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1.Introduction 
Clustering based on objective function is a commonly 

used method, which is attributed as an optimization 

problem with the constrained conditions, such as k-

means clustering. As this method has some flaws, the 

researchers conduct some improvements on k-means 

clustering algorithm. It is worth mentioning that the 

researchers introduced the feature weights into 

objective function of optimization problems involved 

and presented a lot of different clustering algorithms. 

For example, Huang et al. [1] introduced feature 

weights into the objective function of k-means 

clustering and proposed WK-Means clustering 

algorithm. Renato et al. [2] further extended the 

Euclidean distance to Minkowski distance and 

studied the relationship between feature weights and 

measure of distance. In addition, an improved method 

for k-means clustering algorithm or its variants is 

proposed to the objective function of optimization 

problem. Since then, researchers presented fuzzy c-

means (FCM) clustering algorithms and its variants 

[3-5]. Some researchers proposed the maximum 

entropy clustering algorithm in order to overcome the 

deficiencies of FCM [6, 7]. 
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Meanwhile, fuzzy clustering algorithm with feature 

weights is obtained by taking into account the 

different roles of the features of data samples in the 

clustering process. In terms of them, researchers 

introduced feature weights into the fuzzy clustering 

algorithm [8, 9] and get the better clustering results. 

In fact, for problem of feature weights, it can be seen 

as a generalization of feature selection in pattern 

recognition, that is, feature selection can be seen as a 

special case of feature weights. Recently, Zhou et al. 

[10] presents a fuzzy clustering algorithm with the 

entropy-regularized weighted FCM (EWFCM). They 

mainly introduced the attribute weights into objective 

function and used fuzzy entropy of attribute weights 

as a regularized term. For obtaining the better 

clustering results, in this paper, we generalize this 

method presented by Zhou et al. [10] and obtain a 

new objective function by introducing feature 

weights and adding regularized term with the 

generalized entropy of feature weights in terms of 

objective function of FCM. By minimizing the 

dispersion within clusters and maximizing the 

generalized entropy of feature weights 

simultaneously, the optimal clustering results are 

obtained. 

 

In this paper, we introduce feature weights and add 

regularized term of their generalized fuzzy entropy 

into objective function of FCM to obtain a new 

objective function. Based on this new objective 
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function, a fuzzy clustering algorithm has been 

presented with the generalized entropy of feature 

weights FCM (GEWFCM). It is viewed as a 

generalization of the maximum entropy-regularized 

weighted FCM (EWFCM). In the eexperiments, we 

select seven data sets from UCI to demonstrate 

effectiveness of presented method. 

 

2.Fuzzy Shannon entropy and generalized 

fuzzy entropy 
Let 

1 2{ , , , }nX x x x be a data set, where s

ix R  , c 

is a positive integer greater than one and 1m  is 

fuzzy index. The uij is the degree of membership jth 

sample belonging to ith cluster. U is a c-by-n matrix 

containing element uij . The generalized fuzzy 

entropy is defined as follows: 
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Where α is called as the generalized entropy index. It 

is seen that when 1  , ( , )H U   is fuzzy Shannon 

entropy, i.e. 
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  . In the 

following, we give a simplified proof. 

 

Proof: When 1  , it can be seen that ( , )H U   is an 

indeterminate form with 0/0
 
type. According to the 

L’Hopital rule, ( , )H U  ’s limit is expressed as 

1

1 1

1
1 1

11
1 1

2

1 1

lim ( , )

lim (2 1) ( 1)

ln
lim

2 ln 2

log

n c

ij

j i

n c
ij ij

j i

n c

ij ij

j i

H U

u

u u

u u



 










 


 


 

 

  




 

 





  

 

3.Maximum of the generalized fuzzy 

entropy with feature weights 

3.1The model of fuzzy clustering with the 

generalized fuzzy entropy of feature weights  

In 2016, Zhou et al. [10] presents a fuzzy clustering 

with the entropy of attribute weights. They mainly 

introduced the attribute weights into objective 

function and used fuzzy entropy of attribute weights 

as a regularized term. To obtain the better cluster 

structure, in the following, we introduce the 

generalized fuzzy entropy into the objective function  

of optimization problem for FCM and add a 

regularized term with the generalized fuzzy entropy 

of feature weights. In reality, the model presented by 

us is viewed as a generalization of model presented 

by Zhou et al.  

 

The model of fuzzy clustering with the generalized 

fuzzy entropy of feature weights is as follows: 
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Where c is the number of cluster, n is number of 

samples and s is dimension. Moreover, center of 

cluster is ( 1,2, , )iv i c  and  
1 2( , , , )i i i isv v v v , 

( 1,2, , ; 1,2, , )ijw i c j s   is jth feature belonging 

to ith cluster. 

 

3.2Fuzzy clustering algorithm with the 

generalized entropy of feature weights  

To obtain fuzzy clustering algorithm with the 

generalized entropy of feature weights, we solve the 

optimization problem (2) with constrained condition.  

Thus, Lagrange function for (2) is  
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By setting the gradient of  , , ; ,L U V W    to zero 

with respect to iku , ijv , ijw ,
k and

i , we obtain 
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From (4), we obtain 
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Substituting (9) into (7), we have 
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Further, we obtain the following Lagrange multiplie

k (k=1,2,…,n), namely 
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Substituting (10) into (9), we have 
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About ijv , from (5), we directly obtain  
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Similar to method solving iku , we have  

1/( 1)

2 1 1 1

1

( ) (2 1)

i
ij n

m

ik kj ij

k

w

u x v







 



  



 
 
 
    
 


 ,         

 

Substituting (13) into (8), we have 
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Substituting (14) into (13), we have 
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.            

In the following, we give the detailed algorithm. 

Input:  The number of clusters c ( 2 c n  ), fuzzy 

index m, the parameter  , a small enough error ε, the 

cluster centers ( 1,2, , )iv i c , all initial weights of 

each attribute to 1/c, and the iterative index j=1. 

Repeat 

Update degree of membership by (11); 

Update the cluster centers by (12); 

Update the attribute weight by (15); 

j=j+1; 

Until ( 1) ( )|| ||j jU U    . 

 

4.Experimental results and analysis 
4.1Data sets and evaluation criterion 

For validating the effectiveness of presented method, 

we choose seven data sets from University of 

California Irvine (UCI) machine learning repository 

[11] for experiment.  
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These data sets mainly contain iris, ionosphere, 

haberman, heart_scale, diabetes, sonar and glass, 

whose detailed features are shown in Table 1. In the 

experiment, we select the evaluation criteria with 

clustering or classification accuracy and normalized 

mutual information (MI). In addition, we also choose 

Jaccard coefficient (JC), partition coefficient (PC) 

and partition entropy (PE) as the evaluation criteria 

of clustering, respectively. In the following, we 

simply introduce two evaluation criteria PC and PE. 

Supposed that a fuzzy partition of data set is 

represented by the membership matrix [ ]ijU u , 

where iju represents the degree of membership of the 

sample xi in the cluster
 
j. Then partition coefficient 

PC is defined as 
1 1

1/
n c

ij

i j

PC n u
 

   and [1/ ,1]PC c , 

where c is the number of clusters and n is the number 

of samples. When PC is closer to 1, the partition is 

clearer. On the contrary, when PC is closer to 1/c, the 

partition is fuzzier. Moreover, partition entropy is 

given by
1 1

1/ log
n c

ij a ij

i j

PE n u u
 

    and 0,[ ]aPE log c . 

When PE is smaller, the partition is clearer. On the 

contrary, when PE is closer to logac, the partition is 

fuzzier.  

 

Table 1 Feature of data set 

Data set Number 

of samples 

Number of 

attributes 

Number of 

clusters 

iris 150 4 3 

ionosphere 351 34 2 

haberman 306 3 2 

heart_scale 270 13 2 

diabetes 768 8 2 

sonar 208 60 2 

glass 214 9 7 

 

4.2Experimental results 

Firstly, we conduct experiments ten times with 

GEWFCM and EWFCM in terms of accuracy and MI 

on selected seven data sets. The experimental results 

are shown in Figure 1, where (a), (c), (e), (g), (i), (k) 

and (m) are accuracy of clustering result at each data 

set, (b), (d), (f), (h), (j), (l) and (n) are MI of 

clustering result at each data set. Secondly, aiming at 

the different generalized entropy index α, we conduct 

experimental study on three data sets iris, ionosphere 

and sonar in terms of accuracy, MI and JC. The 

experimental results are shown in Figure 2. It is seen 

that when α=9.5, GEWFCM obtains better results. 

Finally, aiming at the selected seven data sets, we 

obtain mean of performance index of GEWFCM and 

EWFCM about accuracy, MI, JC, PC and PE in ten 

times experiments. The experimental result is seen in 

Table 2, where the upper part shows the experimental 

results of GEWFCM and the lower part shows the 

experimental results of EWFCM.  

 

4.3Analysis of clustering results 

It can be seen from Figure 1 that performance of 

GEWFCM presented by us is superior to EWFCM on 

the whole. Especially, we know that clustering results 

of GEWFCM are more stable than those of EWFCM 

except iris data set. Moreover, we also see that in 

experimental results of Figure 1, we only fix the 

generalized fuzzy entropy index α to obtain them. In 

reality, to obtain better clustering results, it may find 

better generalized fuzzy entropy index α by 

experiment. We conduct some experiments aiming at 

three data sets including iris, ionosphere and sonar in 

terms of accuracy, MI and JC as shown in Figure 2. It 

can find that better clustering results are obtained 

when α=9.5. From Table 2, it is seen that clustering 

accuracies of GEWFCM are superior to those 

EWFCM except iris data set whereas other three 

clustering indexes are basically consistent to each 

other.  Experimental results clearly indicate that 

fuzzy clustering with generalized fuzzy entropy of 

feature weights may obtain better clustering results. 

 

5.Conclusion  
In this paper, we introduce feature weights and add 

regularized term of its generalized fuzzy entropy in 

terms of objective function of FCM to obtain a new 

objective function. By using Lagrange multiplier 

method, we propose a fuzzy clustering algorithm 

with the generalized entropy of feature weights, 

namely GEWFCM, which is viewed as a 

generalization of EWFCM. In GEWFCM, 

minimization of the dispersion within clusters and 

maximization of the generalized entropy of feature 

weights simultaneously obtain the optimal clustering 

results. Experiments on data sets selected from UCI 

repository demonstrate effectiveness of presented 

method. In future, we further study fuzzy clustering 

with the generalized feature weights based on kernel 

and expect to obtain better clustering results. 
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(a) Iris-accuracy 

 

 

 

(b) Iris-MI 
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(c) Ionosphere-accuracy 
 

 
(d) Ionosphere-MI 
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(e) Haberman-accuracy 

 

 
(f) Haberman-MI 
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(g) Heart-scale-accuracy 

 

 
(h) Heart-scale-MI 
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(i) Diabetes-accuracy 

 

 
(j) Diabetes-MI 
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(k) Sonar-accuracy 

 

 
(l) Sonar-MI 
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(m) Glass-accuracy 

 

 
(n) Glass-MI 

Figure 1 Performance index of two clustering algorithms GEWFCM and EWFCM 
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(a) Iris 

 

 
(b) Ionosphere  
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(c) Sonar 

Figure 2 Performance index of GEWFCM on different the generalized entropy index α 

 

Table 2 Mean of performance index of GEWFCM and EWFCM 

GEWFCM/EWFCM Accuracy MI JC PC PE 

Iris 0.9220  0.7793  0.7652  0.3780  0.4489  

0.9240  0.7847  0.7649  0.3760  0.4501  

Ionosphere 0.7103  0.1314  0.4314  0.6510  0.2266  

0.7048  0.1289  0.4283  0.5005  0.3008  

Haberman 0.5163  0.0004  0.3772  0.5460  0.2805  

0.5065  0.0007  0.3781  0.6337  0.2371  

Heart_Scale 0.7944  0.2687  0.5  0.5083  0.2974  

0.7941  0.2691  0.5152  0.5000  0.3010  

Diabetes 0.6602  0.0297  0.4595  0.9875  0.0090  

0.6398  0.0200  0.4336  0.9902  0.0073  

Sonar 0.5611  0.0120  0.3384  0.8810  0.0869  

0.5524  0.0084  0.3359  0.5002  0.3009  

Glass 0.5369  0.4353  0.3312  0.9817  0.0144  

0.5089  0.3638  0.3056  0.1455  0.8410  
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