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1.Introduction 
Destruction in an organ frequently happens between 

human beings and sets many obstacles in their lives. 

Although after a while recovery and adoption appear, 

many aids and methods are developed to compensate 

the lost perception. A trade called sensory 

substitution declares that information can be 

transmitted to the brain through different paths and 

methods leading to environmental recognition [1] 

with regard to flexibility and plasticity and 

neuroplasticity of the brain [2]. Plasticity of the brain 

refers to the capability of combining information 

from different sensory modalities [3]. Sensory 

substitution devices (SSDs) provide a possibility to 

convert visionary data to tactile or auditory one [4]. 

Braille was one of the primary facilities for this aim. 

Furthermore, developed visual to tactile devices were 

experimenting at the late 1960s [5]. However, on 

account of portability issues, high energy 

consumption and skin reactions, visual-tactile SSDs 

are more problematic [6, 7].  

 

 
*Author for correspondence 

Yet, they are under research to be developed using 

more efficient actuators [8]. 

 

Scientific fundamental and backgrounds of these 

devices are rely on the unidirectional assignment of 

perceptible features from one sense to the other one. 

In this operation, data processing is equivalent to 

encoding the parameters of the first disabled, sensory 

organ of information that can be perceived by the 

other one. Despite many breakthroughs in this field, 

complex conversions and combinations pose a 

challenge to the performance of these structures. The 

main reasons for the SSDs not to be widespread are 

insufficient facility for using in the real world, lack of 

organized training experiments and interfering with 

sight restoration efforts by altering the original 

functions of visual cortex [2].  

 

This study aims to provide a visual to auditory tool 

for the blind considering vOICe algorithms. 

Moreover, its effect is studied on both sighted 

participants and visually impaired users. 

Consequently, some corrections are applied to 

enhance performance. There is an expectation that 
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Abstract  
Sensory substitution contains methods which send perceptible information of a sensory organ to the brain through other 

sensory modalities, resulting in the rehabilitation of the lost perception. Additionally, they may also be taken into 

consideration as research devices to examine the brain mechanisms and its cross-modal function. Visual to auditory 

sensory substitution used in experimentation aimed to provide visually impaired people with environmental perception. 

According to this paper, vOICe based tones (VBTones) has been introduced as a tool converting visual data into auditory 

output, where each image row is assigned to a specific sound frequency and the sound amplitude is referred to brightness 

of the pixel, where the image is scanned, converted the sound is generated column by column. Gradually forming a 

continuous sound made of single column waves which are the sum of multiple sinusoidal waves of different amplitudes 

and frequencies related to specific pixels. The objective of this study is to maximize the perception of visual information 

through audio. Thus, elimination of unnecessary image information is required. By applying anisotropic filtering 

methods in addition to a Laplacian-Gaussian filter, the produced sound turned out to be finer in texture and more 

perceivable. Moreover, this study shows analysis of the efficiency of this tool and several enhancements on both sighted 

participants and the visually impaired ones. The blind scored 87% and the sighted 78% accuracy in recognition in the 

designed test.    
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the blind group would be able to outperform the 

sighted in recognition during the test [9, 10].  

 

Primary attempts in using visual to audio converters 

were done in 1998 by Capelle et al. considering the 

hearing parameters such as the just noticeable 

difference (JND) and pleasant distances. Eliminating 

the resonance effect, sounds are chosen from 50-

15000 Hz and the sound assigned to each pixel is 

multiplication of basic frequency (approximately 50-

60 Hz) depending on pixel number and an 

exponential function [2].  

 

The prosthesis is substituting vision by audition 

(PSVA) [2], vOICe [4] and EyeMusic [6, 7, 1] are the 

well-known devices in vision to the auditory 

conversion field which contain a set of camera and 

speaker as a connection to the environment. Figure 1 

is an illustration of this connection. In PSVA, each 

pixel refers to a specific sinusoidal wave frequency 

and the pixel luminance is assigned to the sound 

loudness [2]. While, vOICe and EyeMusic encode 

vertical coordination to individual frequencies [4, 6, 

7]. The image in vOICe is gray scaled, whereas 

EyeMusic can demonstrate colors by using musical 

instruments such as Reggae Organ, Rapman’s Reed, 

choir, string and Brass instruments in pentatonic 

scales. For its distinguishable intervals and 

prevention from resonance effect [6, 7]. vOICe 

ceiling frequency is 5000Hz. In contrast, the 

frequency in EyeMusic is limited to 1,568Hz in light 

of the fact that sounds with high energy in the range 

of 2500-5000 Hz can sound unpleasant [11]. 

 

 
Figure 1 General overview of sensory substitution 

prototype 

 

In these devices, the image is scanned column by 

column. Therefore, soundscape, of each column is 

presented sequentially. In a nutshell, the main 

differences between these tools are classified as an 

experimental training time, speed of data processing 

in the brain and the similarity between object 

recognition in the real environment and the 

simulation. In the environmental use of the device is 

involved with depth, motion and color perception. 

Considering high resolution, ease of training 

procedure, fast processing for dynamic objects and 

ability of depth perception, vOICe takes precedence 

over the other [4]. 

 

In vOICe algorithm, not only the color parameter has 

been eliminated to avoid overwhelming the brain by 

music assignment processing, but it can also provide 

depth and motion perception. Hence, it takes priority 

over similar tools [4, 6, 7].  

 

Despite of a vast majority of neurological and 

psychological relevant information, lack of sufficient 

researches and resources related to the structure of 

these devices is observed. This paper discusses the 

application of a new filtering method based on vOICe 

algorithm with a different set of sinusoidal sound 

wave frequencies. Several cases took the designed 

test and the results were demonstrated. 

 

In section one of these paper relevant researches is 

discussed and the sensory substitution approach and 

visual to auditory devices for the visually impaired 

users are introduced. Section two represents the 

algorithm used for image to audio conversion in the 

subsections. The experiments described and results 

are presented in sections three and four respectively. 

Section five discusses this study benefits and a 

comparison to the previous literature. The sixth 

section puts forward conclusions and future attempts.   

   

2.Methodology 
Sensory substitution, vision to auditory conversion 

for the visually impaired users Conventionally, 

visually impaired users replace other senses, such as 

tactile and hearing instead of the visual sense. 

Incidentally, SSDs has been used in order to ease 

environmental recognition in accordance with the 

plasticity of the brain and multifunctional 

specialization.  

 

Various transforms and assignments in auditory 

sensation led to visual substitution. For instance, 

PSVA and vOICe encode the brightness and pixel 

coordinate to the volume and frequency of sound 

respectively. PSVA algorithm due to harsh in 

locating the objects in the field failed to develop. 

Because PSVA assigned higher frequencies to the 

pixels in a row as they approached the right side of 

the image. Thus, pixels around the right side of a row 
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had a similar sound to lower rows in the left side. 

EyeMusic and vOICe are still under research, 

considering the poor performance of both devices in 

3D use. Additionally, there is a new device which can 

assign colors and shape to auditory and tactile sense 

respectively, where it is not applied in the real world 

yet [8]. 

 

Because of the disorder in the function of a sensory 

organ, data acquisition and processing are carried out 

by other sensory organ. In vision to auditory 

substitution, in order to make an image perceivable 

for the ears, camera can be utilized instead of eyes 

taking the image and transferring it to the processor.  

 

Figure 2 shows the image to audio conversion. We 

used the pure sinusoidal waveforms similar to what 

are used in vOICe algorithm. For most people 

hearing range falls rapidly at 4 KHz, reducing the 

frequency variation range of the device, enhances the 

sound in texture. Particularly, in this study the 

domain where the amplitude perception according to 

frequency variations remains constant is better used. 

Sinusoidal frequencies are assigned to individual 

rows, i.e. pixels of a row share the same frequency, 

where higher rows in the coordinate are assigned 

higher frequencies. The image is scanned column by 

column. Thus, multiple sine waves of the related 

pixels are accumulated and divided by the number of 

pixels, generating the sound. Creating this short 

duration sound (approximately 15mS for 1Hz 

capturing rate), brighter pixels are of more 

importance. Sounds are generated and played 

successively, ultimately forming the image sound.  

 

 
Figure 2 Left to right column by column swiping and 

real-time sound generation  

Simulation process 

Figure 3 shows the process steps of the tool. The 

steps described in the following. 

 

 
Figure 3 The process steps of the tool 

 

2.1Image acquisition (capturing/loading) 

The algorithm receives an image as input. The image 

can be either captured by a low quality camera or 

loaded from some storage. As far as the camera 

selection is considered, lower resolution is preferred. 

Because resizing the image by a lossy compression or 

even pulse with modulation over the digital camera 

frequency, adds up to the processing complexities in 

addition to memory consumption. 

 

2.2Resizing the image to 64 by 64 pixels 

Due to the limited number of distinguishable 

frequencies in the hearing range and desires to avoid 

resonance, the image must be compressed to have 

only 64 pixels in a column. This compression is 

obtained by calculating the mean value of adjacent 

pixels, thus it is considered lossy and irreversible. 

Although, higher compression in the image results in 

larger differences between individual frequencies 

(thus an easier distinction), data loss of the image 

domain will be inevitable. Figure 4 shows the image 

degradation as the size decreases.   

 

 

 
Figure 4 The image degradation as the size decreases for sizes from left to right; 512 by 512, 100 by 100, 64 by 64, 

8 by 8 
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2.3Converting the image to grayscale (if required) 

The RGB or YCbCr image is converted to grayscale 

image with 256 gray levels. Cameras with YCbCr 

output are preferred for easier extraction of grayscale 

data through Y channel. In converting the RGB 

image, calculation of the mean value between red, 

green and blue values is required to obtain the 

brightness level. The sinusoidal wave amplitudes are 

quantized by 256 levels in the audio domain. Thus, a 

linear mapping is established between image and 

audio domain which can be held in a byte of digital 

storage.  

 

2.4 Applying image filters 

To achieve the highest possible data perception rate 

per image, elimination of the redundant information 

is required. This elimination enhances the audio 

texture in understanding and the mapping process. 

Area with very low image frequency (low variation 

rate) or very high frequencies (e.g. the edges) are to 

be omitted. For instance, in the image of a tree, small 

leaves and branches are assumed to be redundant 

because when accumulated together, none of them 

will be individually noticed. Low frequency parts of 

the trunk are also redundant for some important 

image features could be lost by the human auditory 

perception, should the trunk not being eliminated 

from the image; since it produces loud noise like 

sound. The word elimination here refers to reducing 

the brightness and thereby the corresponding 

loudness of the produced sound. Finally, higher 

image frequencies are darkened and so for the very 

low frequencies. It can be approximately considered 

a band pass filter. Figure 5 shows a tree in the 

filtering process. Figure 6 shows left and right 

isotropic filtering regarding the edges. 

 

In the implemented version, the mentioned amplitude 

reduction is under focus by means of anisotropic 

diffusion. In anisotropic filtering methods, unlike the 

Gaussian filters, fading effect is not applied 

homogeneously over all the image parts. The filter 

equation is very similar to the heat equation, where 

the high image frequency parts are corresponding to 

thermal insulators. Sharper edges are more resistant 

to the fading effect. Additionally, this type of 

diffusion has proved to be useful for noise removal 

applications [12]. Ultimately, this method will result 

in an enhanced filtering for elimination of the 

redundant information [13].  

 

 

 
Figure 5 Left: The original image. Right: The filtered image 

 

 
Figure 6 Left: isotropic filtering, Right: anisotropic 

filtering regarding to the edges 

The equations for isotropic filtering are commonly 

formed like equation one: 

ծI(x,y,t)/ ծt = ΔI    (1) 

Anisotropic filtering is a method of enhancing the 

image quality by reducing detail in one direction. 

While, anisotropic filter treats all axes equally.  

 

Anisotropic filtering equation is shown below. 

ծI(x,y,t)/ ծt = div (g |∇I| ∇I)  (2) 

Where Δ denotes Laplacian, ∇ gradient, div divergent 

and I(x,y,t) is the diffusion coefficient that controls 

the rate of diffusion [14]. The second order divergent 

https://en.m.wikipedia.org/wiki/Anisotropic_filtering
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basically stops the diffusing wave from passing 

through sharp edges. 

 

In the next step, the low frequency redundancies are 

omitted using a Laplacian-Gaussian (edge detector) 

filter. This filtering sequence of anisotropic and 

Laplacian-Gaussian is set to avoid extra added edges 

that might be caused by the edge detector over 

though surfaces of the image. For the edge detector 

that deletes low variations, may bold and even add 

some unimportant and invisible edges through which 

the anisotropic filter cannot pass. The final image is 

quite similar to a first sketch, shaped only by the 

outer lines. As a result, fewer sinusoids are mixed 

and individual frequencies can be understood better, 

helping the user to comprehend more complex 

configurations and structures. Step by step filter 

application is presented in Figure 7.  Discrete cosine 

transform (DCT) is applied to the last three parts of 

the image presented in Figure 8. As shown in the first 

part of Figure 8, the energy is spread over a large 

domain of frequencies. By applying the anisotropic 

filter, variations in higher frequency sinusoids are 

reduced and the main energy is concentrated around 

the transform origin. In the third part, higher 

frequencies are bolded in the transform domain 

which is an expected result due to the edge detector 

application. This result certifies the purpose of 

anisotropic filtering; a main object out of background 

extraction. 

 

 

 
Figure 7 Step by step filtering of the image from left to right; original image, grayscale image, anisotropic applied 

image, Laplacian-Gaussian filter applied image 

 

 
Figure 8 16X16 DCT of the images from left to right; grayscale image, anisotropic filtered image, anisotropic in 

addition to Laplacian-Gaussian filtered image 

 

2.5Left to right column by column scanning and 

real-time sound generation 

Transfer of the audio domain is performed based on 

64 sinusoidal waves, each assigned to one of 64 

pixels of a column. The waveforms are of different 

frequencies between 500 Hz to 5000 Hz. Because the 

amplitude perception according to frequency remains 

approximately constant over this domain. For most of 

the music and speech related sounds being in the 

mentioned frequency domain, the human ear is more 

familiar. As the 64 frequencies each relates to rows 

which are to be recognized, they must be selected 

according to Weber-Fechner law [15] in which JND 

must increase exponentially as the frequency rises 

linearly. To calculate the corresponding frequencies 

of each row, the following equation is used.  

 

Frequency calculation according to height as shown 

below. 

                        (3) 

Where y (n) is the frequency of the n’th pixel in a 

column calculated by an exponential curve fitting 

between 500 to 5000 Hz.  For the m’th column the 
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total sound S(m) is generated by the following 

equation.  

         ∑                  
    (4) 

 

Where A(n) is a number between 0 and 1 

corresponding to one of 256 gray scales, linearly 

mapped by a division in 256.  Finally, the total 

image, sound is a series of column sounds, generated 

and played as the scanning process covers the capture 

from left to right. The total process is visualized in 

Figure 9.  

 

3.Experiments 
Primary testing included 43 black and white images 

with simple configurations. The goal was set on 

learning basic image perception concepts like 

thickness, height, location, and configuration 

perception. Several instances are shown in Figure 10. 

In the testing process, one sound is frequently played 

and the image is to be recognized. The tool 

environment is illustrated in Figure 11 that includes 

the image and scanning speed, repetition and image 

options.  

 

 
Figure 9 Image to audio conversion 

 

 

 

 

 

    

    
Figure 10 Examples of training images considering concepts of visual domain 

 

 
Figure 11 Tool environment 
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4.Experimental results 
The candidate group included 13 blindfolded sighted 

people the test with on average 5 times repeat per 

capture. To accelerate the training time, in the 

primary examples was shown to the participant while 

the soundscapes were played [16]. For the blind 

group, the pictures were presented using embossed 

papers. The average value of training time was 52.1 

minutes and 7.78 scores out of 10 was achieved. The 

results are presented in Table 1. The group also 

included 14 blind people under the test ten of which 

were able to finish the process. The test included 10 

images with on average 4 times, repeat per image. 

The average value of training time was 44.5 minutes 

and 8.7 scores out of 10 was achieved. The results are 

presented in Table 2.  

 

Table 1 The sighted 

Gender Age Musical 

background 

Training 

time 

Score 

Male 23 Yes 60 9 

Male 22 Yes 60 10 

Female 20 Yes 60 10 

Female 17 Yes 120 10 

Male 53 No 40 6 

Female 8 No 45 8 

Female 6 No 50 7 

Male 11 No 50 7 

Female 36 No 30 3 

Female 22 No 40 8 

Male 49 No 40 10 

Female 17 No 30 8 

Female 18 Yes 30 5 

 

Table 2 The blind 

Gender Age Musical 

background 

Training 

time 

Score 

Male 17 Yes 40 10 

Male 17 Yes 30 9 

Male 18 Yes 40 9 

Male 17 No 30 10 

Male 17 No 30 10 

Male 12 No 30 10 

Male 18 No 40 6 

Male 17 Yes 45 9 

Male 18 Yes 60 7 

Male 19 No 60 7 

Male 17 Yes 40 10 

Male 17 No 30 9 

Male 18 Yes 40 9 

 

The audio did not sound fine to 2 of the blind group. 

A middle-aged primary blind described the sounds 

bothersome and distracting. He also mentioned the 

lack of necessity of such devices and aids. The rest 

was interested and described the sounds appropriate.  

It is observed that musical background has a 

remarkable effect on the ability of recognizing the 

frequency rise and falls and has enhanced the 

performance. The blind group with 7.6 minutes faster 

training achieved 0.92 better scores out of 10 due to 

the promotion in the remained senses when 

destruction occurs in one. 

 

The late blind, got to a better insight of the algorithm. 

Their mental perception, as described by them, took 

place in two steps; hearing the sound and relating it 

to visual concepts, then describing the same card. 

However, the primary blind, had a more straight 

forward audio to image matching; without getting 

involved with the algorithm and definitions, relating 

the sounds to configurations. Thus, an intuition of 

light and darkness is expected by long term use of the 

device [4]. 

 

5.Discussion 
Generally, this study justified the previous literature 

about the following subjects. First, audio-visual SSDs 

are a better choice rather than tactile ones in power 

consumption and portability issues [6, 7]. When 

compared to the experimented tactile based SSDs, 

auditory versions score a higher speed and accuracy 

which was achieved in this study [4, 5].  In the image 

processing domain anisotropic filtering improves the 

noise and redundancy removal. Finally, application 

of the serial filters has led to a smoother sound, i.e. a 

better distinctive audio. This will possibly be aiding 

the navigation capabilities and information gain in 

prolonged use. The experimental is in agreement with 

the blind group hearing sense outperformance in 

comparison with the sighted [9]. For the blindness 

enhances auditory obstacle circumvention [10]. 

Where, the training and test time was quite shorter in 

primer group. It is also acclaimed that the age of the 

participants takes negligible part in the final 

achievement. However, the congenital blind were 

fairly reluctant to use the provided SSD. Both groups 

achieved the abilities of recognizing the light 

intensity, shapes and figures, objects size and 

location. 

 

6.Conclusion   
This paper has presented a research on visual to 

auditory conversion algorithms which in addition to 

specific applications in rehabilitation of the blind, can 

be used as a tool for studying the cross modal 

performance of the brain in addition to the 

investigation the navigating capabilities based on the 

virtual environment [1, 6, 17, 18]. By applying 

anisotropic and Laplacian-Gaussian filters 87% 
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accuracy in the blind and 78% in the sighted was 

achieved. Due to the small size of statistic society the 

results are not quite trustworthy. Yet, the variance is 

fairly low.  

 

A mentioned reason for such devices not to be 

widespread is the complexity of sights in the real 

world that leads to unrecognizable sounds. This 

necessitates more research on filtering the image, as 

well as audio domain adjustments. Better testing 

methods and more precise statistical analysis is 

required. Providing the proper hardware and 

renewing the previous design can improve the chance 

for better psychological, medical and statistical 

research.  
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