
International Journal of Advanced Computer Research, Vol 9(40)                                                                                                            

ISSN (Print): 2249-7277   ISSN (Online): 2277-7970 

http://dx.doi.org/10.19101/IJACR.SOC20 

28 

 

Optimal path calculation for virtual networks using genetic algorithm  
 

Man Soo Han
* 
 

Professor, Department of Information and Communications, Youngsan-ro, Muan-gun, Jeonnam, Republic of Korea
 
 

  
Received: 28-May-2018; Revised: 25-July-2018; Accepted: 5-October-2018 

©2019 Man Soo Han. Published by ACCENT Social and Welfare Society. This is an open access article distributed under the 

Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

1.Introduction 
Network virtualization is that a network operator 

provides for a customer a virtual network abstracted 

from a physical network that does not interfere with 

other customers’ virtual networks. It requires a 

virtual network embedding that maps a requested 

virtual network of a customer into substrate networks 

of a provider. Virtualization makes a challenging 

issue usually referred to as the virtual network 

embedding (VNE) problem [1]. VNE problem 

solving is known as NP-hard that makes it hard to get 

an exact solution for large networks in a reasonable 

time. Because of the NP-hard complexity, many 

solutions are based on heuristic or meta-heuristic 

approaches. Most of them use the Dijkstra’s 

algorithm for path computation element (PCE) to find 

the best path between network nodes where PCE 

plays an important role of optimal virtual network 

embedding into underlying substrate networks. PCE 

is a network entity that calculates the best routing 

path between a source node and a destination node 

[2]. Current calculation algorithms of the PCE are 

typically based on a linear metric like link costs that 

are used to model the capacity of network nodes to 

transmit packets. 
  
 
*Author for correspondence 

Dijkstra’s algorithm has been widely used for 

calculating a best routing path in networks for the 

PCE with the linear metric. Dijkstra’s algorithm 

calculates the best path for the linear metric problem 

in a simple manner and within reasonable time. 

However, we find out that the Dijkstra algorithm 

cannot be applied in some cases that have 

performance costs in complex forms, especially when 

both link and performance costs are combined in a 

non-linear form. 

 

Many papers studied meta-heuristic algorithms for 

the VNE problem. In [3], a genetic algorithm (GA) 

based on a non-dominated sorting based multi-

objective evolutionary algorithm is introduced to the 

VNE problem. But the link path between nodes is 

calculated by a shortest path first (SPF) method 

which is based on Dijkstra’s algorithm.  In [4], a 

particle swarm optimization method is used for the 

VNE problem. However, the SPF algorithm is used 

for calculation of the link path between nodes. In [5], 

an ant colony algorithm is introduced to the VNE 

problem. But, the link path between nodes is 

calculated by the SPF algorithm. We find out that the 

above methods cannot be applied to networks with 

non-linear costs, as all the methods above use the 

SPF algorithm for path computation. It is needed to 

Research Article 

Abstract  
With the advent of software- defined networks, network virtualization becomes a key technology to implement software-

defined networks. Network virtualization requires a path computation element (PCE) to calculate virtual paths to connect 

virtual network nodes. The Dijkstra’s algorithm has been widely used in the PCE to calculate the shortest path between 

two virtual nodes. In this paper, we address that the Dijkstra’s algorithm cannot be applicable when a non-linear cost 

metric is used in the path cost evaluation. This paper proposes a new genetic algorithm (GA) to find the shortest path 

when a non-linear metric is used. The proposed GA generates the immigrants from ordinary chromosomes not from the 

elite chromosome for the genetic diversity. Also, the proposed GA does not use the sorting process to replace the worst 

chromosomes. The proposed GA uses the random replacing mechanism to decrease the path computation time. Using 

simulations, we showed that the proposed method is better than existing algorithms.  

 

Keywords 
PCE, Genetic algorithm, Shortest path, Virtual network. 

 



International Journal of Advanced Computer Research, Vol 9(40) 

29          

 

find a new algorithm for path computation to support 

VNE with non-linear costs. 

 

We studied GA as a meta-heuristic method to support 

non-linear metrics considering both link and 

performance costs. A standard GA (SGA) is well 

described in [6] and [7] where only link cost is 

considered. The SGA is studied for the PCE problem 

with the non-linear cost in [8]. A random immigrant 

GA (RIGA) is introduced in [6] that random 

immigrant individuals are added to the genetic 

population for the search diversity. An elitism-based 

immigrant GA (EIGA) is introduced in [9] that 

immigrant individuals are generated from an elite 

individual and then added to the genetic population. 

It was shown that the EIGA outperforms the SGA 

and the RIGA in dynamic environments. 

 

In [10], immigrant individuals are generated by a 

heuristic method and then inserted the genetic 

population. In [11], a large population is split into 

several small populations. Each small population 

independently genetically evolves. Random 

immigrants are added to some small populations to 

enhance the genetic diversity. Since not only the 

quality of the solution, but also the computation 

speed is important in the path computation of VNE, 

the methods such as [10] and [11] are not desired 

because of their complexity. Network applications 

require fast path setup times [12]. The setup time is 

expected to be less than 100 ms for future 

applications [12]. We propose a noble fast path 

computation algorithm with a non-linear metric by 

improving disadvantages of EIGA. 

 

Since the EIGA generates immigrants using an elite 

individual, the genetic diversity of immigrants is 

limited in the EIGA. In the proposed algorithm, the 

immigrants are generated from normal individuals 

not from the elite individual for the genetic diversity. 

Since the EIGA replaces the worst individuals with 

the immigrants, a sorting mechanism is required to 

sort individuals based on their fitness. The sorting 

mechanism consumes time and computing power. To 

decrease the time burden, the proposed algorithm 

randomly replaces individuals with the immigrants 

without using the sorting mechanism. We show that 

the proposed method is better than the EIGA and the 

SGA in the solution quality and the proposed method 

is comparable to the EIGA in the convergence speed 

using computer simulations. 

 

In section 2, we address the current computation 

algorithms of the shortest path are limited to a linear 

metric like link costs. In section 3, we describe the 

design process of GA to support a non-linear metric 

consisting of both link and node costs. Then, we 

explain the proposed algorithm in section 4. In 

section 5, we evaluate the performance of the 

proposed algorithm and existing algorithms. Finally, 

conclusions are given in section 6. 

 

2.Limitation of Dijkstra’s algorithm  
Dijkstra’s algorithm is the most widely used method 

to calculate the shortest path in VNE. Also, it is the 

basic method to calculate the optimal path in the open 

shortest path first (OSPF) protocol of PCE 

technology. The execution time of Dijkstra’s 

algorithm is in time O(|V|
2
) where |V| is the number 

of nodes. If a Fibonacci heap is used then its runtime 

is in O(|V| + |E|log|E|) where |E| is the number of 

links. Therefore, the runtime of Dijkstra’s algorithm 

is increased as the number of nodes or the number of 

links is increased. 

 

As we mentioned before, a metric can be complex in 

VNE technology. For example, a metric can be a 

combination of a link cost and a node failure cost. 

The node failure cost can be the sum of the node 

failure rates or the largest one among the node failure 

rates. In the former case, it is hard to know a failure 

rate of an individual node from the cost. In the latter 

case, it is obvious that the failure rate of every node 

is less than or equal to the cost. If we use the former 

cost, a node with a high failure rate can be included 

in a solution path despite its high failure rate. In 

contrast, a node with a high failure rate is easily 

avoided when a path is calculated if we use the latter 

cost. 

 

When a path passes through a node, the node 

allocates a service rate as well as a buffer space for 

the path. The service rate is related with a mean delay 

and the buffer space is associated with a packet loss 

rate. In every node on the path, both indexes have to 

be larger than or equal to what the path requires. The 

sum of service rates of nodes does not provide 

sufficient information, whether or not a service rate 

of a node is satisfied. Also, the sum of buffer spaces 

of nodes does not give satisfactory information if a 

right amount of buffer size is allocated to the path to 

a node. For both indexes, the costs of the minimum 

value type are better. If the minimum service rate 

among the service rates of the nodes on the path is 

larger than the requirement, all of the nodes satisfy 

the service rate requirement. Also, if the minimum 

buffer size among the buffer sizes of the nodes is 



Man Soo Han 

30 

 

larger than the requirement, all of the nodes meet the 

buffer size requirement. 

 

Resource reservation protocol-traffic engineering 

(RSVP-TE) supports a path computation for a label 

switched path (LSP) of multiprotocol label switching 

(MPLS) by considering constraints such as the 

bandwidth requirement and resource attributes [13]. 

The resource attributes can be a link bandwidth or a 

buffer resource [14]. In MPLS networks, constraint-

based routing is used for the path computation with 

the constraints. The basic idea of constraint-based 

routing is to remove any network elements that do 

not satisfy the constraints [14]. Then it finds a path 

by running the shortest path algorithm on the residual 

network. 

 

Constraint-based routing can give a feasible path, but 

not the best path. For example, consider two paths 

(A-B-D) and (A-C-D) where A, B, C, and D are 

nodes. Assume the link cost of all links between 

nodes is the same. Suppose that the constraint is the 

available service rate of each node and it must be 

larger than or equal to 100 Mbps. Let the available 

service rates of all nodes be 1 Gbps except the node 

B whose available service rate is 100 Mbps. Since 

both paths satisfy the constraint and both paths have 

the same link costs, constraint-based routing can 

select the path (A-B-D) for the solution. However, 

the path (A-C-D) is the best in the sense of load 

balancing. Moreover, a bandwidth of an LSP can be 

increased [15]. We cannot use the path (A-B-D) if the 

service rate is increased over 100 Mbps. 

 

The shortest path algorithm such as Dijkstra’s 

algorithm is not efficient when a metric is not a linear 

form. Figure 1 shows an example that Dijkstra’s 

algorithm fails. The path cost is a sum of link costs 

and the maximum node cost among the nodes on a 

path. That is the path cost c is given by c = Li + 

max{nj | j  P} where Li is a cost of link i, nj is a cost 

of node j, and i,j  P and P is a path. Let the path cost 

of a node k be the path cost from a source node to the 

node k. In the Figure 1, the alphabet in a circle means 

a node number and the number on a link represents a 

cost of the link. Also the number above a circle 

denotes a cost of the node. The start node is A and 

the end node is F. 

 

 

 

 

 

Figure 1 Example of Dijkstra’s algorithm failure 

  

Dijkstra’s algorithm calculates the shortest path by 

using hop by hop approach. The shortest path 

between the source node A and the node D is given 

by A-C-D and the path cost of D is 6 where the sum 

of link costs is 3 and the node cost is 3. Since 

Dijkstra’s algorithm calculates the path cost of the 

node E by adding a cost to the path cost of the node 

D, the shortest path between the source node A and 

the node E is given by A-C-D-E and the path cost of 

E is 14 where the sum of link costs is 4 and the node 

cost is 10. The shortest path between the source node 

A and the node F is calculated as A-C-D-E-F and its 

path cost is 15. However, the true shortest path is A-

B-D-E-F and its path cost is 14. Therefore, Dijkstra’s 

algorithm cannot find the true shortest path in this 

example. 

 

3.Design of GA for shortest path 

3.1Model 

In this paper, the network is modeled by an 

undirected and connected topology graph G(V,E) 

where V is a set of nodes and E is a set of links that 

connect nodes. We summarize some notations used 

in this paper.  

- G(V,E): the topology graph. 

- s: the source node. 

- t: the destination node. 

- P(s,t): a path from s to t on G(V,E). 

- Li: the cost of the link i. 

- nj: the cost of the node j. 

- c(P): a total cost of path P. 

 

The path computing problem can be explained as 

follows. For a given network, link costs, node costs, a 

path cost function, a source node and a destination 

node, we wish to find a path that minimizes the path 

cost. The two main objectives of the problem are the 

optimality of the solution and the computation speed. 

 

 

 

 

A B D

C

E F1 1 1

2

1

1

1 5

3

1 10 1



International Journal of Advanced Computer Research, Vol 9(40) 

31          

 

The optimal solution minimizes the network resource 

waste and provides a better quality of service (QoS). 

For example, the longer a path, the more resources 

have to be reserved for the path. Since nodes and 

links take some time to process packets, a packet 

delay is affected by the path length.  

 

The path setup times for network applications have to 

be low. Future applications are expected to require 

setup times as fast as 100 ms [12]. Recent 

applications such as data centers, cloud computing, 

video, gaming, and mobile can increase connection 

request rates [12]. For these applications, the rapid 

path setup has to be provided. Thus the computation 

speed for the given problem has to be fast. Our aim is 

to develop a fast GA that finds an optimal path that 

minimizes a path cost.  

 

More formally, consider a network G(V,E) and a path 

setup request from the source node s to the 

destination node t. The shortest path problem is to 

find a path P over a network G(V,E) which 

minimizes the path cost as shown in Equation (1). 

  ( )   ∑       {  |   } (1) 

 

Where Li is a cost of link i, nj is a cost of node j, and 

i,j  P. Also  and  are proportional coefficients. 

 

3.2Genetic representation 

A routing path is encoded by a string of numbers that 

denote nodes which the path passes through. The 

order in the string represents a node order in the 

routing path. The string is called a chromosome in 

GA. The first locus of the chromosome is the source 

node and the last locus of the chromosome is the 

destination node of the path. The chromosome length 

is less than or equal to the maximum length |V| which 

is the total number of nodes. 

 

3.3Initial population 

In GA, a chromosome is a genetic representation of a 

possible solution. To obtain a good solution, the 

initial population has to be genetically diverse. In this 

paper, the chromosomes of the initial population are 

randomly generated for the diversity. Also let s and t 

be the source node and the destination node, 

respectively. We build a path from the node s to the 

node t by randomly selecting a neighbor node. A 

node u is a neighbor node of a node v if the node u is 

directly connected to the node v via a link. First, we 

randomly select a neighbor node, v1, of the source 

node s. Then we randomly choose a neighbor node, 

v2, of the node v1, and so on until we reach to the 

destination node t. Thus we get a path P(s,t)= 

{s,v1,v2,…,t}. To prevent a loop in a path, a node 

already included in a path is excluded in the random 

selection. Also, if a path cannot reach to the 

destination node t within |V| hops, we discard the 

path. 

 

3.4Fitness function 

For a chromosome, we evaluate its quality for a 

solution i.e., its fitness using a fitness function. In this 

paper, the aim is to find a path from a source node to 

a destination node with the lowest path cost which is 

given by a sum of link costs and the maximum node 

cost among the nodes on the path. The fitness 

function of a chromosome Ck, f(Ck) is given by 

 (  )  ( ∑       {  |   (   )})
  

  (2) 

 

Where Li is a cost of link i, nj is a cost of node j, and 

i,j   P(s,t). Also  and  are proportional coefficients 

and P(s,t) is a path encoded by the chromosome Ck. 

 

3.5Crossover 

Crossover evolves the current chromosomes so as to 

become better chromosomes. In this paper, we use 

single point crossover to exchange partial 

chromosomes. Figure 2 shows an example of the 

single point crossover. 

Figure 2 Example of single point crossover 

 

Parent chromosomes are randomly selected to mate. 

The selection probability of a chromosome is 

proportional to the fitness of the chromosome. The 

crossover is performed with a crossover probability 

. The common nodes of both parents are checked 

and one common node is randomly selected. The 

common nodes are where the paths of parents are 

intersected. In Figure 2, the common nodes are 6, 9, 

and 15 and the node 9 is selected. We obtain two 

child chromosomes by exchanging the substrings of 

parent chromosomes. The substrings beyond the 

selected common node are swapped between the 

parents. In Figure 2, the substrings 13-15-19 and 11-

0 2 3 6 7 9 11 15 18 19

0 4 5 6 8 9 13 15 19

Selected point

Parent P1

Parent P2

0 2 3 6 7 9

11 15 18 190 4 5 6 8 9

13 15 19Offspring O1

Offspring O2



Man Soo Han 

32 

 

15-18-19 are swapped to produce child 

chromosomes. 

 

If parent chromosomes do not have a common node, 

crossover does not occur and the child's 

chromosomes are the exact copy of the parents. The 

child's chromosomes may be infeasible because of 

the node duplication or the path disconnection. We 

first remove the duplicated node from the child's 

chromosomes and then check the path connectivity of 

the child. If two adjacent nodes of a child 

chromosome are not directly connected via a link, the 

child chromosome is infeasible. In this paper, we do 

not repair the infeasible child. If a child is infeasible 

after crossover, we discard the infeasible child, but 

use one of the exact copies of the parents as a new 

child. 

 

3.6Mutation 

Mutation helps to escape from local optima. In this 

paper, we use a single point mutation. Each 

chromosome can mutate with a mutation probability 

. The mutation point of a chromosome is randomly 

selected except the start and destination nodes. Let 

the i-th point of a chromosome Ck be the mutation 

point. To prevent an infeasible path, a node in the i-th 

point must be directly connected to a node in the (i-

1)-th point. Also the node in the i-th point must be 

directly connected to a node in the (i+1)-th point. In 

this paper, we randomly select one of neighbor nodes 

of a node in the (i-1) point for the new node in the i-

th point. Then we test if the new node is directly 

connected to the node in the (i+1)-th point and check 

if the new node is duplicated in Ck. The mutation is 

accepted only if the new node makes a feasible path. 

Otherwise, the mutation is canceled and the original 

Ck is used. 

 

3.7Elite chromosome 

After a mutation process is over, we evaluate fitness 

of all chromosomes and then find the best one in the 

current generation. Then we compare the best of the 

current generation, with the best of the previous 

generation. The best of them is the elite chromosome 

and we keep the elite chromosome in the evolution 

process of the next generation. 

 

4.Mutation-based immigrant GA  
The SGA generates an initial population without 

checking duplication of chromosomes. It generates 

new populations using crossover and mutation. By 

repeating these processes, it selects relatively fitter 

individuals and stops when a certain stop condition is 

met. The elite chromosome is not used in the SGA. 

The RIGA was introduced to improve convergence 

speed under changing environments. To adapt to a 

new environment, the diversity of chromosomes is 

required. In RIGA, randomly generated new 

chromosomes replace old chromosomes for the 

diversity. The randomly generated chromosomes are 

called random immigrants. Two strategies were 

introduced to replace old chromosomes: replacing 

random chromosomes or replacing the bad ones. To 

prevent that random immigrants disrupt the ongoing 

evolutionary process too much, the number of the 

random immigrants is set to less than 20% of the total 

chromosome population.  

 

The EIGA is motivated by the RIGA. The 

disadvantage of the RIGA is that the evolution 

processes can be disrupted by the random immigrants 

especially when the environment changes slowly. 

The random immigrants may not have any actual 

effect on the slowly changing environments [9]. To 

overcome the disadvantage, the EIGA uses an elite 

chromosome to generate immigrants. To obtain the 

immigrants, the elite chromosome is mutated. Then 

the immigrants replace the worst chromosomes in the 

current generation. The total number of immigrants is 

limited to a certain level to prevent disruption of the 

ongoing evolutionary process. It was shown that the 

EIGA outperforms the SGA and the RIGA when an 

environment changes slowly and slightly [9]. 

Moreover, the EIGA converges faster than the SGA 

and the RIGA. In our problem, the network topology 

does not change. Thus the EIGA is more suitable for 

our problem compared to the RIGA. 

 

The disadvantage of the EIGA is that the elitism-

based immigrants may not helpful to escape from the 

local minima since the immigrants were generated 

from the same elite. To avoid the local minima, we 

need a certain level of the diversity in the 

chromosomes. Based on this consideration, we 

propose a new immigrant approach, called a 

mutation-based immigrant GA (MIGA). The 

immigrants are generated by mutation from the 

current multiple chromosomes not from the elite 

chromosome. In a mutation stage, a chromosome can 

undergo an immigrant mutation process with a 

probability  and a normal mutation process with a 

probability (1 - ). If the probability  is large, the 

evolution process can be disrupted. Like other 

methods, the probability  must be less than 0.2.  

 

The immigrant mutation process is the same as the 

normal mutation process except a chromosome 

mutates with an immigrant mutation probability  



International Journal of Advanced Computer Research, Vol 9(40) 

33          

 

which is larger than the normal mutation probability 

. We use a single point mutation for the immigrant 

mutation. At the end of the immigrant mutation 

process, we check if the newly mutated node is 

duplicated and if the newly mutated node makes a 

valid path. If the newly mutated node yields a 

feasible path, the mutation is accepted. Otherwise, 

the mutation is canceled and the original 

chromosome is used as an immigrant. Figure 3 shows 

the pseudo code of the proposed MIGA. The 

termination condition in Figure 3 is the 

predetermined number of generations. Since not only 

the optimality of the solution, but also the fast path 

setup is important, the number of generations is used. 

  

 

begin 

initial population 

evaluate fitness of initial population 

repeat 

 crossover operation with probability  

 for each chromosome Ck 

  if random value <  then 

immigrant mutation operation with probability  

    else 

mutation operation with probability  

end if 

elite chromosome calculation 

until the termination condition is met 

end 

Figure 3 Pseudo code of the proposed algorithm 

 

The difference between the proposed MIGA and the 

EIGA is twofold. The first one is the diversity of the 

immigrants. Since the MIGA generates the 

immigrants from multiple chromosomes, the 

diversity of the MIGA is better than that of the EIGA. 

The second one is the simplicity. The EIGA has to 

sort the chromosomes using their fitness functions to 

replace the worst chromosomes with the immigrants. 

As the population size of the chromosomes increases, 

the computation time for the sorting process 

increases. The proposed MIGA does not use the 

sorting process. The MIGA is more suitable than the 

EIGA when the fast path setup is required in network 

applications. 

 

5.Simulation results  
We use the network topology in [6] which has 20 

nodes and 62 links. Figure 4 illustrates the network 

topology. We use the link costs of [6]. We set the 

cost of the unconnected link as 10000 as in [6]. We 

set the node costs as follows: n7 = n14 = 80, n3 = n6 = 

n9 = n12 = n15 = 50, and other nj = 30. The start node is 

the node 0 and the destination node is the node 19. 

 

We compare the performance of MIGA with those of 

SGA and EIGA. The crossover operations of the 

SGA and the EIGA are the same as those of the 

MIGA. The normal mutation operation of the MIGA 

is used in the mutation operations of the SGA and the 

EIGA. For the generation of the elitism-based 

immigrants in the EIGA, we use the single point 

mutation with probability. 

 

We set the crossover probability  = 0.99 for all GAs. 

The mutation probability  = 0.05 for the SGA, the 

EIGA and the normal mutation process of the MIGA. 

For the MIGA, the immigrant ratio probability  = 

0.2. For the EIGA, the ratio of the number of 

immigrants to the number of chromosomes is 0.2. 

Also, for the EIGA, we set  = 1.0 and  = 1.0. For 

each GA, the termination is that the number of 

generations reaches to 100. At each generation, for 

each GA, we select the best chromosome from the 

current population and output the path cost 

represented by the best one. For each GA, 1000 

independent runs were executed and we obtain the 

average values of the best solutions at each 

generation. 

 

 

 

 



Man Soo Han 

34 

 

 Figure 4 Simulation network topology 

 

We compare the proposed MIGA with the SGA and 

the EIGA. We set the immigrant mutation probability 

 = 0.9 for the MIGA. For the EIGA, we set the 

immigrant mutation probability  = 0.5 for 

comparison purpose. Since the immigrant ratio 

probability  = 0.2, the average ratio of the number 

of immigrants to the population size is 20% for the 

MIGA. For the EIGA, we set the ratio of the number 

of immigrants to the population size is 20% for 

comparison purpose. To check the effect of the 

immigrants, we compare the three GAs as we set the 

population size to 100 and 200 separately. Figures 5 

and 6 show average values of the best solutions at 

each generation for each GA when the population 

size is 100 and 200, respectively. 

 

As we can see from Figures 5 and 6, the proposed 

MIGA outperforms the other GAs in the quality of 

the solution in all cases. The immigrant scheme is 

more effective when the population size is small in 

the proposed MIGA. The reason is that the 

immigrants provide a genetic diversity that helps to 

find the best solution. But the immigrants are less 

helpful if the population size is large since the large 

population is genetically diverse. The EIGA has the 

fastest convergence speed to a solution thank to the 

elitism-based immigrants. The immigrants based on 

the elite replace the original chromosomes. 

Therefore, the chromosome pool is filled with 

chromosomes, which are similar to the elite as the 

generations increase. This helps the fast converge to a 

solution. But the problem is that the suboptimal 

chromosome can be the elite. The chromosomes 

generated from the suboptimal elite disrupt 

converging to the optimal solution. Hence the quality 

of the solution of the EIGA is worse than that of the 

MIGA. 

 

 

 
Figure 5 Population size = 100 

 

0

1

2

3

4

5

6

7

8

17

18

19

9

10

11

12

13

14

15

16



International Journal of Advanced Computer Research, Vol 9(40) 

35          

 

 
Figure 6 Population size = 200 

 

Note that the quality of the solution of the SGA is 

increasing as the population size increases in Figures 

5 and 6. The population size has a proportional 

relationship with the genetic diversity. The impacts 

of the immigrants of the MIGA and the EIGA are 

decreased as the population size increases. However, 

the increased population size means the algorithm run 

time is increased. Since the fast path setup is also 

important in network applications, the population size 

has to be small. As we can see from Figures 5 and 6, 

the MIGA converges to a solution within 20 

generations. Therefore, the proposed MIGA has the 

best quality of a solution and a good convergence 

time among the considered GAs. 

 

6.Conclusion   
We addressed that the current path computation 

algorithms are limited to a linear metric like link 

costs in the VNE problem. Then we proposed a fast 

GA of optimal path computation that supports a non-

linear metric consisting of link and node costs. The 

proposed method generates the immigrants from 

ordinary chromosomes not from the elite 

chromosome for the genetic diversity. Also, the 

proposed method does not use the sorting process to 

replace the chromosomes. The proposed method uses 

the random replacing mechanism to decrease the path 

computation time. Using simulations, we showed that 

the proposed method is better than existing 

algorithms. 

 

Acknowledgment 
None. 

 

Conflicts of interest 
The author has no conflicts of interest to declare. 

 

References 
[1] Fischer A, Botero JF, Beck MT, De Meer H, 

Hesselbach X. Virtual network embedding: a survey. 

IEEE Communications Surveys & Tutorials. 2013; 

15(4):1888-906. 

[2] Paolucci F, Cugini F, Giorgetti A, Sambo N, Castoldi 

P. A survey on the path computation element (PCE) 

architecture. IEEE Communications Surveys & 

Tutorials. 2013; 15(4):1819-41. 

[3] Shahin AA. Memetic elitist pareto evolutionary 

algorithm for virtual network embedding. Computer 

and Information Science. 2015; 8(2):73-88. 

[4] Zhang Z, Cheng X, Su S, Wang Y, Shuang K, Luo Y. 

A unified enhanced particle swarm optimization‐based 

virtual network embedding algorithm. International 

Journal of Communication Systems. 2013; 

26(8):1054-73. 

[5] Fajjari I, Saadi NA, Pujolle G, Zimmermann H. VNE-

AC: virtual network embedding algorithm based on 

ant colony metaheuristic. In international conference 

on communications 2011 (pp. 1-6). IEEE. 

[6] Gonen B. Genetic algorithm finding the shortest path 

in networks. Reno: University of Nevada. 2006. 

[7] Ahn CW, Ramakrishna RS. A genetic algorithm for 

shortest path routing problem and the sizing of 

populations. IEEE Transactions on Evolutionary 

Computation. 2002; 6(6):566-79. 

[8] Han MS. Optimal routing path calculation for SDN 

using genetic algorithm. International Journal of 

Hybrid Information Technology. 2018; 11(3): 7-12. 

[9] Yang S. Genetic algorithms with elitism-based 

immigrants for changing optimization problems. In 

workshops on applications of evolutionary 

computation 2007 (pp. 627-36). Springer, Berlin, 

Heidelberg. 



Man Soo Han 

36 

 

[10] Gladwin D, Stewart P, Stewart J. A controlled 

migration genetic algorithm operator for hardware-in-

the-loop experimentation. Engineering Applications of 

Artificial Intelligence. 2011; 24(4):586-94. 

[11] Cheng H, Yang S. Multi-population genetic 

algorithms with immigrants scheme for dynamic 

shortest path routing problems in mobile ad hoc 

networks. In European conference on the applications 

of evolutionary computation 2010 (pp. 562-71). 

Springer, Berlin, Heidelberg. 

[12] Malis A, Wilson B, Clapp G, Shukla V. Requirements 

for very fast setup of GMPLS LSPs, RFC-7709; 

2015:1-9. 

[13] Farrel A, Ayyangar A, Vasseur J. Inter-domain MPLS 

and GMPLS traffic engineering, RFC-5151; 2008. 

[14] Awduche D, Malcolm J, Agogbua J, ODell M, 

McManus J. Requirements for traffic engineering over 

MPLS, RFC-2702. 1999:1-29. 

[15] Awduche D, Berger L, Gan D, Li T, Srinivasan V, 

Swallow G. RSVP-TE: extensions to RSVP for LSP 

tunnels. 2001:1-61. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Man Soo Han received his BS, MS, 

and PhD in electrical engineering from 

the Korea Advanced Institute of 

Science and Technology (KAIST), 

Daejeon, Republic of Korea, in 1992, 

1994, and 1999, respectively. He is a 

professor in the Department of 

Information and Communications 

Engineering at Mokpo National University, Jeonnam, 

Republic of Korea. 

Email: mshan@mokpo.ac.kr 

 

 


