
International Journal of Advanced Computer Research, Vol 7(31)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2017.730022

154

Fuzzy zero day exploits detector system

Adnan Shaout
1*

 and Cameron Smyth
 2

The University of Michigan-Dearborn
1

The Department of Electrical and Computer Engineering Dearborn, Michigan
2

Received: 23-February-2017; Revised: 03-June-2017; Accepted: 06-June-2017

©2017 ACCENTS

1.Introduction
Computer systems have been plagued by viruses for

many years. They were first conceptualized as far

back as 1949 when John von Neumann theorized

about “self-replicating automata” that could reproduce

and propagate itself [1]. The first computer virus to

appear outside a lab environment is believed to be the

“Elk Cloner” virus written by Rich Skrenta, which

was originally written as a practical joke [2].

Since then, many far more dangerous viruses such as

Blaster, Conficker and “ILOVEYOU” have infected

PCs world wide. Many efforts have been made to

intercept and prevent viruses from running. They are

often marketed and sold in the form of “antivirus”

programs. The majority of these programs function by

searching for or detecting “signatures” of viruses – by

comparing the hash of the file’s contents against a

database of known virus hashes, and then preventing

the code from executing and even removing the file

from the file system automatically. Unfortunately,

these approaches tend to be “cat and mouse games;”

they require viruses to be known and available in the

provided database before they can be stopped, often

meaning new or “zero day” exploits can go uncaught

for a period of time. The goal of the fuzzy exploits

monitor is to detect these unknown viruses based on

unusual computer conditions.

*Author for correspondence

This can take many forms-high CPU usage, high

memory usage, unsolicited network connection

attempts, constant disk I/O, or other conditions. A

user may then be alerted of the unusual conditions, or

the system may autonomously take action if it is

confident enough.

The concept of this paper is to model a system

utilizing fuzzy logic to identify unusual conditions in

a computer system and attempt to classify the degree

to which the system is compromised. The model will

take a number of inputs, including CPU and memory

usage, disk I/O, and network connections. These

inputs will be used to determine the relative

“normality” of the system’s behavior and therefore

extended to identify if the system is believed to be

compromised.

The inputs must be based on real data and a

combination of intuition and inference will be used to

design the system. For simplicity, the model is likely

to be designed using simple membership functions

and relationships. However, neural networks are

recognized as a more advantageous approach as they

would allow a fuzzy virus detector to learn a normal

system’s behavior and identify unusual circumstances

that may be indicative of a bug or exploit.

One potential challenge facing the research for this

paper will be identifying scenarios where there may

be high CPU usage, high memory usage and high disk

I/O due to a valid process such as video rendering.

Research Article

Abstract
Intrusion detection systems today are relatively capable of detecting network intrusions by attackers. Unfortunately, these

systems operate on a network level and not on a system level. Meanwhile, antivirus software is typically capable of

detecting known viruses but cannot easily stop zero day exploits. The paper will propose a fuzzy inference system to detect

exploitation of a system using system metrics such as CPU, memory usage and network connections. This system is

implemented using the MATLAB fuzzy logic toolbox. The design was tested and provided reasonable results.

Keywords
Intrusion detection system, Fuzzy exploit monitor, Fuzzy inference system, Computer security, Zero day exploits.

International Journal of Advanced Computer Research, Vol 7(31)

155

While outside the scope of this paper, a neural

network could potentially be used to identify valid

scenarios based on a usage history and set of known

good processes. Note, however, this would not be a

bulletproof mechanism – many hacking techniques

involve exploiting vulnerabilities in normal

applications and masquerading within their processes,

so extra care would be needed to develop this neural

network to identify unusual behaviors from valid

applications.

The paper is organized as follows: related works have

been discussed in section 2, methodology and design

have been discussed in section 3, proposed system

implementation has been discussed in section 4,

section 5 has covered test and results and finally

conclusion have been included in section 6.

2.Related works
Intrusion detection systems (IDS) are designed to

monitor network traffic and alert a system

administrator or other responsible individual in the

event of potential network intrusion from adversaries.

The concept can be traced back to at least 1980, on a

proposal by James Anderson which consisted of a set

of tools by which system administrators could

identify attacks via audit trails [3]. A concept for a

more active IDS was first proposed in 1986 by

Dorothy Denning based on analyzing system logs and

other auditing records [4]. These systems evolved

over the next decade to include statistic-based

detection (pioneered by Vaccaro and Liepins [5]) and

include preventative measures.

Over the most recent decade, numerous studies have

attempted to identify fuzzy methods of detecting

network intrusions. Abadeh, et al., proposed a fuzzy

genetics-based learning algorithm that could be used

as a network intrusion detection system [6]. Wang et

al., defined a method combining artificial neural

networks and fuzzy clustering to improve the

capabilities of previously proposed systems to detect

low-occurrence attacks [7]. Mkuzangwe et al. [8]

presented a fuzzy logic based network intrusion

detection system to predict Neptune, which is a type

of a transmission control protocol synchronized (TCP

SYN) flooding attack. Shanmugavadivu et al. [9]

introduced a network intrusion detection system

using fuzzy logic. Kudłacik et al. [10] presented an

intrusion detection method based on a fuzzy

approach. Azad et al. [11] introduced an intrusion

detection system which is based on the fuzzy min,

fuzzy max neural network and the particle swarm

optimization. Ramakrishnan et al. [12] proposed an

entropy-based feature selection to select the

important features, layered fuzzy control language to

generate fuzzy rules, and layered classifier to detect

various network attacks namely neptune, smurf, back,

and mailbomb. However, no research could be found

on fuzzy methods of detecting exploitation within a

single system.

The above described intrusion detection systems,

both fuzzy and non-fuzzy, are generally capable of

detecting and preventing intrusion of an entire

computer network and not a single endpoint. Anti-

virus software is perhaps the closest comparison to

the system proposed here. It is intended to prevent

exploitation of a single machine. There are varying

mechanisms to do so. Most applications are

signature-based, meaning they constantly scan the

system for known “signatures” of viruses, generally

by comparing the hash of a new file or memory

segment to a dictionary of known values.

Heuristic detection techniques may also detect some

virus binaries which have been modified to evade

signature-based detection techniques while still

maintaining the integrity of the executable. Some

heuristic techniques may be fuzzy by detecting

inexact signature matches. However, these

mechanisms still rely on detecting known code bases

and exploits and are not capable of detecting zero

days.

3.Methodology and design
The following requirements were defined for the

proposed intrusion detection system based on the

authors experience in the filed:

 The model shall be capable of processing the

following inputs:

o Overall CPU usage, measured as a percentage of

idle time

o Overall memory usage, measured as a percentage

of unallocated memory

o Disk I/O, measured in bytes per second

o Disk I/O, measured in number of operations

o Number of total network connections currently

active

o Number of new network connections in the last

second

o Number of new network connections in the

previous minute

o Number of new network connections in the

previous 5 minutes

o Type of network connections (inbound/outbound,

port, type of service (if known))

o Number of active processes

Adnan Shaout et al.

156

o Number of new processes over the last second

o Number of new processes over the last 5 seconds

o Number of new processes over the last 30 seconds

o Number of threads

o Number of new threads over the last second

o Number of new threads over the last 5 seconds

o Number of new threads over the last 30 seconds

o Moving average of number of processes, measured

over the previous 15 seconds

o Moving average of number of new processes,

measured over the previous 15 seconds

 Confidence results shall be classified into the

following buckets:

o 80% or higher: Compromised

o 60-80%: Potential compromise

o 40-60%: Unsure

o 20-40%: Likely not compromised

o 20% or lower: Not compromised

 The model shall indicate clearly to the user whether

the system is believed to be compromised and the

percent confidence in that result.

 The percent confidence may be displayed

graphically.

Only simple tests were required to verify these

requirements. For example, a test to verify the

readability requirements simply consists of placing

the android device at eye level and four feet from the

driver, and verifying that the text is readable. The full

test plan is as follows:

 Individual membership functions

o Provide a range of inputs to the model for the

individual membership functions, covering the

entire relevant function width.

o Verify that the membership function provides a

valid and expected membership value for each

input.

 Combined result

o Provide a range of membership values for each

membership function that feeds the combined

relationship

o Verify that the provided membership values

provide the expected relationship and confidence

result

 Classification/reporting

o Provide inputs to the model that have been

previously calculated (manually or otherwise

outside the model) to provide a 20% or lower

confidence rating

o Verify that the system reports a result of “not

compromised” and reports the confidence rating

o Repeat these steps for each of the remaining 4

result buckets

A set of data on normal usage was collected to

baseline the system. The input set was captured on a

2014 MacBook Pro with a 2.2GHz Intel Core i7

processor, 16GB of RAM and running Mac OS X

10.11.4. CPU, memory and thread usage statistics

were captured using the open-source tool top [13],

configured to collect system information once per

second. Lsof (list open files, which is used in many

Unix-like systems to report a list of all open files and

the processes that opened them) was used to capture

information on active network connections.

Figure 1 Collected CPU usage

International Journal of Advanced Computer Research, Vol 7(31)

157

Data was captured on normal usage (web browsing,

email, some video streaming, etc.) once per second

over one hour. Figure 1 illustrates the collected CPU

usage. Figure 2 illustrates the network connection

data. Figure 3 shows the memory usage collected

data.

Figure 2 Collected data on number of network connections

Figure 3 Collected memory usage

The fuzzy inference system to detect exploitation of a

system will be designed using system metrics such as

CPU, memory usage and network connections. The

following are the design steps:

a. Input Selection and Membership Functions

Any number of computer syClRstem measurements

may identify a potential compromise. The most

obvious to users is CPU usage, memory usage and

disk I/O, all of which can quickly cause a PC to

appear less responsive, either due to lack of resources

or being I/O-bound. The model proposed

requirements has defined a wide array of

measurements that the system should be capable of

monitoring. For this implementation of the proposed

system the following subset of five measurements

were selected:

 CPU usage

 Memory usage

 Number of active network connections

 Number of new network connections in the

previous second

 Number of new threads over the last second

These measurements were chosen based on expert

knowledge. An exploit will generally try to invade an

existing process and masquerade within a known

Adnan Shaout et al.

158

good process – so monitoring active processes may

not always be useful, but monitoring threads could

indicate a change to the application. Most exploits

will generally try to operate as quickly as possible

before being detected, with no regard to existing

resource usage-therefore, things like CPU usage and

memory usage are useful measurements. Finally,

intruders will generally try to reach another system

remotely-thus; network connection metrics are highly

useful as well.

These inputs were assigned similar membership

functions for ease of implementation. Input values

were assigned five linguistic values (different

classifications): very low, low, moderate, high and

very high. Classifications were based on a

combination of expert knowledge and some limited

data. The resulting membership threshold values are

shown in Table 1

Table 1 Membership function threshold values
 Very low Low Moderate High Very high

CPU Usage (%) 0-0.2 0.1-0.3 0.2-0.4 0.3-0.5 0.4-1

Memory Usage (%) 0-0.3 0.4-0.6 0.5-0.7 0.6-0.8 0.7-1

of Network Conns 0-20 10-30 20-40 30-50 40+

of New Network Conns

(1 sec)

0-4 2-6 4-8 6-10 8+

of New Threads (1 sec) 0-6 3-9 6-12 9-18 12+

Compromise State Not Comp –

0-0.35

Likely not

comp – 0.2-0.5

Unsure – 0.35-0.65 Likely comp –

0.5-0.8

Comp – 0.65-

1

b. Model and rule selection and defuzzification

A Mamdani model was selected for this model. The

consequence of the rule set is known to be a fuzzy set

(varying levels of compromise). The inputs are also

fuzzified as they are grouped into classifications

(linguistic values) rather than using crisp values.

Rules were then defined for the model based on

expert knowledge. A maximum of 7776 (6*6*6*6*6)

potential rules could have been defined, given every

possible input classification, however not all of these

rules are useful. For this project, a set of 15 rules

were defined which attempted to cover a range of

likely scenarios from low resource usage to high

resource usage and from low confidence of

compromise to high confidence of compromise. One

example includes:

IF CPU Usage x1(k) is Very High, and

 Memory Usage x2(k) is Very High, and

 # of Network Conns x3(k) is Very High, and

 # of New Network Conns x4(k) is Very High, and

 # of New Threads x5(k) is Very High,

THEN System is COMPROMISED.

Some less detailed rules were defined as follows:

IF CPU Usage x1(k) is Very High, and

 Memory Usage x2 (k) is Very High, and

 # of Network Conns x3(k) is High,

THEN System is LIKELY COMPROMISED.

The complete sets of rules are as follows:

1. IF (CPU Usage x1(k) is Very Low), AND

(Memory Usage x2(k) is Very Low), AND (# of

Network Connections x3(k) is Very Low), AND

(# of New Network Connections in last 5 seconds

x4(k) is Very Low), AND (# of New Threads in

last 5 seconds x5(k) is Very Low), THEN

(Compromise State y(k) is Not Compromised).;

weight = 1

2. IF (CPU Usage x1(k) is Very High), AND

(Memory Usage x2(k) is High), AND (# of

Network Connections x3(k) is Very High), AND

(# of New Network Connections in last 5 seconds

x4(k) is Very High), AND

 (# of New Threads in last 5 seconds x5(k) is Very

High), THEN (Compromise State y(k) is

Compromised).; weight = 1

3. IF (CPU Usage x1(k) is Low), AND (Memory

Usage x2(k) is Low), AND (# of Network

Connections x3(k) is Low), AND (# of New

Network Connections in last 5 seconds x4(k) is

Low), AND (# of New Threads in last 5 seconds

x5(k) is Low), THEN(Compromise State y(k) is

Likely Not Compromised).; weight = 1

4. IF (CPU Usage x1(k) is Moderate), AND(Memory

Usage x2(k) is Very High), AND (# of Network

Connections x3(k) is High), AND(# of New

Network Connections in last 5 seconds x4(k) is

Moderate), AND (# of New Threads in last 5

seconds x5(k) is Low), THEN (Compromise State

y(k) is Likely Compromised).; weight = 0.4

5. IF (CPU Usage x1(k) is Moderate), AND

(Memory Usage x2(k) is Very High), AND (# of

International Journal of Advanced Computer Research, Vol 7(31)

159

Network Connections x3(k) is Moderate), AND(#

of New Network Connections in last 5 seconds

x4(k) is Low), AND (# of New Threads in last 5

seconds x5(k) is Low), THEN (Compromise State

y(k) is Likely Not Compromised).; weight = 1

6. IF (CPU Usage x1(k) is Very High), AND

(Memory Usage x2(k) is High), AND (# of

Network Connections x3(k) is High), THEN

(Compromise State y(k) is Likely Compromised).;

weight = 0.8

7. IF (CPU Usage x1(k) is Moderate), AND(Memory

Usage x2(k) is Very High), AND (# of Network

Connections x3(k) is Low), AND (# of New

Network Connections in last 5 seconds x4(k) is

Very Low), THEN (Compromise State y(k) is

Likely Not Compromised).; weight = 0.8

8. IF (CPU Usage x1(k) is Moderate), AND

(Memory Usage x2(k) is Very High), AND (# of

New Network Connections in last 5 seconds x4(k)

is High), AND (# of New Threads in last 5

seconds x5(k) is High), THEN

 (Compromise State y(k) is Likely Compromised).;

weight = 0.6

9. IF (CPU Usage x1(k) is Moderate), AND

(Memory Usage x2(k) is Moderate), AND (# of

Network Connections x3(k) is Moderate), AND (#

of New Network Connections in last 5 seconds

x4(k) is Very High), AND (# of New Threads in

last 5 seconds x5(k) is Very High), THEN

(Compromise State y(k) is Likely Compromised).;

weight = 0.7

10. IF (CPU Usage x1(k) is Low), AND (Memory

Usage x2(k) is Moderate), AND(# of Network

Connections x3(k) is Low), AND (# of New

Network Connections in last 5 seconds x4(k) is

Moderate), AND (# of New Threads in last 5

seconds x5(k) is Low), THEN (Compromise State

y(k) is Not Compromised).; weight = 0.7

11. IF (CPU Usage x1(k) is Moderate), AND

(Memory Usage x2(k) is Low), AND(# of

Network Connections x3(k) is Low), AND (# of

New Network Connections in last 5 seconds x4(k)

is Low), AND (# of New Threads in last 5 seconds

x5(k) is Low), THEN(Compromise State y(k) is

Likely Not Compromised).; weight = 0.8

12. IF (CPU Usage x1(k) is Moderate), AND

(Memory Usage x2(k) is Moderate), AND (# of

Network Connections x3(k) is Moderate), AND(#

of New Network Connections in last 5 seconds

x4(k) is Moderate), AND(# of New Threads in last

5 seconds x5(k) is Moderate), THEN(Compromise

State y(k) is Unsure).; weight = 0.8

13. IF (CPU Usage x1(k) is High), AND (Memory

Usage x2(k) is High), AND(# of Network

Connections x3(k) is Very Low), AND(# of New

Network Connections in last 5 seconds x4(k) is

Very Low), AND(# of New Threads in last 5

seconds x5(k) is Very Low), THEN(Compromise

State y(k) is Likely Not Compromised).; weight =

0.8

14. IF (CPU Usage x1(k) is Moderate), AND

(Memory Usage x2(k) is Moderate), AND(# of

Network Connections x3(k) is High), AND (# of

New Network Connections in last 5 seconds x4(k)

is Very High), AND(# of New Threads in last 5

seconds x5(k) is High), THEN(Compromise State

y(k) is Compromised).; weight = 0.6

15. IF (CPU Usage x1(k) is Very Low), AND

(Memory Usage x2(k) is Very Low), AND (# of

Network Connections x3(k) is High), AND (# of

New Network Connections in last 5 seconds x4(k)

is Very High), AND(# of New Threads in last 5

seconds x5(k) is High), THEN (Compromise State

y(k) is Unsure).; weight = 0.6

The centroid method was used for defuzzification.

4.Implementation
The design was implemented as a model in

MATLAB using the fuzzy logic toolbox. Figure 4

demonstrates the fuzzy inference system (FIS)

generated in the fuzzy logic designer. The five inputs

were each defined, as well as the output

(compromiseState). Min and max were used to define

the AND and OR calculation methods, respectively.

Likewise, the min method is used to evaluate

implications, and the max method used to aggregate

the rules. As noted previously, the centroid method

was used as the defuzzification technique.

Pi, sigmoidal and Gaussian membership functions

were used for the inputs. They were designed to

center around the middle of the previously defined

threshold values. Figure 5 demonstrates the

membership function for CPU usage. Triangular and

trapezoidal membership functions were used to

capture the output and were also centered on the

threshold values defined as shown in Figure 6.

Rules were defined based and were assigned weights

based on expert knowledge in confidence of the rules.

Weights ranged from 0.4 to 1-rules with less

confidence in consequents were weighted lower and

rules with complete confidence in consequents were

weighted as a 1.

Adnan Shaout et al.

160

Figure 4 MATLAB fuzzy inference system implementation

Figure 5 Membership function for CPU usage

International Journal of Advanced Computer Research, Vol 7(31)

161

Figure 6 Compromise state (Output) membership function

5.Testing and results
Some sample points from the collected data were

used to test the system. Points were selected that

indicated various periods of usage within the system.

While the system was not actually compromised

during the period of the test, the points were selected

to test the functionality of the model. A future test

should include actual compromise of a controlled

environment, and demonstrate the true effectiveness

of the model. Table 2 shows the used test points.

Table 2 Test data and results

CPU usage MEM usage # of

network

conns

of new

network conns

of new

threads

Comp. state

0.5103 0.6921 24 0 49 Potential (0.649)

0.1172 0.7087 108 41 0 Compromised (0.83)

0.0628 0.7276 19 0 4 Likely not compromised (0.35)

0.2779 0.5753 19 0 325 Likely not compromised (0.377)

0.0440 0.5765 19 2 0 Likely not compromised (0.276)

0.3840 0.6271 38 0 34 Potential (0.648)

0.3258 0.5682 17 0 289 Likely not compromised (0.354)

0.0607 0.6893 19 2 1 Likely not compromised (0.323)

0.3507 0.6229 21 1 27 Likely not compromised (0.368)

0.0786 0.6765 49 16 0 Potential (0.646)

Adnan Shaout et al.

162

The test results have shown some interesting

feedback. A large number of network connections

become tied to a more likely compromise state. This

could be indicative of certain exploits such as a

botnet, which may be attempting numerous outbound

tries to connect. High memory usage is not

necessarily indicative of compromise, as shown by

the output – the PC may simply be caching

information in memory from the hard disk. High

CPU usage with a large number of new threads may

indicate a compromised state – if a new process (say,

an exploit) is trying to start up and perform CPU-

intensive operations. A large number of new threads

on its own, however, may not indicate an exploit.

This last test example was a likely event during a

video streaming operation completed. The resulting

surface of this relationship is shown in Figure 7. The

surface shown in Figure 8 demonstrates the

relationship between the number of network

connections and the number of new threads,

generally showing a positive correlation.

Figure 7 Surface of CPU usage and new threads

Figure 8 Surface of network connections and new

threads

6.Conclusion
A fuzzy inference system has been proposed to detect

computer system exploits based on system metrics.

The initial model was defined with 5 inputs and a

single output. Future versions of the model may be

capable of capturing additional inputs such as disk

I/O. The design was tested and provided reasonable

results, but further evaluation is needed, especially

around fine tuning the impact of network

connections. Finally, future improvements to the

design are proposed which include the following:

 A number of next steps can be taken to further

refine the design and make it more accurate. The

first would be to evaluate a number of different

systems. This should range across different levels

of hardware, different operating systems, different

system configurations, and more. This model only

evaluates the overall system. The system can be

subject to a number of variables, including

processes such as image/video processing that

normally use large amounts of memory and CPU

time. Individual processes could be examined and

carefully monitored to check for unusual changes

in CPU usage, memory usage, network handles are

used by a given process, etc.

 The system could be further fined tuned to utilize

different membership functions and thresholds for

each process. This would be able to more

accurately monitor processes that typically use

large amounts of system resources. It could also be

used to specifically target certain processes prone

to exploitation such as browsers, word processing

and rich document viewing applications, email

applications and others.

 Analysis is also needed for a lightweight

implementation of this type of system. A fuzzy

exploit detection monitor would need to be

consistently running in the background. However,

it cannot impact the normal operation of the

system as this would create an undesirable user

experience.

 Finally, the system could also be improved

through the use of neural networks. A periodic

learning state could be used to gather information

on the system’s typical load for a given user via

unsupervised learning. A pre-production

supervised learning exercise could also be used to

pre-train the system. The system would also need

to be somewhat self-monitoring to detect the

intrusion of its own processes.

International Journal of Advanced Computer Research, Vol 7(31)

163

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Chen WW. Statistical methods in computer security.

CRC Press; 2004.

[2] Jesdanun A. School prank starts 25 years of security

woes.

http://www.nbcnews.com/id/20534084/#.V5bI8GXZp

g1. Accessed 4 April 2016.

[3] Anderson JP. Computer security threat monitoring and

surveillance. Technical Report, James P. Anderson

Company, Fort Washington, Pennsylvania; 1980.

[4] Denning DE. An intrusion-detection model. IEEE

Transactions on Software Engineering. 1987; SE-

13(2):222-32.

[5] Vaccaro HS, Liepins GE. Detection of anomalous

computer session activity. In IEEE symposium on

security and privacy, proceedings 1989 (pp. 280-9).

IEEE.

[6] Abadeh MS, Habibi J, Lucas C. Intrusion detection

using a fuzzy genetics-based learning algorithm.

Journal of Network and Computer Applications. 2007;

30(1):414-28.

[7] Wang G, Hao J, Ma J, Huang L. A new approach to

intrusion detection using artificial neural networks and

fuzzy clustering. Expert Systems with Applications.

2010; 37(9):6225-32.

[8] Mkuzangwe NN, Nelwamondo FV. A fuzzy logic

based network intrusion detection system for

predicting the TCP SYN flooding attack. In Asian

conference on intelligent information and database

systems 2017 (pp. 14-22). Springer, Cham.

[9] Shanmugavadivu R, Nagarajan N. Network intrusion

detection system using fuzzy logic. Indian Journal of

Computer Science and Engineering. 2011; 2(1):101-

11.

[10] Kudłacik P, Porwik P, Wesołowski T. Fuzzy approach

for intrusion detection based on user’s commands.

Soft Computing. 2016; 20(7):2705-19.

[11] Azad C, Jha VK. Fuzzy min–max neural network and

particle swarm optimization based intrusion detection

system. Microsystem Technologies. 2017; 23(4):907-

18.

[12] Ramakrishnan S, Devaraju S. Attack’s feature

selection-based network intrusion detection system

using fuzzy control language. International Journal of

Fuzzy Systems. 2017; 19(2):316-28.

[13] http://www.unixtop.org. Accessed 4 April 2016.

Dr. Adnan Shaout is a full professor

and a Fulbright Scholar in the

Computer Science Department at the

Electrical and Computer Engineering

Department at the University of

Michigan-Dearborn. At present, he

teaches courses in AI, Embedded

Systems, Software Engineering,

Computer Architecture, Cloud Computing, Fuzzy Logic

and Engineering Applications and Computer Hardware

Design. His current research is in applications of software

engineering methods, cloud computing, embedded systems,

fuzzy systems, real time systems and artificial intelligence.

Dr. Shaout has more than 34 years of experience in

teaching and conducting research in the Computer Science,

Electrical and Computer Engineering fields at Syracuse

University and the University of Michigan - Dearborn. Dr.

Shaout has published over 210 papers in topics related to

Computer Science, Electrical and Computer Engineering

fields. Dr. Shaout has obtained his B.S.c, M.S. and Ph.D.

in Computer Engineering from Syracuse University,

Syracuse, NY, in 1982, 1983, 1987, respectively.

Email: shaout@umich.edu

Cameron Smyth is a cyber-security

engineer at Ford Motor Company. He

provides recommendations on securing

new features and defines security

solutions for Ford’s connectivity,

mobility and autonomous vehicle

platforms. He has filed patents on

secure communication mechanisms and

holds two patents from a prior role on systems to detect and

alert drivers of vehicle clearance concerns. Cameron

obtained his M.S.E. in Computer Engineering in 2017 and

B.S.E.s in Computer Engineering and Electrical

Engineering in 2012 from the University of Michigan –

Dearborn.

