
International Journal of Advanced Computer Research, Vol 6(26)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2016.625018

185

State of the art: benchmarking microprocessors for embedded automotive

applications

Adnan Shaout
*
 and Anthony Walker

Department of Electronics and Communication Engineering, University of Michigan, Dearborn, United States

Received: 11-June-2016; Revised: 11-August-2016; Accepted: 16-August-2016

©2016 ACCENTS

1.Introduction
Benchmarking microprocessors provides a way for

consumers to evaluate the performance of the

processors. This is done by using either synthetic or

real world applications. In some cases, these real

world applications tend to be software packages that

are used by consumers in production intent

environments (commonly referred to as proprietary

software). Synthetic benchmarks are those that

simulate large programs and/or real world

applications. An aspect of real world applications is

the use of various mathematical computations

(integer math, floating point math, infinite impulse

response (IIR) filters, etc.).

While looking for articles concerning the methods for

benchmarking microprocessors for embedded

automotive applications, we found it difficult to find

information that focused solely on benchmarking

microprocessors for embedded automotive

applications. One reason is that there are not many

benchmarks available are due to the fact that EEMBC

consortium is comprised of all the main suppliers of

microprocessors in the automotive industry.

*Author for correspondence

These companies include Freescale, Infineon, ST and

Renesas to name a few [1]. There seemed to be

various methodologies and techniques of

benchmarking microprocessors ranging from desktop

computers and cell phones to those used for

telecommunications.

2.Overview of benchmarks
The Whetstone benchmark is a synthetic benchmark

that was written in 1972 by Dr. B.A. Wichman and

Harold Curnow [2]. Wichman created a set of 42

simple statements using the algorithmic language

1960 (ALGOL 60) programming language. In

addition to being written in ALGOL 60 it was also

later written in Pascal, formula translation

(FORTRAN) and C [3, 4]. This benchmark was

created to measure the speed and efficiency of a

computer that performs floating-point operations [5].

It is comprised of a variety of functions including sin,

cos, square root, exponents, logarithmic operations,

integer and floating point operations. Its name is

derived from the compiler system used to collect

statistics about the distribution of Whetstone

instructions (the Whetstone Algol compiler system)

[3]. Some important characteristics of the Whetstone

benchmark are as follows [3]:

Review Article

Abstract
Benchmarking microprocessors provides a way for consumers to evaluate the performance of the processors. This is

done by using either synthetic or real world applications. There are a number of benchmarks that exist today to assist

consumers in evaluating the vast number of microprocessors that are available in the market. In this paper an

investigation of the various benchmarks available for evaluating microprocessors for embedded automotive applications

will be performed. We will provide an overview of the following benchmarks: Whetstone, Dhrystone, Linpack, standard

performance evaluation corporation (SPEC) CPU2006, embedded microprocessor benchmark consortium (EEMBC)

AutoBench and MiBench. A comparison of existing benchmarks will be given based on relevant characteristics of

automotive applications which will give the proper recommendation when benchmarking processors for automotive

applications.

Keywords
Benchmarking, Embedded systems, Automotive applications, Microprocessors, Synthetic benchmark.

Adnan Shaout et al.

186

 It contains a high percentage floating-point data

and floating point calculations.

 A high percentage of the execution time is spent

in mathematical library functions.

 The use of local variables is very limited.

 Global variables are heavily used. (NOTE: The

use of global variables is not recommended in

embedded applications due to coupling and

increased complexity).

 Due to its construction principle of using 9 small

loops, it has an extremely high code locality.

The Dhrystone benchmark is also a synthetic

benchmark. It was written in 1964 by Reinhold

Weicker [5, 6]. Dhrystone was originally written in

analysis, design and algorithm (ADA) and was

designed in a way that was intended to make it

possible to develop in other programming languages.

An instance of this is Pascal. This was a relatively

easy translation due to the fact that Dhrystone uses a

“Pascal subset” of ADA [6]. The other programming

language used to implement the Dhrystone

benchmark is C. However, using C posed a number

of challenges and hence yields other possible

versions [6] such as a version without register

variables, a version that declares every local variable

of a scalar type to be a register variable and a version

where the programmer optimizes carefully, trading

off the benefit of register variables in terms of access

time against the additional overhead in procedure call

and return.

The Dhrystone benchmark is used to measure and

compare the performance of different computers [7].

It concentrates on string handling and does not use

floating point arithmetic [8]. As stated by the ARM

Keil website “it is heavily influenced by hardware

and software design, compiler and linker options,

code optimizing, cache memory, wait states, and

integer data types” [8]. This was also reiterated by

Walter J. Price, who stated that the Dhrystone

“benchmark measures processor and compiler

efficiency by executing a typical set of integer

calculations. These calculations include integer

arithmetic, character/string/array manipulation, and

pointers.” [4]. Some important characteristics of the

Dhrystone benchmark are [3] no floating point

operations in its measurement loop, a sizable

percentage of execution time is spent in string

functions, it contains hardly any loops within the

main measurement loop, a small amount of global

data is manipulated and no attempt is made to prevent

compiler optimizations. The Linpack benchmark

created by Jack Dongarra, Jim Bunch, Cleve Moler

and Gilbert Stewart and published in 1976 was not

originally a benchmark [3]. It has been a collection

of linear algebra subroutines often used in

FORTRAN programs that emphasized floating point

addition and multiplication [3, 4]. These subroutines

were referred to as basic linear algebra subroutines

(BLASs). They came in two forms: Coded and

FORTRAN. The Coded BLASs were written in

assembly language while the Fortran BLASs were

written in FORTRAN. Important characteristics of

the Linpack benchmark are as follows [3]:

 A high percentage of floating-point operations

are performed.

 No mathematical functions are used.

 Execution time is almost spent exclusively in

one small function.

 High code locality and low data locality.

The SPEC CPU2006 benchmark is the SPEC

benchmark suite. According the SPEC website it is

their “next-generation, industry standardized, CPU-

intensive benchmark suite, stressing a system‟s

processor, memory subsystem and compiler” [7].

There are 2 components of this benchmark suite:

integer and floating point. The integer suite

(SPECint 2006) contains 12 benchmark tests

(described in Table 1 [9]). The floating point suite

(SPECfp 2006) contains 19 benchmark tests

(described in Table 2 [10]).

Table 1 Description of integer SPECint 2006 benchmark tests

Benchmark Programming language Application area Brief description

400.perlbench C Programming Language Derived from Perl v5.8.7.

The workload includes

SpamAssasin, MHonArc (an

email indexer) and specdiff

(SPEC's tool that checks

benchmark outputs).

401.bzip2 C Compression Julian Seward's bzip2 version

1.0.3. Modified to do most

work in memory

rather than doing I/O.

International Journal of Advanced Computer Research, Vol 6(26)

187

Benchmark Programming language Application area Brief description

403.gcc C C Compiler Based on GCC v3.2.

Generates code for Opteron

microprocessor.

439.mcf C Combinatorial

Optimization

Vehicle scheduling. Uses a

network simplex algorithm

(which is also used

in commercial products) to

schedule public transport.

445.gobmk C Artificial Intelligence Plays the game of Go (a

simply described but deeply

complex game).

456.hmmer C Search Gene Sequence Protein sequence analysis

using profile hidden Markov

models (HMMs).

458.sjeng C Artificial Intelligence A highly-ranked chess

program that also plays

several chess variants.

462.libquantum C Physics/Quantum Computing Simulates a quantum

computer, running Shor's

polynomial-time factorization

algorithm.

464.h264ref C Video Compression A reference implementation

of H.264/AVC. Encodes a

video stream using 2

parameter sets.

The H.264/AVC standard is

expected to replace MPEG2.

471.omnetpp C++ Discrete Event Simulation Uses the OMNet++ discrete

event simulator to model a

large Ethernet campus

network.

473.astar C++ Path-finding Algorithms Pathfinding library for 2D

maps, including the well

know A* algorithm.

483.xalancbmk C++ XML Processing A modified version of Xalan-

C++ which transforms XML

documents to other document

types.

Table 2 Description of floating point SPECfp 2006 benchmark tests

Benchmark Programming language Application area Brief description

410.bwaves Fortran Fluid Dynamics Computes 3D transonic

transient laminar viscous

flow.

416.gamess Fortran Quantum Chemistry Implements a wide range of

quantum chemical

computations.

433.milc C Physics/Quantun

Chromodynamics

A gauge field generating

program for lattice gauge

theory programs with

dynamical quarks.

434.zeusmp Fortran Physics/CFD A computational fluid

dynamics code developed at

the Laboratory for

Computational Astrophysics

for the simulation of

astrophysical phenomena.

435.gromacs C, Fortran Biochemistry/Molecular

Dynamics

Molecular dynamics i.e.

simulate Newtonian

Adnan Shaout et al.

188

Benchmark Programming language Application area Brief description

equations of motion for

hundreds to millions of

particles.

436.cactusADM C, Fortran Physics/General Relativity Solves the Einstein evolution

equations using a staggered-

leapfrog numerical method.

437.leslie3d Fortran Fluid Dynamics Computational Fluid

Dynamics using Large-Eddy

Simulations with Linear-

Eddy Modil in 3D.

444.namd C++ Biology/Molecular Dynamics Simulates large biomolecular

systems.

447.dealll C++ Finite Element Analysis A C++ program library

targeted at adaptive finite

elements and error

estimation.

450.soplex C++ Linear Programming,

Optimization

Solves a linear program using

a simplex algorithm and

sparse linear algebra.

453.povray C++ Image Ray-tracing Image rendering.

454.calculix C, Fortran Structural Mechanics Finite element code for linear

and nonlinear 3D structural

applications.

459.GemsFDTD Fortran Computational

Electromagnetics

Solves the Maxwell equations

in 3D using the finite-

difference time-domain

(FDTD) method.

465.tonto Fortran Quantum Chemistry An open source quantum

chemistry package using an

object-oriented design in

Fortran 95 that places a

constraint on a molecular

Hartree-Fock wave function

calculation to better match

experimental X-ray

diffraction data.

470.lbm C Fluid Dynamics Implements the "Lattice-

Boltzmann Method" to

simulate incompressible

fluids in 3D.

481.wrf C, Fortran Weather Weather modeling from the

scales of meters to thousands

of kilometres.

482.sphinx3 C Speech recognition A widely-known speech

recognition system from

Carnegie-Mellon University.

The Autobench benchmark is the one provided by the

EEMBC. This consortium was created in April 1997

to develop meaningful performance benchmarks for

processors in embedded applications [11]. Markus

Levy, the founder of EEMBC, created a set of

benchmarks that would provide better information in

the analysis of microprocessors, microcontrollers

and compilers to address the ineffectiveness of

Dhrystone as a tool for evaluating embedded

processor performance [12]. EEMBC offers a variety

of benchmark suites to evaluate processors for

various types of applications. Some examples of

these benchmarks are shown in Table 3 [13].

International Journal of Advanced Computer Research, Vol 6(26)

189

Table 3 Example benchmarks from the EEMBC benchmark suites [13]

Suite Benchmarks

Automotive Finite and infinite impulse response (FIR and IIR) filters,

tooth-to-spark tests, pulse-width modulation, matrix

multiplication and shifting, table lookup and, fast Fourier

transform (FFT).

Consumer JPEG compression and decompression, high pass grayscale

filter, RGB to CMYK, and RGB to YIQ converter.

Digital Entertainment JPEG compression and decompression, high pass grayscale

filter, RGB to CMYK, and RGB to YIQ converter, advanced

encryption standard (AES), and data encryption standard

(DES).

Networking Packet flow algorithms, open shortest path first (OSPF), and

route lookup.

Networking v2.0 Packet check algorithms, OSPF, RSA, and network address

translator (NAT).

Office automation Dithering, rotate, and text.

Telecommunications Autocorrelation, FFT, and Viterbi decoder.

Since the focus of this research is within the

automotive domain, only the suites that can

potentially impact the evaluation of processors and

compilers are discussed.

The automotive benchmark, as of June 2004, is

comprised of the following algorithms [14] (a brief

description of each algorithm as expressed by

EEMBC will be given):

 Angle-to-time conversion

 Basic floating point

 Bit manipulation

 Cache buster

 Controller area network (CAN) remote data

request

 FFT

 FIR

 IIR

 Inverse discrete cosine transform (IDCT)

 Matrix arithmetic

 Pointer chasing

 Pulse width modulation

 Road speed calculation

 Table lookup and interpolation

 Tooth-to-spark

Angle-to-time conversion algorithm simulates the

crankshaft of an engine by reading a counter which

measures the real-time delay between pulses sensed

from the gear on it [15]. This applies to embedded

automotive applications such as the engine control

module. Basic floating point math is used in

applications such as Powertrain, anti-lock brake

system (ABS), traction control and active suspension

[16]. The FFT takes any function and converts it to

an equivalent set of sine waves [17]. FFT is used in

digital signal processing. Bit manipulation is the act

of algorithmically manipulating bits or other pieces

of data shorter than a word [18]. This is used highly

in embedded software applications. A few of

examples of bit manipulation are given as follows:

 Masking out the upper nibble of a byte to obtain

the lower nibble only.

 Masking out the lower nibble of a byte and

shifting it right by 4 to obtain the upper nibble

only.

 Setting a bit to indicate a fault is present in a

system

 Clearing a bit to indicate a fault is no longer

present in a system.

In order to simulate microprocessors that do not have

a cache, EEMBC has implemented the cache buster

benchmark. As stated by Markus Levy, it is used to

highlight scenarios where long sections of control

code are executed with very little branching or use of

the same data [19].

The CAN remote data request benchmark simulates

the scenario where a remote data request is received

by all nodes on the bus. Upon receiving the request,

each node parses the identifier determines if they are

responsible for responding to the request. Once a

node has determined it must respond to the request,

the data is gathered to be transmitted on the bus to the

node that made the request [20].

The FFT algorithm emulates an application

“performing a power spectrum analysis of a time

varying input waveform” [21]. This is done by

getting the test data and input values, running the FT

calculation and then calculating the power spectrum.

Adnan Shaout et al.

190

To simulate applications where an FIR filter is used

for fixed point values, the FIR benchmark is used.

This algorithm gets the input test data and values,

calculates the FIR low pass filter and then the FIR

high pass filter [22]. IIR filters are used for filtering

data samples that are fixed-point values. The

algorithm employed by EEMBC uses a Direct Form

II N-Cascaded Direct second order IIR filter [23]. It

characterizes the microprocessors ability to perform

multiple accumulates and rounding [24]. The Pointer

Chasing algorithm uses doubly linked lists to exercise

an application/program that utilizes pointer

arithmetic. Pointer arithmetic was considered a

violation of the MISRA C: 2004 coding rules.

However, the MISRA C: 2012 coding rules now

make pointer arithmetic an advisory rule [24].

Pointers have been used extensively in embedded

automotive applications for some time now. By

updating this standard, the MISRA C guidelines seem

to have caught up with the industry.

The IDCT is used to reconstruct a sequence of

coefficients from the discrete cosine transform (DCT)

[25]. This sequence of coefficients can be derived

from a picture or video file. Figure 1 shows an

outline of a typical image/video transmission [26].

Figure 1 An outline of a typical image/video transmission [26]

One way that this transform is potentially used in

automotive applications is to reconstruct data that is

received from a rear facing camera. This data would

go through the source encoder and be sent over a

transmission channel (Flex-Ray, CAN or LIN) to a

video display for vehicles equipped with a rear-view

camera. The matrix arithmetic algorithm is used to

simulate applications that perform a significant

amount of matrix algebra. This algorithm uses lower

upper (LU) decomposition on „n x n‟ input matrices,

computes the determinant of the input matrix and a

cross product with a second matrix [27].

The pulse-width modulation (PWM) algorithm

simulates a scenario where an actuator (motor) is

controlled by a PWM signal proportional to an input

International Journal of Advanced Computer Research, Vol 6(26)

191

[2]. This algorithm presumes the processor is driving

a motor driver with both direction and enables signals

[2]. The final benchmark is MiBench. MiBench

follows an EEMBC‟s model of benchmark suites.

Matthew Guthaus, Jeffrey Ringenberg Dan Ernst,

Todd Austin, Trevor Mudge and Richard Brown are

the creators of this free commercially representative

benchmark suite. It is comprised of 35 applications

that are divided into the following six suites [28]:

 Automotive and industrial control

 Consumer devices

 Office automation

 Network

 Security

 Telecommunications

The MiBench automotive benchmark suite is slightly

different than EEMBC‟s. The tests (or algorithms)

used here are as follows:

 Basic math

 Bit counting

 Sorting

 Shape recognition

The basic math test (Basicmath) performs

calculations such as a cubic function solving, integer

square root and angle conversions from degrees to

radians for calculating road speed [28] (or other

vector values). For example, the speed of a vehicle

can be communicated to electronic control units

(ECUs) on the CAN bus. Based on the customer

requirements, the ECU that receives the speed

message will have to do some basic math operations

on it. This could be due to the fact that each bit of

the byte representing the speed accounts for a certain

speed (i.e. 1 count equals 0.234 kph). Floating point

arithmetic could also come into play here if decimal

numbers are used.

The bit count algorithm (Bitcount) is used to test the

microprocessor‟s ability to manipulate bits by

counting the number of bits in an array of integers.

There are 5 different algorithms used for these tests

that are 1) an optimized 1-bit per loop counter, 2)

recursive bit count by nibbles, 3) non-recursive bit

count by nibbles using a table look-up, 4) non-

recursive bit count of bytes using a table look-up and

5) shift and count bits [28]. The sorting algorithm

(qsort) is the well-known quick sort algorithm that

many have used at some point in their academic

and/or professional careers. There are two data sets

used for the testing. A large data set composed of

three-tuples representing points of data and a small

data set that is a list of words [28].

The shape recognition algorithm was developed for

recognizing corners and edges in magnetic resonance

images of the brain [28]. The algorithm can smooth

the image. It also has spatial control. There are two

data sets used for testing. A large data set that

contains a complex picture; and a small data set that

contains a black and white image of a rectangle.

As MiBench is modeled after EEMBC, the FFT/

inverse fast Fourier transform (IFFT) test in the

Telecommunications suite is also in EEMBC‟s

automotive suite. The FFT and IFFT perform on an

array of data that is a polynomial function with

pseudorandom amplitude and frequency sinusoidal

components. One additional test in the

Telecommunications suite that can be applied to the

automotive domain is the cyclic redundancy check

(CRC) 32 test. This test is used to detect errors in

data transmission.

All of these aspects simulate real world applications.

Using the EEMBC suites reduces the time the

consumer is required to dedicate to selecting their

microprocessors. Consumers can select devices

based on their score from EEMBC and use their

software that contains their Intellectual Property to

make a final decision. Of course the other option is to

have the microprocessor vendors come to you with

their devices in order to perform your own analysis

using proprietary software.

3.Comparison of the benchmarks
Since the focus of this paper is on benchmarking

processors for automotive embedded applications, the

benchmarks will be compared with respect to the

following features:

 The cost associated with its use

 The use of floating point math

 The use of integer math

 If it is available using C programming language

 Whether or not it is meant for automotive

applications

These features were chosen since they are the most

relevant to automotive embedded applications. Table

4 shows a comparison of the benchmarks used for

automotive embedded applications with respect to the

features above.

Adnan Shaout et al.

192

Table 4 Comparison of benchmarks

A
v

a
il

a
b

le
 u

si
n

g

C

F
ee

 R
eq

u
ir

ed

U
se

s
in

te
g

er
 m

a
th

U
se

s
fl

o
a

ti
n

g
 p

o
in

t

m
a

th

G
ea

re
d

 t
o

w
a

rd
s

a
u

to
m

o
ti

v
e

a
p

p
li

ca
ti

o
n

s

Benchmark

Whetstone X X

Dhrystone X X

Linpack X

SPEC CPU2006 X X X

Autobench X X X X X

MiBench X X X X

Other characteristics (features) that could be

compared are as follows:

 Memory required

 Instruction efficiency

 Speed

These aspects are directly related to the compiler that

is used for the software that is being used for the

benchmark. Due to this, these characteristics are

beyond the scope of this research. Based on the

comparison in Table 4, Autobench and MiBench

have a suite/software package that is geared more

towards automotive applications. Although the other

benchmarks don‟t necessarily target automotive

applications specifically, there are aspects of each

that could be applied. For instance, automotive

applications use integer and floating point math to

some extent. However, given that a lot of

programming is done using C, Whetstone and

Linpack would not be viable options for

benchmarking for automotive applications.

4.Conclusion
Based on the research and investigation of the

benchmarks available today for characterizing

microprocessors intended for automotive

applications, the EEMBC benchmark is clearly the

industry leader. The Whetstone and Dhrystone

benchmarks are outdated since they were developed

during a time when microprocessors were not as

advanced as they are today. The SPEC CPU2006

benchmark, like Autobench, required a fee to obtain

the software. The Automotive Suite offered by

EEMBC covers every aspect of how microprocessors

are used in automotive applications. The fact that all

the major suppliers are part of the consortium speaks

volumes in and of itself. Consumers can request that

a particular microprocessor be evaluated by EEMBC,

since the EEMBC Automotive benchmark suite

cannot be individually obtained through licensing.

Upon completion of the evaluation, the score would

be posted on the EEMBC website. It is imperative

that the consumer performs their own analysis of a

microprocessor performance. During this analysis,

the consumer can determine how the processor

performs using their proprietary software packages.

Aside from the general performance of these

benchmarks, there are other aspects that need to be

taken into consideration as well. These aspects are as

follows:

 Compiler optimizations

 Hardware optimizations

 Architecture of the microprocessor

 Autonomous vehicles

 The use of the cloud

 The Internet of Things

These are all points that needs to be considered and

analyzed as part of the process in selecting a

microprocessor. Using one of these benchmarks only

provides a consumer with a reference point to

compare microprocessors. Based on our experience

in benchmarking microprocessors, the consumer will

still need to perform their own benchmark analysis to

get a proper evaluation of a microprocessor

performance using their proprietary software. This is

further confirmed by the statement in the article In

More Depth: Synthetic Benchmarks that states

“…...no user would ever run a synthetic benchmark

as an application because these programs don‟t

compute anything a user would find remotely

interesting” [29]. Given the current state of the art to

benchmarking microprocessors, we don‟t see any

additional advances that can be made to

benchmarking at this time. The performance of the

processor itself is only one aspect that needs to be

International Journal of Advanced Computer Research, Vol 6(26)

193

evaluated. The architecture of the microprocessor

along with its hardware optimizations and the

optimizations of the compiler being used must be

considered as well. The evaluations of these aspects

are topics that are covered in other research articles

that are not meant to be covered in this paper. While

there are advancements being made in the automotive

industry as a whole, it is our opinion that the ultimate

determining factor for selecting a microprocessor is

for the company to develop a proprietary set of

benchmarks that can be used across microprocessors

and compilers. This can be the biggest asset to

selecting the best microprocessor for their given

application.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] EEMBC Member List.

http://www.eembc.org/memberinfo/memberlist.php.

Accessed 21 May 2016.

[2] Curnow HJ, Wichmann BA. A synthetic benchmark.

The Computer Journal. 1976; 19(1):43-9.

[3] Weicker RP. An overview of common benchmarks.

Computer. 1990; 23(12):65-75.

[4] Price WJ. A benchmark tutorial. IEEE Micro. 1989;

9(5):28-43.

[5] Whetstones.

http://www.keil.com/benchmarks/whetstone.asp.

Accessed 21 May 2016.

[6] Weicker RP. Dhrystone: a synthetic systems

programming benchmark. Communications of the

ACM. 1984; 27(10):1013-30.

[7] SPEC CPU 2006. https://www.spec.org/cpu2006/.

Accessed 15 May 2016.

[8] Dhrystones.

http://www.keil.com/benchmarks/dhrystone.asp.

Accessed 18 May 2016.

[9] Integer Component of SPEC CPU2006.

https://www.spec.org/cpu2006/CINT2006/. Accessed

21 May 2016.

[10] Floating Point Component of SPEC CPU2006.

https://www.spec.org/cpu2006/CFP2006/. Accessed

18 April 2016.

[11] Weiss AR. The standardization of embedded

benchmarking: Pitfalls and opportunities. In

international conference on computer design

(ICCD'99) 1999 (pp. 492-508). IEEE.

[12] About EEMBC.

http://www.eembc.org/about/index.php. Accessed 21

May 2016.

[13] Poovey JA, Conte TM, Levy M, Gal-On S. A

benchmark characterization of the EEMBC

benchmark suite. IEEE Micro. 2009; 29(5):18-29.

[14] EEMBC‟s Automotive /Industrial Microprocessor

Benchmarks.

http://www.eembc.org/techlit/datasheets/AutomotiveP

resentation.pdf. Accessed 21 May 2016.

[15] Benchmark Name: Angle to Time Conversion.

https://www.eembc.org/techlit/datasheets/auto_angle.p

df. Accessed 11 March 2016.

[16] https://www.arm.com/products/processors/technologie

s/vector-floating-point.php. Accessed 17 May 2016.

[17] http://www.eembc.org/benchmark/pdf/FPMarkIntrodu

ction.pdf. Accessed 20 April 2016.

[18] Warren HS. Hacker's delight. Pearson Education;

2013.

[19] Cache “Buster”.

http://www.eembc.org/techlit/datasheets/auto_cache.p

df. Accessed 20 April 2016.

[20] CAN Remote Data Request.

http://www.eembc.org/techlit/datasheets/auto_can.pdf.

Accessed 21 June 2016.

[21] Fast Fourier Transform,

http://www.eembc.org/techlit/datasheets/auto_fft.pdf.

Accessed 20 April 2016.

[22] FIR Filter.

http://www.eembc.org/techlit/datasheets/auto_fir.pdf.

Accessed 20 May 2016.

[23] Cherukuri R, Ryu G. MISRA is now better and easier

to implement with polyspace tools.

http://www.mathworks.com/products/polyspace/static-

analysis-notes/misra-is-now-better-and-easier-to-

implement-with-polyspace-tools.html. Accessed 20

May 2016.

[24] IIR Filter.

http://www.eembc.org/techlit/datasheets/auto_iir.pdf.

Accessed 20 April 2016.

[25] The DCT/IDCT Solution Customer Tutorial.

http://homepages.cae.wisc.edu/~ece554/website/Xilin

x/app_notes/DCT_IDCT%20Customer%20Tutorial%

20custdct.pdf. Accessed 20 April 2016.

[26] The Discrete Cosine Transform (DCT): Theory and

Application.

http://wisnet.seecs.nust.edu.pk/publications/tech_repor

ts/DCT_TR802.pdf. Accessed 09 May 2015.

[27] Matrix arithmetic.

http://www.eembc.org/techlit/datasheets/auto_matrix.

pdf. Accessed 21 October 2015.

[28] Guthaus MR, Ringenberg JS, Ernst D, Austin TM,

Mudge T, Brown RB. MiBench: a free, commercially

representative embedded benchmark suite. In IEEE

international workshop on workload characterization

2001 (pp. 3-14). IEEE.

[29] In More Depth: Synthetic Benchmarks.

http://mprc.pku.edu.cn/courses/organization/autumn20

12/hw/INMOREDEPTH/IMD4-SYNTHETIC-

BENCHMARKS.PDF. Accessed 30 September 2015.

http://www.keil.com/benchmarks/whetstone.asp.%20Accessed%2021%20June%202016
http://www.keil.com/benchmarks/whetstone.asp.%20Accessed%2021%20June%202016
http://www.eembc.org/about/index.php.%20Accessed%2021%20May%202016
http://www.eembc.org/about/index.php.%20Accessed%2021%20May%202016

Adnan Shaout et al.

194

Dr. Adnan Shaout is a full professor

and a Fulbright Scholar in the Electrical

and Computer Engineering Department

at the University of Michigan –

Dearborn. At present, he teaches

courses in logic design, computer

architecture, cloud computing, fuzzy

logic and engineering applications and

computer engineering (hardware and software). His current

research is in applications of software engineering methods,

computer architecture, embedded systems, fuzzy systems,

real time systems and artificial intelligence. Dr. Shaout has

more than 33 years of experience in teaching and

conducting research in the electrical and computer

engineering fields at Syracuse University and the

University of Michigan - Dearborn. Dr. Shaout has

published over 195 papers in topics related to electrical and

computer engineering fields. Dr. Shaout has obtained his

B.S.c, M.S. and Ph.D. in Computer Engineering from

Syracuse University, Syracuse, NY, in 1982, 1983, 1987,

respectively.

Email: shaout@umich.edu

Anthony Walker-Engineering Supervisor - ZF TRW from

May 2013-Present in Farmington Hills, MI. His main

responsibilities are the following: manage software

personnel and activities for platform airbag development

(6-12 team members globally), track metrics for software

platform development, plan software development tasks to

meet platform and customer goals, coordinate development

activities with global software management team, work

with the cross functional global management team to

plan/coordinate development activities, provide

management support and escalation path for critical issues

identified with platform software development, ensure use

of approved software methods and procedures, and ensure

staff performance goals are met. Principal Product

Engineer-Software at TRW from August 2010 – May 2013

in Farmington Hills, MI. He has Master of Science (M.S.)

in Software Engineering from the University of Michigan-

Dearborn (2015), Bachelor of Science (B.S.) in Computer

Engineering from the Michigan State University (2004).

