelizing Computations and

Optimizing Memory Accesses”. 2010

International Conference on High Performance

Computing and Simulation (HPCS), pp. 521 -

528. 2010.

[11] Wang, S. Q., Yang, Y. B., Chen, G. P., Gao, Y.,

and Zhang, Y. “MapReduce-based Closed

Frequent Itemset Mining with Efficient

Redundancy Filtering”. In Data Mining

Workshops (ICDMW), 2012 IEEE 12th

International Conference, pp. 449-453. 2012.

[12] Anh, T., Tin, T. and Bac, L. “An approach for

mining concurrently closed itemsets and

generators”, ICCSAMA 2013, Advanced

Computational Methods for Knowledge

Engineering, SCI, Vol. 479, pp.355–366. 2013.

[13] http://www.cs.rpi.edu/~zaki/www-

new/pmwiki.php/Software/Software#toc4, 2012.

[14] Szathmary, L., Valtchev, P., Napoli, A., Godin,

R. “Efficient vertical mining of frequent closures

and generators”. Proceedings of the 8th

international Symposium on intelligent Data

Analysis: Advances in intelligent Data Analysis

VIII, Vol. 5772, pp. 393-404. Springer Berlin

Heidelberg. 2009.

[15] http://fimi.ua.ac.be/data/.

[16] http://coron.loria.fr/site/downloads.php.

[17] Zaki, M.J., and Hsiao, C-J. “Efficient algorithms

for mining closed itemsets and their lattice

structure”. IEEE Trans. Knowledge and data

engineering, Vol. 17, No. 4, pp. 462-478. 2005.

Pham Quang Huy, born in Nghe An,

Vietnam in 1961. Educational

background: B.Sc of Computer

Sciences from Dalat University in 2000

and M.Sc of Computer Sciences from

University of Natural Science Ho Chi

Minh in 2005. Current position: lecturer

at Dalat University. Research interest: Data Mining, Rough

set theory.

Truong Chi Tin, born in Da Lat,

Vietnam in 1961. Educational

background: B.Sc of Mathematics from

Dalat University in 1983 and Ph.D of

Mathematics from Vietnam National

University in 1990. Current position:

professor at Dalat University. Research

interest: Stochastic Calculus, AI, Data Mining.

http://www.springerlink.com/openurl.asp?id=doi:10.1007/978-3-319-00293-4
http://www.springerlink.com/openurl.asp?id=doi:10.1007/978-3-319-00293-4
http://www.springerlink.com/openurl.asp?id=doi:10.1007/978-3-319-00293-4
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/Software#toc4
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/Software#toc4
http://coron.loria.fr/site/downloads.php

