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1.Introduction 
Computer systems have been plagued by viruses for 

many years. They were first conceptualized as far 

back as 1949 when John von Neumann theorized 

about “self-replicating automata” that could reproduce 

and propagate itself [1]. The first computer virus to 

appear outside a lab environment is believed to be the 

“Elk Cloner” virus written by Rich Skrenta, which 

was originally written as a practical joke [2]. 

 

Since then, many far more dangerous viruses such as 

Blaster, Conficker and “ILOVEYOU” have infected 

PCs world wide. Many efforts have been made to 

intercept and prevent viruses from running. They are 

often marketed and sold in the form of “antivirus” 

programs. The majority of these programs function by 

searching for or detecting “signatures” of viruses – by 

comparing the hash of the file’s contents against a 

database of known virus hashes, and then preventing 

the code from executing and even removing the file 

from the file system automatically. Unfortunately, 

these approaches tend to be “cat and mouse games;” 

they require viruses to be known and available in the 

provided database before they can be stopped, often 

meaning new or “zero day” exploits can go uncaught 

for a period of time. The goal of the fuzzy exploits 

monitor is to detect these unknown viruses based on 

unusual computer conditions. 
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This can take many forms-high CPU usage, high 

memory usage, unsolicited network connection 

attempts, constant disk I/O, or other conditions. A 

user may then be alerted of the unusual conditions, or 

the system may autonomously take action if it is 

confident enough. 

 

The concept of this paper is to model a system 

utilizing fuzzy logic to identify unusual conditions in 

a computer system and attempt to classify the degree 

to which the system is compromised. The model will 

take a number of inputs, including CPU and memory 

usage, disk I/O, and network connections. These 

inputs will be used to determine the relative 

“normality” of the system’s behavior and therefore 

extended to identify if the system is believed to be 

compromised. 

 

The inputs must be based on real data and a 

combination of intuition and inference will be used to 

design the system. For simplicity, the model is likely 

to be designed using simple membership functions 

and relationships. However, neural networks are 

recognized as a more advantageous approach as they 

would allow a fuzzy virus detector to learn a normal 

system’s behavior and identify unusual circumstances 

that may be indicative of a bug or exploit. 

 

One potential challenge facing the research for this 

paper will be identifying scenarios where there may 

be high CPU usage, high memory usage and high disk 

I/O due to a valid process such as video rendering. 
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While outside the scope of this paper, a neural 

network could potentially be used to identify valid 

scenarios based on a usage history and set of known 

good processes. Note, however, this would not be a 

bulletproof mechanism – many hacking techniques 

involve exploiting vulnerabilities in normal 

applications and masquerading within their processes, 

so extra care would be needed to develop this neural 

network to identify unusual behaviors from valid 

applications. 

 

The paper is organized as follows: related works have 

been discussed in section 2, methodology and design 

have been discussed in section 3, proposed system 

implementation has been discussed in section 4, 

section 5 has covered test and results and finally 

conclusion have been included in section 6. 

 

2.Related works 
Intrusion detection systems (IDS) are designed to 

monitor network traffic and alert a system 

administrator or other responsible individual in the 

event of potential network intrusion from adversaries. 

The concept can be traced back to at least 1980, on a 

proposal by James Anderson which consisted of a set 

of tools by which system administrators could 

identify attacks via audit trails [3]. A concept for a 

more active IDS was first proposed in 1986 by 

Dorothy Denning based on analyzing system logs and 

other auditing records [4]. These systems evolved 

over the next decade to include statistic-based 

detection (pioneered by Vaccaro and Liepins [5]) and 

include preventative measures. 

 

Over the most recent decade, numerous studies have 

attempted to identify fuzzy methods of detecting 

network intrusions. Abadeh, et al., proposed a fuzzy 

genetics-based learning algorithm that could be used 

as a network intrusion detection system [6]. Wang et 

al., defined a method combining artificial neural 

networks and fuzzy clustering to improve the 

capabilities of previously proposed systems to detect 

low-occurrence attacks [7]. Mkuzangwe et al. [8] 

presented a fuzzy logic based network intrusion 

detection system to predict Neptune, which is a type 

of a transmission control protocol synchronized (TCP 

SYN) flooding attack. Shanmugavadivu et al. [9] 

introduced a network intrusion detection system 

using fuzzy logic. Kudłacik et al. [10] presented an 

intrusion detection method based on a fuzzy 

approach. Azad et al. [11] introduced an intrusion 

detection system which is based on the fuzzy min, 

fuzzy max neural network and the particle swarm 

optimization.  Ramakrishnan et al. [12] proposed an 

entropy-based feature selection to select the 

important features, layered fuzzy control language to 

generate fuzzy rules, and layered classifier to detect 

various network attacks namely neptune, smurf, back, 

and mailbomb.  However, no research could be found 

on fuzzy methods of detecting exploitation within a 

single system. 

 

The above described intrusion detection systems, 

both fuzzy and non-fuzzy, are generally capable of 

detecting and preventing intrusion of an entire 

computer network and not a single endpoint. Anti-

virus software is perhaps the closest comparison to 

the system proposed here. It is intended to prevent 

exploitation of a single machine. There are varying 

mechanisms to do so. Most applications are 

signature-based, meaning they constantly scan the 

system for known “signatures” of viruses, generally 

by comparing the hash of a new file or memory 

segment to a dictionary of known values. 

 

Heuristic detection techniques may also detect some 

virus binaries which have been modified to evade 

signature-based detection techniques while still 

maintaining the integrity of the executable. Some 

heuristic techniques may be fuzzy by detecting 

inexact signature matches. However, these 

mechanisms still rely on detecting known code bases 

and exploits and are not capable of detecting zero 

days. 

 

3.Methodology and design 
The following requirements were defined for the 

proposed intrusion detection system based on the 

authors experience in the filed: 

 The model shall be capable of processing the 

following inputs: 

o Overall CPU usage, measured as a percentage of 

idle time 

o Overall memory usage, measured as a percentage 

of unallocated memory 

o Disk I/O, measured in bytes per second 

o Disk I/O, measured in number of operations 

o Number of total network connections currently 

active 

o Number of new network connections in the last 

second 

o Number of new network connections in the 

previous minute 

o Number of new network connections in the 

previous 5 minutes 

o Type of network connections (inbound/outbound, 

port, type of service (if known)) 

o Number of active processes 
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o Number of new processes over the last second 

o Number of new processes over the last 5 seconds 

o Number of new processes over the last 30 seconds 

o Number of threads 

o Number of new threads over the last second 

o Number of new threads over the last 5 seconds 

o Number of new threads over the last 30 seconds 

o Moving average of number of processes, measured 

over the previous 15 seconds 

o Moving average of number of new processes, 

measured over the previous 15 seconds 

 Confidence results shall be classified into the 

following buckets: 

o 80% or higher: Compromised 

o 60-80%: Potential compromise 

o 40-60%: Unsure 

o 20-40%: Likely not compromised 

o 20% or lower: Not compromised 

 The model shall indicate clearly to the user whether 

the system is believed to be compromised and the 

percent confidence in that result. 

 The percent confidence may be displayed 

graphically. 

 

Only simple tests were required to verify these 

requirements. For example, a test to verify the 

readability requirements simply consists of placing 

the android device at eye level and four feet from the 

driver, and verifying that the text is readable. The full 

test plan is as follows: 

 

 Individual membership functions 

o Provide a range of inputs to the model for the 

individual membership functions, covering the 

entire relevant function width. 

o Verify that the membership function provides a 

valid and expected membership value for each 

input. 

 Combined result 

o Provide a range of membership values for each 

membership function that feeds the combined 

relationship 

o Verify that the provided membership values 

provide the expected relationship and confidence 

result 

 Classification/reporting 

o Provide inputs to the model that have been 

previously calculated (manually or otherwise 

outside the model) to provide a 20% or lower 

confidence rating 

o Verify that the system reports a result of “not 

compromised” and reports the confidence rating 

o Repeat these steps for each of the remaining 4 

result buckets 

 

A set of data on normal usage was collected to 

baseline the system. The input set was captured on a 

2014 MacBook Pro with a 2.2GHz Intel Core i7 

processor, 16GB of RAM and running Mac OS X 

10.11.4. CPU, memory and thread usage statistics 

were captured using the open-source tool top [13], 

configured to collect system information once per 

second. Lsof (list open files, which is used in many 

Unix-like systems to report a list of all open files and 

the processes that opened them) was used to capture 

information on active network connections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Collected CPU usage 
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Data was captured on normal usage (web browsing, 

email, some video streaming, etc.) once per second 

over one hour. Figure 1 illustrates the collected CPU 

usage.  Figure 2 illustrates the network connection 

data.  Figure 3 shows the memory usage collected 

data.   

 

 

 
Figure 2 Collected data on number of network connections 

 

 
Figure 3 Collected memory usage 

 

The fuzzy inference system to detect exploitation of a 

system will be designed using system metrics such as 

CPU, memory usage and network connections.  The 

following are the design steps: 

 

a. Input Selection and Membership Functions 

Any number of computer syClRstem measurements 

may identify a potential compromise. The most 

obvious to users is CPU usage, memory usage and 

disk I/O, all of which can quickly cause a PC to 

appear less responsive, either due to lack of resources 

or being I/O-bound. The model proposed 

requirements has defined a wide array of 

measurements that the system should be capable of 

monitoring. For this implementation of the proposed 

system the following subset of five measurements 

were selected: 

 CPU usage 

 Memory usage 

 Number of active network connections 

 Number of new network connections in the 

previous second 

 Number of new threads over the last second 

 

These measurements were chosen based on expert 

knowledge. An exploit will generally try to invade an 

existing process and masquerade within a known 
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good process – so monitoring active processes may 

not always be useful, but monitoring threads could 

indicate a change to the application. Most exploits 

will generally try to operate as quickly as possible 

before being detected, with no regard to existing 

resource usage-therefore, things like CPU usage and 

memory usage are useful measurements. Finally, 

intruders will generally try to reach another system 

remotely-thus; network connection metrics are highly 

useful as well. 

These inputs were assigned similar membership 

functions for ease of implementation. Input values 

were assigned five linguistic values (different 

classifications): very low, low, moderate, high and 

very high. Classifications were based on a 

combination of expert knowledge and some limited 

data. The resulting membership threshold values are 

shown in Table 1 

 

 

Table 1 Membership function threshold values 
 Very low Low Moderate High Very high 

CPU Usage (%) 0-0.2 0.1-0.3 0.2-0.4 0.3-0.5 0.4-1 

Memory Usage (%) 0-0.3 0.4-0.6 0.5-0.7 0.6-0.8 0.7-1 

# of Network Conns 0-20 10-30 20-40 30-50 40+ 

# of New Network Conns 

(1 sec) 

0-4 2-6 4-8 6-10 8+ 

# of New Threads (1 sec) 0-6 3-9 6-12 9-18 12+ 

Compromise State Not Comp – 

0-0.35 

Likely not 

comp – 0.2-0.5 

Unsure – 0.35-0.65 Likely comp – 

0.5-0.8 

Comp – 0.65-

1 

 

b. Model and rule selection and defuzzification 

A Mamdani model was selected for this model. The 

consequence of the rule set is known to be a fuzzy set 

(varying levels of compromise). The inputs are also 

fuzzified as they are grouped into classifications 

(linguistic values) rather than using crisp values. 

 

Rules were then defined for the model based on 

expert knowledge. A maximum of 7776 (6*6*6*6*6) 

potential rules could have been defined, given every 

possible input classification, however not all of these 

rules are useful. For this project, a set of 15 rules 

were defined which attempted to cover a range of 

likely scenarios from low resource usage to high 

resource usage and from low confidence of 

compromise to high confidence of compromise.  One 

example includes: 

 

IF CPU Usage x1(k) is Very High, and 

    Memory Usage x2(k) is Very High, and 

   # of Network Conns x3(k) is Very High, and 

   # of New Network Conns x4(k) is Very High, and 

   # of New Threads x5(k) is Very High, 

THEN System is COMPROMISED. 

 

Some less detailed rules were defined as follows: 

 

IF CPU Usage x1(k) is Very High, and 

    Memory Usage x2 (k) is Very High, and 

   # of Network Conns x3(k) is High, 

THEN System is LIKELY COMPROMISED. 

The complete sets of rules are as follows: 

1. IF (CPU Usage x1(k) is Very Low), AND  

(Memory Usage x2(k) is Very Low), AND   (# of 

Network Connections x3(k) is Very Low), AND   

(# of New Network Connections in last 5 seconds 

x4(k) is Very Low), AND   (# of New Threads in 

last 5 seconds x5(k) is Very Low), THEN    

(Compromise State y(k) is Not Compromised).; 

weight = 1 

2. IF (CPU Usage x1(k) is Very High), AND   

(Memory Usage x2(k) is High), AND   (# of 

Network Connections x3(k) is Very High), AND 

(# of New Network Connections in last 5 seconds 

x4(k) is Very High), AND 

    (# of New Threads in last 5 seconds x5(k) is Very 

High), THEN (Compromise State y(k) is 

Compromised).; weight = 1 

3. IF (CPU Usage x1(k) is Low), AND (Memory 

Usage x2(k) is Low), AND (# of Network 

Connections x3(k) is Low), AND (# of New 

Network Connections in last 5 seconds x4(k) is 

Low), AND (# of New Threads in last 5 seconds 

x5(k) is Low), THEN(Compromise State y(k) is 

Likely Not Compromised).; weight = 1 

4. IF (CPU Usage x1(k) is Moderate), AND(Memory 

Usage x2(k) is Very High), AND (# of Network 

Connections x3(k) is High), AND(# of New 

Network Connections in last 5 seconds x4(k) is 

Moderate), AND (# of New Threads in last 5 

seconds x5(k) is Low), THEN (Compromise State 

y(k) is Likely Compromised).; weight = 0.4 

5. IF (CPU Usage x1(k) is Moderate), AND 

(Memory Usage x2(k) is Very High), AND (# of 
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Network Connections x3(k) is Moderate), AND(# 

of New Network Connections in last 5 seconds 

x4(k) is Low), AND (# of New Threads in last 5 

seconds x5(k) is Low), THEN (Compromise State 

y(k) is Likely Not Compromised).; weight = 1 

6. IF (CPU Usage x1(k) is Very High), AND 

(Memory Usage x2(k) is High), AND (# of 

Network Connections x3(k) is High), THEN 

(Compromise State y(k) is Likely Compromised).; 

weight = 0.8 

7. IF (CPU Usage x1(k) is Moderate), AND(Memory 

Usage x2(k) is Very High), AND (# of Network 

Connections x3(k) is Low), AND (# of New 

Network Connections in last 5 seconds x4(k) is 

Very Low), THEN (Compromise State y(k) is 

Likely Not Compromised).; weight = 0.8 

8. IF (CPU Usage x1(k) is Moderate), AND 

(Memory Usage x2(k) is Very High), AND  (# of 

New Network Connections in last 5 seconds x4(k) 

is High), AND   (# of New Threads in last 5 

seconds x5(k) is High), THEN 

   (Compromise State y(k) is Likely Compromised).; 

weight = 0.6 

9. IF (CPU Usage x1(k) is Moderate), AND 

(Memory Usage x2(k) is Moderate), AND (# of 

Network Connections x3(k) is Moderate), AND  (# 

of New Network Connections in last 5 seconds 

x4(k) is Very High), AND  (# of New Threads in 

last 5 seconds x5(k) is Very High), THEN 

(Compromise State y(k) is Likely Compromised).; 

weight = 0.7 

10. IF (CPU Usage x1(k) is Low), AND (Memory 

Usage x2(k) is Moderate), AND(# of Network 

Connections x3(k) is Low), AND (# of New 

Network Connections in last 5 seconds x4(k) is 

Moderate), AND (# of New Threads in last 5 

seconds x5(k) is Low), THEN (Compromise State 

y(k) is Not Compromised).; weight = 0.7 

11. IF (CPU Usage x1(k) is Moderate), AND 

(Memory Usage x2(k) is Low), AND(# of 

Network Connections x3(k) is Low), AND (# of 

New Network Connections in last 5 seconds x4(k) 

is Low), AND (# of New Threads in last 5 seconds 

x5(k) is Low), THEN(Compromise State y(k) is 

Likely Not Compromised).; weight = 0.8 

12. IF (CPU Usage x1(k) is Moderate), AND 

(Memory Usage x2(k) is Moderate), AND (# of 

Network Connections x3(k) is Moderate), AND(# 

of New Network Connections in last 5 seconds 

x4(k) is Moderate), AND(# of New Threads in last 

5 seconds x5(k) is Moderate), THEN(Compromise 

State y(k) is Unsure).; weight = 0.8 

13. IF (CPU Usage x1(k) is High), AND (Memory 

Usage x2(k) is High), AND(# of Network 

Connections x3(k) is Very Low), AND(# of New 

Network Connections in last 5 seconds x4(k) is 

Very Low), AND(# of New Threads in last 5 

seconds x5(k) is Very Low), THEN(Compromise 

State y(k) is Likely Not Compromised).; weight = 

0.8 

14. IF (CPU Usage x1(k) is Moderate), AND 

(Memory Usage x2(k) is Moderate), AND(# of 

Network Connections x3(k) is High), AND (# of 

New Network Connections in last 5 seconds x4(k) 

is Very High), AND(# of New Threads in last 5 

seconds x5(k) is High), THEN(Compromise State 

y(k) is Compromised).; weight = 0.6 

15. IF (CPU Usage x1(k) is Very Low), AND 

(Memory Usage x2(k) is Very Low), AND (# of 

Network Connections x3(k) is High), AND (# of 

New Network Connections in last 5 seconds x4(k) 

is Very High), AND(# of New Threads in last 5 

seconds x5(k) is High), THEN (Compromise State 

y(k) is Unsure).; weight = 0.6 

 

The centroid method was used for defuzzification. 

 

4.Implementation 
The design was implemented as a model in 

MATLAB using the fuzzy logic toolbox. Figure 4 

demonstrates the fuzzy inference system (FIS) 

generated in the fuzzy logic designer. The five inputs 

were each defined, as well as the output 

(compromiseState). Min and max were used to define 

the AND and OR calculation methods, respectively. 

Likewise, the min method is used to evaluate 

implications, and the max method used to aggregate 

the rules. As noted previously, the centroid method 

was used as the defuzzification technique. 

 

Pi, sigmoidal and Gaussian membership functions 

were used for the inputs. They were designed to 

center around the middle of the previously defined 

threshold values. Figure 5 demonstrates the 

membership function for CPU usage. Triangular and 

trapezoidal membership functions were used to 

capture the output and were also centered on the 

threshold values defined as shown in Figure 6. 

 

Rules were defined based and were assigned weights 

based on expert knowledge in confidence of the rules. 

Weights ranged from 0.4 to 1-rules with less 

confidence in consequents were weighted lower and 

rules with complete confidence in consequents were 

weighted as a 1. 
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Figure 4 MATLAB fuzzy inference system implementation 

 

 
Figure 5 Membership function for CPU usage 
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Figure 6 Compromise state (Output) membership function 

 

5.Testing and results 
Some sample points from the collected data were 

used to test the system. Points were selected that 

indicated various periods of usage within the system. 

While the system was not actually compromised 

during the period of the test, the points were selected 

to test the functionality of the model. A future test 

should include actual compromise of a controlled 

environment, and demonstrate the true effectiveness 

of the model. Table 2 shows the used test points. 

  

 

Table 2 Test data and results 

CPU usage MEM usage # of 

network 

conns 

#  of new 

network conns 

# of new 

threads 

Comp.  state 

0.5103 0.6921 24 0 49 Potential (0.649) 

0.1172 0.7087 108 41 0 Compromised (0.83) 

0.0628 0.7276 19 0 4 Likely not compromised (0.35) 

0.2779 0.5753 19 0 325 Likely not compromised (0.377) 

0.0440 0.5765 19 2 0 Likely not compromised (0.276) 

0.3840 0.6271 38 0 34 Potential (0.648) 

0.3258 0.5682 17 0 289 Likely not compromised (0.354) 

0.0607 0.6893 19 2 1 Likely not compromised (0.323) 

0.3507 0.6229 21 1 27 Likely not compromised (0.368) 

0.0786 0.6765 49 16 0 Potential (0.646) 
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The test results have shown some interesting 

feedback. A large number of network connections 

become tied to a more likely compromise state. This 

could be indicative of certain exploits such as a 

botnet, which may be attempting numerous outbound 

tries to connect. High memory usage is not 

necessarily indicative of compromise, as shown by 

the output – the PC may simply be caching 

information in memory from the hard disk. High 

CPU usage with a large number of new threads may 

indicate a compromised state – if a new process (say, 

an exploit) is trying to start up and perform CPU-

intensive operations. A large number of new threads 

on its own, however, may not indicate an exploit. 

This last test example was a likely event during a 

video streaming operation completed. The resulting 

surface of this relationship is shown in Figure 7. The 

surface shown in Figure 8 demonstrates the 

relationship between the number of network 

connections and the number of new threads, 

generally showing a positive correlation.  

 

 
Figure 7 Surface of CPU usage and new threads 

 

 
Figure 8 Surface of network connections and new 

threads 

6.Conclusion  
A fuzzy inference system has been proposed to detect 

computer system exploits based on system metrics. 

The initial model was defined with 5 inputs and a 

single output. Future versions of the model may be 

capable of capturing additional inputs such as disk 

I/O. The design was tested and provided reasonable 

results, but further evaluation is needed, especially 

around fine tuning the impact of network 

connections. Finally, future improvements to the 

design are proposed which include the following: 

 

 A number of next steps can be taken to further 

refine the design and make it more accurate. The 

first would be to evaluate a number of different 

systems. This should range across different levels 

of hardware, different operating systems, different 

system configurations, and more. This model only 

evaluates the overall system. The system can be 

subject to a number of variables, including 

processes such as image/video processing that 

normally use large amounts of memory and CPU 

time. Individual processes could be examined and 

carefully monitored to check for unusual changes 

in CPU usage, memory usage, network handles are 

used by a given process, etc. 

 The system could be further fined tuned to utilize 

different membership functions and thresholds for 

each process. This would be able to more 

accurately monitor processes that typically use 

large amounts of system resources. It could also be 

used to specifically target certain processes prone 

to exploitation such as browsers, word processing 

and rich document viewing applications, email 

applications and others. 

 Analysis is also needed for a lightweight 

implementation of this type of system. A fuzzy 

exploit detection monitor would need to be 

consistently running in the background. However, 

it cannot impact the normal operation of the 

system as this would create an undesirable user 

experience. 

 Finally, the system could also be improved 

through the use of neural networks. A periodic 

learning state could be used to gather information 

on the system’s typical load for a given user via 

unsupervised learning. A pre-production 

supervised learning exercise could also be used to 

pre-train the system. The system would also need 

to be somewhat self-monitoring to detect the 

intrusion of its own processes. 
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