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1.Introduction 
The research is within the scope of theoretical 

algorithms. In this branch, there are two well-known 

problems that are:  

 

A. The knapsack problem dating back far as more 

than a century ago, in which, for a set of items, we 

have to determine how many items of every type 

include in a collection so that the total weight is 

less than or equal to a given limit and the total 

value is as large as possible as reviewed in [1]. A 

knapsack item is described as follows:  

 

 An item, that represent an object of some sort 

(usually, merchandise). 

 The item has at least two attributes (could be 

more) of weight (wi) and value (vi). 

 The item's attributes are comparable to other items' 

attributes. 

 

 

 

 
*Author for correspondence 

For this problem there are three main versions: 

1. The most common problem being solved is the 0-1 

knapsack problem, which restricts the number of 

copies of each kind of item for 0 or 1 (hence its 

name), meaning we are able to pick only one item 

from each kind. This is the specific problem to 

which this paper addresses. 

2. The bounded knapsack problem (BKP) in which 

there is no limit of one copy per item, but a limit 

for the number of copies of each kind of item 

extends to a maximum finite amount. 

3. The unbounded knapsack problem (UKP) places 

no upper bound on the number of copies of each 

kind of item. 

 

B. The shortest path problem is the problem of 

finding a path between two vertices in 

a graph such that the sum of the weights of its 

constituent edges is minimized as summarized in 

[2]. 

 

There are several algorithms that handle these 

problems, some more efficient than others.  
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For example, to UKP there is a greedy approximation 

algorithm proposed by George Dantzig (as described 

in [3]). In the Dantzig algorithm, we take the value of 

an item (vi), and its weight (wi), and create an 

attribute of efficiency that is the proportion of vi/ wi, 

we arrange them in a decreasing order, then greedily 

pick the item that have the best efficiency rate and 

put as much as we can from it to the knapsack, until 

we cannot fit anymore to the knapsack, and then we 

proceed to the next item on the efficiency list. This 

greedy algorithm guarantees at least a result of m/2 

(m is the knapsack limit). 

 

The 0-1 knapsack problem is usually solved by a 

pseudo-polynomial dynamic programming algorithm 

that can be seen in [4]. In this algorithm, at any stage, 

we take the items that fit the current knapsack state’s 

best, thus creating a close to optimal solution of the 

problem. 

 

A solution for the shortest path problem is the well-

known Dijkstra's algorithm, which finds the shortest 

path between nodes in a graph, conceived by Edsger 

W. Dijkstra (as presented in [5]). The algorithm was 

optimized in many researches such as [6]. 

 

There have also been papers about dynamic 

programming solutions for the knapsack problem, 

using shortest path problem, with the creation of a 

knapsack graph such as [7] and [8], but these papers 

gave a solution to the knapsack problem using the 

shortest path problem. A problem arises when a 

knapsack graph, that its edge weights are non-

dependent in the vertex values, is built. 

 

The decision of finding the most efficient path, 

attributing the knapsack-items as vertices, has to take 

additional factors into consideration – the knapsack 

weight limit, and maximizing the value of items. This 

situation is viable for real-life circumstances, in 

which a path has a non-dependent attribute (physical 

distance, travel time, etc.), and there are different 

kinds of items to be picked in different locations on 

this path. 

 

For example, a sales person that wishes to travel from 

a certain point to another, with several possible 

places on his way in which he can pick up different 

kinds of supply (items), would like to optimize his 

path, given his weight bound for merchandise.  

 

While most papers mentioned above, consider only 

two aspects of knapsack weight and value, here we 

take into consideration three properties:  item weight, 

item value and edge weight (that connects two items, 

but its weight is not depended on its vertices). We 

find the different possibilities of paths from a source 

vertex to a target vertex, considering the preferred 

attribute we choose to apply. 

 

The objective of this research is to analyze and define 

this specific problem, and to give an optimal solution 

for it, considering all of the elements mentioned, and 

in the constraints that apply these two integrated 

problems. 

 

 
Figure 1 G

D
-Vertices marked (vi/ wi), source-A, 

target-G 

 

2.The knapsack weight-independent 

graph  
Given a weighted graph G = (V, E), where V 

represents the vertices of the graph, and E its edges, 

we first constrain the edges' weights to be non-

negative ones. The second stage is adding properties 

of weight (wi) and value (vi) to each vertex, turning it 

to a legitimate knapsack item. We take into 

consideration the difference between the weight of 

the vertex, that is marked w, as mentioned before, 

and the weight of the edge, that will be marked as w
E
. 

In addition to these properties, we will add to the 

graph G a limit m, that represents the knapsack limit 
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of maximum weight. We now have a suitable graph 

for both problems (knapsack and shortest paths in 

weighted graphs), that will be marked G
D
. 

 

3.Finding the most efficient path between 

two vertices 
Given a graph G

D
 as described above, we wish to 

find a path between two chosen vertices (source 

vertex-vs and target vertex-vt), that with a given 

knapsack weight limit (m), will achieve optimal 

results, by choosing the maximal value of items from 

this path. An example of such a G
D
 is shown in 

Figure 1, where vertices are presented as V(vi/ wi,), 

the source vertex is A, and the target vertex is G. 

Here we divide the meaning of "optimal" into three 

different cases: 

 

a. The main priority is given to the minimal edge 

weight between the two vertices. In this specific 

case, a possible solution is a two-step algorithm, in 

which we find the shortest path between two 

vertices in G
D
, by using Dijkstra's algorithm, and 

then we take the vertices from the chosen sub-

graph (the path), limiting the vertex weights with 

m- the knapsack limit, and then use the pseudo-

polynomial dynamic programming algorithm for 

the 0-1 knapsack, to choose the vertex-items from 

the path.  

b. The main priority is given to the maximal 

knapsack value of items in the path between the 

two vertices. In this case, we have to take into 

consideration all of the paths between the two 

vertices, to achieve an optimal knapsack-value 

choice of item-vertices. 

c. An equal priority is given to both aspects minimal 

edge weight, and maximal knapsack value of 

items. In this case we also have to consider all 

possible paths between two vertices, and calculate 

the optimal difference between the two aspects.  

 

4.The algorithm for the combined 

problem 
For solving the problem described above, in all of its 

three different cases, we use an algorithm that first 

finds all of the possible paths between the two 

vertices, and then gives attributes to each path, that 

will help us choose the optimal path. These attributes 

are: total edge weight of the path, and total value of 

knapsack chosen items, given a knapsack limit (m). 

For the first part, of finding all possible paths, we can 

use the Ford-Fulkerson algorithm (as seen in [9]), or 

another one that finds all of the paths from a source 

vertex to a target vertex. For the second part we use 

the pseudo-polynomial dynamic programming 

algorithm mentioned above, to choose the vertex-

items from every path.  The last step is choosing the 

priority case (a, b or c, as described in the previous 

part). 

 

The algorithm is as follows: 

Finding most efficient path in a knapsack-item 

weight-independent graph (Graph GD, Vertex source, 

Vertex target, integer max_item_weight, char 

priority): 

 

 Create a list of all paths source to target  L
path

 = 

Ford-Fulkerson (G
D
, source,  target) 

 For each path Li 
path

 set attribute of total edge 

weight tewi =∑w
E
 i (Li 

path
) 

 For each path Li 
path

 create chosen vertex-items list 

L
K
(Li 

path
) = Knapsack 0-1              ( V (Li 

path
), 

max_item_weight ) 

 For each L
K
(Li 

path
), set attributes of total knapsack 

value tkvi =∑vi (L
K
(Li 

path
)) 

 If (priority='a') 

 Find min tewi (L
path

) 

 Return Li 
path

 

 If (priority='b') 

 Find max tkvi (L
path

) 

 Return Li 
path

 

 If (priority='c') 

 Find max (tkvi - tewi)(L
path

) 

 Return Li 
path

 

 

As seen in the algorithm, in the first stage we have to 

create a list of all of the paths, this is done by the 

Ford-Fulkerson algorithm that gives us all of the 

paths between two desired vertices. The paths are the 

main objects of this procedure, because we choose 

one that is most fit to our priority. At the second 

stage we set the paths' unique property of total edge 

weight (tewi) by summing up all of the edge weights. 

At the third stage we use the procedure of the 

pseudo-polynomial dynamic programming algorithm 

of knapsack-item picking. This is done for the 

purpose of the fourth stage, and allows us to see what 

chosen items we take, to optimize the result of the 

procedure. In the fourth stage we set the unique path 

property of total knapsack value (tkvi) by summing 

up all of the paths vertex-items values.  

 

These properties are the ones that will help us choose 

the optimal path per a given priority. The fifth and 

last stage is choosing the desired path by the given 

priority: in case the priority is 'a', we will choose the 

path that has the minimal tewi, thus getting the 

shortest path between the two vertices. In case the 
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priority is 'b', we will choose the path that has the 

maximal tkvi, thus getting the path that gives us the 

optimal value for items between the two vertices. In 

case the priority is 'c', we will choose the path that 

has the best integrated value of tkvi - tewi, thus getting 

the path that gives us the optimal property-integrated 

value between the two vertices. The working 

procedure of the algorithm is portrayed in a flowchart 

in Figure 2. 

 

Table 1 G
D
 scheme example no.1  

GD- knapsack-item weight-independent graph 

Vertices 

V(GD) v w 

A 12 5 

B 20 11 

C 22 13 

D 13 7 

E 28 5 

F 30 5 

GD- knapsack-item weight-independent graph 

Vertices 

G 14 8 

Edges 

E(GD) wE 

A-B 10 

B-C 12 

C-D 6 

A-C 3 

C-E 8 

D-E 7 

E-F 4 

F-G 5 

E-G 2 

D-F 13 

D-G 7 

A-D 11 

m Source 

vertex 

Target vertex 

17 A G 

 

 

 
Figure 2 Finding most efficient path in a knapsack-item weight-independent graph-the algorithm
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For example, given the graph G
D
, shown in Figure 1, 

and its data are presented in Table 1, using A as the 

source vertex and G as the target vertex, and a 

knapsack weight limit of m=17, the first step is 

finding all of the paths between A and G.  

 

There are 16 possible paths between A and G in G
D
, 

L
path

 is presented in Table 2, with all of the properties 

of the paths, including the chosen knapsack items, 

tkvi, and tewi as described above. In every path we 

choose the vertices that maximize their knapsack 

value these are the chosen items on the path that add 

up to tkvi, while the weights of the edges is summed 

up to tewi. In addition, there are the three paths 

chosen by the different priorities ('a', b', and 'c' as 

described above). The three chosen paths are seen in 

Figure 3 (Li 
path

(G
D
), priority 'a' (minimal edge 

weight)), Figure 4 (Li 
path

(G
D
)  , priority 'b' (maximal 

knapsack value)), and Figure 5 (Li 
path

(G
D
) , priority 

'c' (maximal difference between knapsack value and 

edge weight)). Looking at the table and figures, we 

can now see that for priority 'a', the minimal edge 

weight achieved by L12 
path

 is 13, and that for priority 

'b', the maximal knapsack value achieved by L13 
path

 

is 71, and that for priority 'c', the maximal difference 

between the knapsack value and edge weight 

achieved by L11 
path

 is 70-20=50. The shaded vertices 

in the figured are the chosen items. 

 

 
Figure 3 L12 

path 
( G

D
), priority 'a' (minimal edge 

weight) 

 

 
Figure 4 L13 

path
( G

D
)  , priority 'b' (maximal 

knapsack value) 

 

 
Figure 5 L11 

path
( G

D
), priority 'c' (maximal difference 

between  knapsack value and edge weight) 
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Table 2 L
path

  for G
D
 scheme example no.1 

Lpath ( GD) For AG, with m=17 

Paths 

No.  V(Lpath) Chosen 

items 

tkvi tewi 

1 ABC

DEF

G 

D, E, F 71 44 

2 ABC

DE G 

A, D, E 53 37 

3 ABC

DFG 

A, D, F 55 46 

4 ABC

D G 

A, B 32 35 

5 ABC

EF G 

A, E, F 70 39 

6 ABC

E G 

 B, E 48 32 

7 ACD

EF G 

D, E, F 71 25 

8 ACD

E  G 

A, D, E 53 18 

9 ACD

F  G 

A, D, F 55 27 

10 ACD 

G 

D, G 27 16 

11 ACE

F  G 

A, E,  F 70 20 

12 ACE  

G 

E,  G 42 13 

13 ADE

F  G 

D, E,  F 71 27 

14 ADE  

G 

A, D, E 53 20 

15 AD F 

 G 

A, D,  F 55 29 

16 AD  G D, G 27 18 

Chosen Li 
path by priority 

Priority Li 
path 

a No.12 

b No.13 

c No.11 

 

5.More results and examples for G
D
 

In Table 3, we can see a another example for GD – its 

item-vertices by their properties of value (v) and 

weight (w)  and the edges by their weight (wE), then 

the source and the target vertices are shown, and the 

knapsack weight limit (m). 

 

Table 4 is ordered in the same manner as Table 2 

described above, and displays a different, smaller 

graph GD and its result after performing the 

algorithm, and choosing the paths by the three 

different priorities. 

 

 

6.Discussion 
The results of this study are different from the ones 

mentioned above as far as knapsack graphs are being 

dealt with. In a regular knapsack graph the edge 

weight is solely dependent on the item vertices 

themselves, thus being built dynamically along with 

the choices of items for the knapsack problem. Here 

we see that a different situation is being handled, in 

which the edges are known in advance, and so are the 

item-vertices, thus allowing us to achieve optimal 

results considering all possible path options for every 

item-combination possible. 

 

In addition, a specific case of traveling between two 

vertices of a graph is being described, and we can see 

that there are different results for different kinds of 

priority, and we can adjust our desired result for 

different cases of attribute preferences. The analysis 

of the results shows us that on the same G
D
, totally 

different paths are being chosen, and the optimal 

results in every case are different, as shown in the 

figures and tables. 

 

Table 3 G
D
 scheme example no.2 

GD- knapsack-item weight-independent graph 

Vertices 

V(GD) v w 

A 32 13 

B 40 9 

C 42 10 

D 33 27 

E 38 8 

F 37 9 

G 17 9 

Edges 

E(GD) wE 

A-B 16 

B-C 12 

C-D 6 

A-C 8 

C-E 18 

D-E 7 

E-F 14 

F-G 5 

E-G 20 

D-F 12 

D-G 4 

A-D 3 

m Source 

vertex 

Target vertex 

30 A G 
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7.Scope and optimization of the algorithm 
In cases of equality between two possible paths, for 

all three possible priority types, we find ourselves in a 

bit of a problem. For example, in Table 2, we can 

easily see that for priority 'b' (maximal knapsack 

value), there are two possible solutions L1 
path

 and L13 
path

, both achieve tkvi of 71. In a case like this, the 

algorithm has a supplement of checking the other 

property- meaning tewi for this case of 'b' priority, 

thus preferring L13 
path

 , achieving tewi  of 27 over L13 
path

, achieving tewi  of 44. For priority 'a', in case of 

equality, the tkvi is checked to prioritize, and for 

priority 'c', any of the properties of tewi and tkvi can be 

checked. 

 

8.Limitations of the study 
The algorithm presented for G

D
 is viable in cases of a 

well-known situation, in which all of the items in the 
graph have the needed attributes, and they are known 
to the traveler (that goes from the source vertex to the 
target one). In cases that have an unknown attribute or 
attributes in the items, the problem is much more 
complex, and not in the scope of this study. Another 
case that is not covered is the case in which the 
vertices are sets of items, with different attributes of 
weight and value. In that case, the algorithm might be 
well served as a base for the solution, but needs a 
major adaptation to be suitable for this problem.  
  

Table 4 L
path

  for G
D
 scheme example no.2 

Lpath ( GD) For AG, with m=17 

Paths 

No.  V(Lpath) Chosen 

items 

tkvi tewi 

1 ABC

DEF

G 

B, C, E 120 60 

2 ABC

DE G 

B, C, E 120 61 

3 ABC

DFG 

B, C, F 119 51 

4 ABC

D G 

B, C, G 99 38 

5 ABC

EF G 

B, C, E 120 65 

6 ABC

E G 

B, C, E 120 66 

7 ACD

EF G 

C, E, F 117 40 

8 ACD

E  G 

C, E, G 97 41 

9 ACD

F  G 

C, F, G 96 31 

10 ACD 

G 

A, C 74 18 

Lpath ( GD) For AG, with m=17 

Paths 

No.  V(Lpath) Chosen 

items 

tkvi tewi 

11 ACE

F  G 

C, E,  F 117 45 

12 ACE  

G 

C, E,  G 97 46 

13 ADE

F  G 

A, E,  F 107 29 

14 ADE  

G 

A, E, G 87 30 

15 AD F 

 G 

A, F 69 20 

16 AD  G A, G 49 7 

Chosen Li 
path by priority 

Priority Li 
path 

a No.16 

b No.1 

c No.13 

 

9.Conclusion and future work 
For the graph presented here G

D
, we have seen that 

the most efficient path differs in case of different 
types of priority, and the results given by different 
priorities show us that the shortest path is not 
necessarily the most efficient one. For this algorithm, 
there could be many more applications and 
expansions, like using the vertex labels as strings, or 
specific data structures (a stack on each vertex, for 
example). A system, written in Java, was built for 
manufacturing the results shown in this paper, based 
on the algorithm described in the previous parts. 
Improving and expanding it as described here is a 
work in progress. 
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