
International Journal of Advanced Computer Research, Vol 7(28)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2017.728003

15

Finding the most efficient paths between two vertices in a knapsack-item

weighted graph

Nadav Voloch
*

Department of Computer Science, The Open University of Israel, Ra'anana, Israel

Received: 25-September-2016; Revised: 22-November-2016; Accepted: 28-November-2016

©2017 ACCENTS

1.Introduction
The research is within the scope of theoretical

algorithms. In this branch, there are two well-known

problems that are:

A. The knapsack problem dating back far as more

than a century ago, in which, for a set of items, we

have to determine how many items of every type

include in a collection so that the total weight is

less than or equal to a given limit and the total

value is as large as possible as reviewed in [1]. A

knapsack item is described as follows:

 An item, that represent an object of some sort

(usually, merchandise).

 The item has at least two attributes (could be

more) of weight (wi) and value (vi).

 The item's attributes are comparable to other items'

attributes.

*Author for correspondence

For this problem there are three main versions:

1. The most common problem being solved is the 0-1

knapsack problem, which restricts the number of

copies of each kind of item for 0 or 1 (hence its

name), meaning we are able to pick only one item

from each kind. This is the specific problem to

which this paper addresses.

2. The bounded knapsack problem (BKP) in which

there is no limit of one copy per item, but a limit

for the number of copies of each kind of item

extends to a maximum finite amount.

3. The unbounded knapsack problem (UKP) places

no upper bound on the number of copies of each

kind of item.

B. The shortest path problem is the problem of

finding a path between two vertices in

a graph such that the sum of the weights of its

constituent edges is minimized as summarized in

[2].

There are several algorithms that handle these

problems, some more efficient than others.

Research Article

Abstract
There have been several combinations of the knapsack problem and the shortest paths on weighted graph problems in

different researches. The combination is often used to describe the choices made during the knapsack problem stages

using dynamic programming methods, by using the knapsack graph. But these researches consider only two aspects of

weight and value for an item/vertex. The objective of this paper is to address a different kind of problem in which we are

taking into consideration three properties: item weight, item value and edge weight (that connects two items, but its

weight is not depended on its vertices). The problem presented here is finding the most efficient path between two vertices

of this specific kind of graph, in three aspects- minimal edge wise, maximum knapsack value wise, and a combination of

maximal efficiency of both properties. This is done through an object oriented method, in which every path of the graph,

between two chosen vertices, has comparable attributes, that gives us the ability to prefer a certain path from another. An

algorithm for finding these optimal paths is presented here, along with specific explanations on its decision stages, and

several examples for it. The results were achieved an exact paradigm for the integrated problem, taking into consideration

any desired aspect, and achieving optimal choices per each attribute.

Keywords
Knapsack problem, Shortest paths on weighted graphs, Dijkstra's algorithm, 0-1 knapsack problem, Graph theory,

Dynamic programming, All paths between two vertices in a graph.

Nadav Voloch

16

For example, to UKP there is a greedy approximation

algorithm proposed by George Dantzig (as described

in [3]). In the Dantzig algorithm, we take the value of

an item (vi), and its weight (wi), and create an

attribute of efficiency that is the proportion of vi/ wi,

we arrange them in a decreasing order, then greedily

pick the item that have the best efficiency rate and

put as much as we can from it to the knapsack, until

we cannot fit anymore to the knapsack, and then we

proceed to the next item on the efficiency list. This

greedy algorithm guarantees at least a result of m/2

(m is the knapsack limit).

The 0-1 knapsack problem is usually solved by a

pseudo-polynomial dynamic programming algorithm

that can be seen in [4]. In this algorithm, at any stage,

we take the items that fit the current knapsack state’s

best, thus creating a close to optimal solution of the

problem.

A solution for the shortest path problem is the well-

known Dijkstra's algorithm, which finds the shortest

path between nodes in a graph, conceived by Edsger

W. Dijkstra (as presented in [5]). The algorithm was

optimized in many researches such as [6].

There have also been papers about dynamic

programming solutions for the knapsack problem,

using shortest path problem, with the creation of a

knapsack graph such as [7] and [8], but these papers

gave a solution to the knapsack problem using the

shortest path problem. A problem arises when a

knapsack graph, that its edge weights are non-

dependent in the vertex values, is built.

The decision of finding the most efficient path,

attributing the knapsack-items as vertices, has to take

additional factors into consideration – the knapsack

weight limit, and maximizing the value of items. This

situation is viable for real-life circumstances, in

which a path has a non-dependent attribute (physical

distance, travel time, etc.), and there are different

kinds of items to be picked in different locations on

this path.

For example, a sales person that wishes to travel from

a certain point to another, with several possible

places on his way in which he can pick up different

kinds of supply (items), would like to optimize his

path, given his weight bound for merchandise.

While most papers mentioned above, consider only

two aspects of knapsack weight and value, here we

take into consideration three properties: item weight,

item value and edge weight (that connects two items,

but its weight is not depended on its vertices). We

find the different possibilities of paths from a source

vertex to a target vertex, considering the preferred

attribute we choose to apply.

The objective of this research is to analyze and define

this specific problem, and to give an optimal solution

for it, considering all of the elements mentioned, and

in the constraints that apply these two integrated

problems.

Figure 1 G

D
-Vertices marked (vi/ wi), source-A,

target-G

2.The knapsack weight-independent

graph
Given a weighted graph G = (V, E), where V

represents the vertices of the graph, and E its edges,

we first constrain the edges' weights to be non-

negative ones. The second stage is adding properties

of weight (wi) and value (vi) to each vertex, turning it

to a legitimate knapsack item. We take into

consideration the difference between the weight of

the vertex, that is marked w, as mentioned before,

and the weight of the edge, that will be marked as w
E
.

In addition to these properties, we will add to the

graph G a limit m, that represents the knapsack limit

International Journal of Advanced Computer Research, Vol 7(28)

17

of maximum weight. We now have a suitable graph

for both problems (knapsack and shortest paths in

weighted graphs), that will be marked G
D
.

3.Finding the most efficient path between

two vertices
Given a graph G

D
 as described above, we wish to

find a path between two chosen vertices (source

vertex-vs and target vertex-vt), that with a given

knapsack weight limit (m), will achieve optimal

results, by choosing the maximal value of items from

this path. An example of such a G
D
 is shown in

Figure 1, where vertices are presented as V(vi/ wi,),

the source vertex is A, and the target vertex is G.

Here we divide the meaning of "optimal" into three

different cases:

a. The main priority is given to the minimal edge

weight between the two vertices. In this specific

case, a possible solution is a two-step algorithm, in

which we find the shortest path between two

vertices in G
D
, by using Dijkstra's algorithm, and

then we take the vertices from the chosen sub-

graph (the path), limiting the vertex weights with

m- the knapsack limit, and then use the pseudo-

polynomial dynamic programming algorithm for

the 0-1 knapsack, to choose the vertex-items from

the path.

b. The main priority is given to the maximal

knapsack value of items in the path between the

two vertices. In this case, we have to take into

consideration all of the paths between the two

vertices, to achieve an optimal knapsack-value

choice of item-vertices.

c. An equal priority is given to both aspects minimal

edge weight, and maximal knapsack value of

items. In this case we also have to consider all

possible paths between two vertices, and calculate

the optimal difference between the two aspects.

4.The algorithm for the combined

problem
For solving the problem described above, in all of its

three different cases, we use an algorithm that first

finds all of the possible paths between the two

vertices, and then gives attributes to each path, that

will help us choose the optimal path. These attributes

are: total edge weight of the path, and total value of

knapsack chosen items, given a knapsack limit (m).

For the first part, of finding all possible paths, we can

use the Ford-Fulkerson algorithm (as seen in [9]), or

another one that finds all of the paths from a source

vertex to a target vertex. For the second part we use

the pseudo-polynomial dynamic programming

algorithm mentioned above, to choose the vertex-

items from every path. The last step is choosing the

priority case (a, b or c, as described in the previous

part).

The algorithm is as follows:

Finding most efficient path in a knapsack-item

weight-independent graph (Graph GD, Vertex source,

Vertex target, integer max_item_weight, char

priority):

 Create a list of all paths source to target L
path

 =

Ford-Fulkerson (G
D
, source, target)

 For each path Li
path

 set attribute of total edge

weight tewi =∑w
E
 i (Li

path
)

 For each path Li
path

 create chosen vertex-items list

L
K
(Li

path
) = Knapsack 0-1 (V (Li

path
),

max_item_weight)

 For each L
K
(Li

path
), set attributes of total knapsack

value tkvi =∑vi (L
K
(Li

path
))

 If (priority='a')

 Find min tewi (L
path

)

 Return Li
path

 If (priority='b')

 Find max tkvi (L
path

)

 Return Li
path

 If (priority='c')

 Find max (tkvi - tewi)(L
path

)

 Return Li
path

As seen in the algorithm, in the first stage we have to

create a list of all of the paths, this is done by the

Ford-Fulkerson algorithm that gives us all of the

paths between two desired vertices. The paths are the

main objects of this procedure, because we choose

one that is most fit to our priority. At the second

stage we set the paths' unique property of total edge

weight (tewi) by summing up all of the edge weights.

At the third stage we use the procedure of the

pseudo-polynomial dynamic programming algorithm

of knapsack-item picking. This is done for the

purpose of the fourth stage, and allows us to see what

chosen items we take, to optimize the result of the

procedure. In the fourth stage we set the unique path

property of total knapsack value (tkvi) by summing

up all of the paths vertex-items values.

These properties are the ones that will help us choose

the optimal path per a given priority. The fifth and

last stage is choosing the desired path by the given

priority: in case the priority is 'a', we will choose the

path that has the minimal tewi, thus getting the

shortest path between the two vertices. In case the

Nadav Voloch

18

priority is 'b', we will choose the path that has the

maximal tkvi, thus getting the path that gives us the

optimal value for items between the two vertices. In

case the priority is 'c', we will choose the path that

has the best integrated value of tkvi - tewi, thus getting

the path that gives us the optimal property-integrated

value between the two vertices. The working

procedure of the algorithm is portrayed in a flowchart

in Figure 2.

Table 1 G
D
 scheme example no.1

GD- knapsack-item weight-independent graph

Vertices

V(GD) v w

A 12 5

B 20 11

C 22 13

D 13 7

E 28 5

F 30 5

GD- knapsack-item weight-independent graph

Vertices

G 14 8

Edges

E(GD) wE

A-B 10

B-C 12

C-D 6

A-C 3

C-E 8

D-E 7

E-F 4

F-G 5

E-G 2

D-F 13

D-G 7

A-D 11

m Source

vertex

Target vertex

17 A G

Figure 2 Finding most efficient path in a knapsack-item weight-independent graph-the algorithm

International Journal of Advanced Computer Research, Vol 7(28)

19

For example, given the graph G
D
, shown in Figure 1,

and its data are presented in Table 1, using A as the

source vertex and G as the target vertex, and a

knapsack weight limit of m=17, the first step is

finding all of the paths between A and G.

There are 16 possible paths between A and G in G
D
,

L
path

 is presented in Table 2, with all of the properties

of the paths, including the chosen knapsack items,

tkvi, and tewi as described above. In every path we

choose the vertices that maximize their knapsack

value these are the chosen items on the path that add

up to tkvi, while the weights of the edges is summed

up to tewi. In addition, there are the three paths

chosen by the different priorities ('a', b', and 'c' as

described above). The three chosen paths are seen in

Figure 3 (Li
path

(G
D
), priority 'a' (minimal edge

weight)), Figure 4 (Li
path

(G
D
) , priority 'b' (maximal

knapsack value)), and Figure 5 (Li
path

(G
D
) , priority

'c' (maximal difference between knapsack value and

edge weight)). Looking at the table and figures, we

can now see that for priority 'a', the minimal edge

weight achieved by L12
path

 is 13, and that for priority

'b', the maximal knapsack value achieved by L13
path

is 71, and that for priority 'c', the maximal difference

between the knapsack value and edge weight

achieved by L11
path

 is 70-20=50. The shaded vertices

in the figured are the chosen items.

Figure 3 L12

path
(G

D
), priority 'a' (minimal edge

weight)

Figure 4 L13

path
(G

D
) , priority 'b' (maximal

knapsack value)

Figure 5 L11

path
(G

D
), priority 'c' (maximal difference

between knapsack value and edge weight)

Nadav Voloch

20

Table 2 L
path

 for G
D
 scheme example no.1

Lpath (GD) For AG, with m=17

Paths

No. V(Lpath) Chosen

items

tkvi tewi

1 ABC

DEF

G

D, E, F 71 44

2 ABC

DE G

A, D, E 53 37

3 ABC

DFG

A, D, F 55 46

4 ABC

D G

A, B 32 35

5 ABC

EF G

A, E, F 70 39

6 ABC

E G

 B, E 48 32

7 ACD

EF G

D, E, F 71 25

8 ACD

E G

A, D, E 53 18

9 ACD

F G

A, D, F 55 27

10 ACD

G

D, G 27 16

11 ACE

F G

A, E, F 70 20

12 ACE

G

E, G 42 13

13 ADE

F G

D, E, F 71 27

14 ADE

G

A, D, E 53 20

15 AD F

 G

A, D, F 55 29

16 AD G D, G 27 18

Chosen Li
path by priority

Priority Li
path

a No.12

b No.13

c No.11

5.More results and examples for G
D

In Table 3, we can see a another example for GD – its

item-vertices by their properties of value (v) and

weight (w) and the edges by their weight (wE), then

the source and the target vertices are shown, and the

knapsack weight limit (m).

Table 4 is ordered in the same manner as Table 2

described above, and displays a different, smaller

graph GD and its result after performing the

algorithm, and choosing the paths by the three

different priorities.

6.Discussion
The results of this study are different from the ones

mentioned above as far as knapsack graphs are being

dealt with. In a regular knapsack graph the edge

weight is solely dependent on the item vertices

themselves, thus being built dynamically along with

the choices of items for the knapsack problem. Here

we see that a different situation is being handled, in

which the edges are known in advance, and so are the

item-vertices, thus allowing us to achieve optimal

results considering all possible path options for every

item-combination possible.

In addition, a specific case of traveling between two

vertices of a graph is being described, and we can see

that there are different results for different kinds of

priority, and we can adjust our desired result for

different cases of attribute preferences. The analysis

of the results shows us that on the same G
D
, totally

different paths are being chosen, and the optimal

results in every case are different, as shown in the

figures and tables.

Table 3 G
D
 scheme example no.2

GD- knapsack-item weight-independent graph

Vertices

V(GD) v w

A 32 13

B 40 9

C 42 10

D 33 27

E 38 8

F 37 9

G 17 9

Edges

E(GD) wE

A-B 16

B-C 12

C-D 6

A-C 8

C-E 18

D-E 7

E-F 14

F-G 5

E-G 20

D-F 12

D-G 4

A-D 3

m Source

vertex

Target vertex

30 A G

International Journal of Advanced Computer Research, Vol 7(28)

21

7.Scope and optimization of the algorithm
In cases of equality between two possible paths, for

all three possible priority types, we find ourselves in a

bit of a problem. For example, in Table 2, we can

easily see that for priority 'b' (maximal knapsack

value), there are two possible solutions L1
path

 and L13
path

, both achieve tkvi of 71. In a case like this, the

algorithm has a supplement of checking the other

property- meaning tewi for this case of 'b' priority,

thus preferring L13
path

 , achieving tewi of 27 over L13
path

, achieving tewi of 44. For priority 'a', in case of

equality, the tkvi is checked to prioritize, and for

priority 'c', any of the properties of tewi and tkvi can be

checked.

8.Limitations of the study
The algorithm presented for G

D
 is viable in cases of a

well-known situation, in which all of the items in the
graph have the needed attributes, and they are known
to the traveler (that goes from the source vertex to the
target one). In cases that have an unknown attribute or
attributes in the items, the problem is much more
complex, and not in the scope of this study. Another
case that is not covered is the case in which the
vertices are sets of items, with different attributes of
weight and value. In that case, the algorithm might be
well served as a base for the solution, but needs a
major adaptation to be suitable for this problem.

Table 4 L
path

 for G
D
 scheme example no.2

Lpath (GD) For AG, with m=17

Paths

No. V(Lpath) Chosen

items

tkvi tewi

1 ABC

DEF

G

B, C, E 120 60

2 ABC

DE G

B, C, E 120 61

3 ABC

DFG

B, C, F 119 51

4 ABC

D G

B, C, G 99 38

5 ABC

EF G

B, C, E 120 65

6 ABC

E G

B, C, E 120 66

7 ACD

EF G

C, E, F 117 40

8 ACD

E G

C, E, G 97 41

9 ACD

F G

C, F, G 96 31

10 ACD

G

A, C 74 18

Lpath (GD) For AG, with m=17

Paths

No. V(Lpath) Chosen

items

tkvi tewi

11 ACE

F G

C, E, F 117 45

12 ACE

G

C, E, G 97 46

13 ADE

F G

A, E, F 107 29

14 ADE

G

A, E, G 87 30

15 AD F

 G

A, F 69 20

16 AD G A, G 49 7

Chosen Li
path by priority

Priority Li
path

a No.16

b No.1

c No.13

9.Conclusion and future work
For the graph presented here G

D
, we have seen that

the most efficient path differs in case of different
types of priority, and the results given by different
priorities show us that the shortest path is not
necessarily the most efficient one. For this algorithm,
there could be many more applications and
expansions, like using the vertex labels as strings, or
specific data structures (a stack on each vertex, for
example). A system, written in Java, was built for
manufacturing the results shown in this paper, based
on the algorithm described in the previous parts.
Improving and expanding it as described here is a
work in progress.

Acknowledgment
None.

Conflicts of interest
The author has no conflicts of interest to declare.

References
[1] Poirriez V, Yanev N, Andonov R. A hybrid algorithm

for the unbounded knapsack problem. Discrete

Optimization. 2009;6(1):110-24.

[2] Abraham I, Fiat A, Goldberg AV, Werneck RF.

Highway dimension, shortest paths, and provably

efficient algorithms. In proceedings of the ACM-

SIAM symposium on discrete algorithms 2010 (pp.

782-93) Society for Industrial and Applied

Mathematics.

[3] Ensthaler L, Giebe T. Subsidies, Knapsack auctions

and dantzig’s greedy heuristic. 2009.

[4] Pisinger D, Sigurd M. Using decomposition

techniques and constraint programming for solving the

Nadav Voloch

22

two-dimensional bin-packing problem. INFORMS

Journal on Computing. 2007;19(1):36-51.

[5] Yan, M.

http://math.mit.edu/~rothvoss/18.304.3PM/Presentatio

ns/1-Melissa.pdf. Accessed 23 May 2016.

[6] Mehlhorn K, Sanders P. Algorithms and data

structures: the basic toolbox. Springer Science &

Business Media; 2008.

[7] Druken BK. A hike through the forest: the knapsack

problem in graph theory. Senior Honors Projects.

2008.

[8] Pferschy U, Schauer J. The knapsack problem with

conflict graphs. Journal of Graph Algorithms and

Applications. 2009;13(2):233-49.

[9] Jiang Z, Hu X, Gao S. A parallel ford-fulkerson

algorithm for maximum flow problem. In proceedings

of the international conference on parallel and

distributed processing techniques and applications

2013 (pp. 70-3). WorldComp.

Nadav Voloch is a research student

towards an M.Sc in computer science

in the Open University in Israel. His

B.S degree in computer science is from

Sapir Academic College in Israel. He is

a lecturer in the Center for Academic

studies in Or-Yehuda, Israel, in the

information systems and computer

science departments, and in Ruppin academic center, Israel

in the department of electric and computer engineering, as

well as adjunct faculty in the Academic college Tel Aviv –

Yaffo, Israel. His research interests include graph

algorithms, knapsack type problems, databases and data

structures.

Email: nvolloch@yahoo.com

http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Melissa.pdf.(checked)
http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Melissa.pdf.(checked)

