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1.Introduction 
In the recent decade, process mining [1−6] has 

evolved as a novel discipline in data science. The 

basis of process mining combines features from the 

domains of data mining and business process 

intelligence. A comprehensive set of tools is 

available in the domain of process mining which can 

be used for process analysis and enhancement of 

existing business processes. As a result, many 

researchers have shifted their focus to process mining 

and its related areas to get better insights into 

business processes. The primary step in process 

mining is to discover process models and represent 

them in graphical form which is purely based on the 

information extracted from the recorded event log 

[1]. The other key areas of process mining are 

processed conformance checking and improvement 

of existing processes [1]. Thus, considering process 

discovery as the preliminary step in process mining, 

event log play an important role as they capture 

execution histories (or traces) of business processes.  

 
*Author for correspondence 

The least three essential features that must be 

recorded in an event log on which process discovery 

techniques rely are: (i) name of the activity that has 

executed, (ii) a case identifier to which that particular 

activity belongs, and (iii) the completion timestamp 

of that activity [7]. Aggregating all the recorded 

events having the above three essential features 

constitute an event log. Table 1 displays a sample 

event log consisting of 15 events in 5 cases. Process 

discovery algorithms try to correlate different events 

based on their respective case identifiers to form 

individual clusters that can subsequently be used to 

build a process model. The example event log given 

in Table 1 contains three process instances from the 

case <A, B, C> and two process instances from the 

case <A, D, E>. The respective case identifiers for 

the recorded traces are 1, 2, 3, 4, and 5. The 

corresponding graphical representation of the 

discovered model is shown in Figure 1 and the 

mining for the same has been carried out by the 

Disco process mining tool [8]. 
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A process model is a graphical representation of the actual business process that is being executed. To build a process 

model from an event log, process discovery algorithms are used which are complex in nature and require prolonged 

execution as they involve extraction of the various ordering relations that exist between the events present in that event 

log. Given the exponential increase of data in event log, it is significant to have a robust and effective implementation of 
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framework to reduce the execution time by exploiting parallelism at the level of data, as well as task through a thorough 
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Table 1 An event log example 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Process model discovered from the events in Table 1 

 

Most of the business organizations nowadays use 

information technology (IT) as their backbones for 

execution of their day to day business processes. 

These IT-enabled organizations produce data in large 

volumes while executing their business processes. 

Subsequently, to get a better insight into their 

executed business processes, they also record the 

events that are a part of the business process in an 

event log.  Due to the exponential increase in 

producing data, the event log size for a particular 

business process also increases rapidly. To do a better 

analysis of the existing business processes the 

computationally exhaustive process mining 

algorithms need to be dealt with effectively. The task 

becomes challenging as it requires a thorough 

analysis of the voluminous amount of data available 

in an event log. Specifically, the process discovery 

algorithms which are computationally intensive in 

nature need to be recalibrated so that they can work 

effectively on ever-increasing event log. One of the 

effective ways of dealing with this type of situation is 

parallel processing. Thus, the algorithms available for 

process discovery at present need to be updated and 

equipped with the parallel processing features. 

 

1.1Literature review 

Process discovery inherits its basis from data mining 

and business process intelligence. The Alpha 

algorithm [1] is the oldest algorithm out of several 

algorithms available for process discovery. The 

Alpha algorithm considers an event log to be noise 

free and builds a process model from that event log. 

 

A graphical way to present process models is to 

display them in the form of block-structured Petri 

nets. An approach to generate a block-structured Petri 

nets from a log of recorded events has been proposed 

in [9]. The approach consisted of two steps. In the 

first step, an adjacency matrix is built between all the 

pairs of tasks. The next step involves a deep analysis 

Case ID Activity Timestamp 

1 A 10:02 AM 

1 B 10:04 AM 

1 C 10:06 AM 

2 A 10:09 AM 

2 D 10:13 AM 

2 E 10:17 AM 

3 A 10:23 AM 

3 B 10:28 AM 

3 C 12:32 PM 

4 A 12:38 PM 

4 D 12:45 PM 

4 E 12:50 PM 

5 A 13:10 PM 

5 B 13:26 PM 

5 C 13:35 PM 

D E 

B C 

A 
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of finding the basic structures like sequence, loop, 

choice, parallel and self-loop to extract the block 

structured models. 

 

One of the drawbacks of the Alpha algorithm [1] is 

that it cannot discover the invisible tasks associated 

with non-free-choice constructs. The authors of [10] 

developed α
$
 algorithm to eradicate this problem.  

 

To tackle the problem of process model discovery 

from very large event log, a divide-and-conquer 

technique was adopted in the work done in [11].  The 

approach begins with partitioning a large event log 

into several smaller event log and then, construct 

process models for each such small event log. In the 

next step, all those models are assembled to form the 

final process model. The objective of the work was to 

reduce the overall complexity while producing high 

quality models.  

 

In [12], the authors proposed an integer linear 

programming (ILP) based method for process 

discovery. But, the average computation time to solve 

the ILP problem was too high. Thus, an improvement 

of this ILP miner was proposed by Van Zelst et al. 

[13−15].  They emphasized on using regions based 

on variables. By varying the count of variables (and, 

hence the regions), the average computation time to 

solve the ILP problem would be low. 

 

With a limited amount of data available, it is very 

difficult to build a sound process model and analyze 

the process behavior. The methods described in [16] 

and [17] are based on the grammatical inference 

theory to construct predictive process models from 

event log. The graphical representations of these 

predictive models are done through Petri nets. The 

developed method was named as RegPFA and it was 

a standalone application.  

 

If the activities in an event log are independent of 

each other, then they can be executed in parallel. 

Based on this observation, the authors in [18] 

proposed an approach to discover process models 

with concurrency from event log which may not be 

complete. 

 

Petri nets can be discovered from large event logs by 

using numerical abstract domains. This concept was 

used in [19]. The method adopted for implementation 

of this concept ensures that the discovered models in 

the form of Petri nets can exactly regenerate all the 

traces of that log. It also ensures that the log behavior 

can be represented through these minimal traces. 

If an event log does not contain all the execution 

histories of a process, then the log is treated as an 

incomplete log. Hence, discovering a correct process 

model and representing that model with the help of a 

workflow net becomes challenging. In [20], the 

authors introduced the concept of invariant 

occurrence between activities to extract a workflow 

net from an incomplete log. The approach was based 

on identifying conjoint occurrence classes of 

activities. The non-exhibiting behaviors of an event 

log can be inferred through these conjoint occurrence 

classes of activities. 

 

Some business processes generate token logs. The 

data carried through these tokens during a business 

process execution can not only be helpful in tracking 

the change of states in such logs, but also, they can be 

used to enhance the performance of process 

discovery algorithms. The work done in [21] was 

based on this theme. 

 

Process model discovery through causal nets were 

proposed by Greco et al. [22]. The causal relations 

between activities in an event log is represented in a 

causal net. The method is based on collecting all the 

causal relations from an event log and the related 

knowledge to form the topology for a process model 

is derived from precedence constraints.  

 

In [23] and [24], Vazquez et al. proposed a genetic 

algorithm-based method for process model discovery 

from logs of events. The discovered models were 

represented through causal nets. The authors 

developed a standalone miner named as ProDiGen. 

Like any other genetic algorithm-based approach, this 

method was also based on the features like fitness, 

completeness and precision, and operators like 

crossover and mutation.  

 

The authors in [25] did an extension of the previously 

available process discovery methods based on causal 

nets. An optimization method was developed for the 

causal net output parameters like scalability and 

interpretability in this work. To analyze a process, 

first of all, the said process was split into a number of 

stages and care was taken so that each stage could be 

mined separately. The objective of the work was to 

maximize modularity while discovering stage 

decomposition. 

 

In [26] and [27], the authors proposed a method to 

discover process models in the form of state 

machines from event log. They named it CSM Miner. 

The method focused on different states of a process 
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and the relationships among those states rather than 

the events present in a process. Further, a composite 

state machine was formed using those relations. 

 

Another form of representing the discovered process 

models is business process model network (BPMN) 

which was proposed in [28]. In this work, the authors 

developed a tool named as a BPMN Miner for 

automated discovery of processes from event logs. 

The BPMN miner was able to generate BPMN 

models having loops, activity markers, and sub-

processes along with the capability to model 

exception handling. A subsequent improvement was 

made to this method in [29] which enables it to deal 

with the noise present in an event log more effective. 

 

The authors in their work in [30] and [31] proposed 

approaches to discover declare constraints through 

the SQLMiner. The standard structured query 

language (SQL) was used for querying over a 

relational event log data in [30]. The mining 

procedure was extremely fast as database 

performance tuning techniques was applied. 

Customization of queries and using them from 

visualizing process perspective beyond control flow 

was possible [31]. 

 

A discovered process model is treated as simple, if it 

has less branching. Also, the fitness, precision and 

generalization parameters need to be consistently 

high and balanced. To discover simple process 

models an approach had been proposed in [32]. The 

approach first identifies the splits correctly to record 

the concurrency, conflict and causal relations among 

different activities in an event log and then filter out 

the final directly-follows graph to represent a process 

model. 

 

Initially, the heuristic miner was proposed in [33] 

which was able to deal with noises unlike the Alpha 

algorithm [1]. An improvement to the heuristic miner 

[33] was proposed in the works [34] and [35].  The 

tool developed was named as Fodina. Fodina is 

different from the heuristic miner as the former is 

more robust in dealing with noises present in an event 

log. Fodina is also capable of discovering duplicate 

activities and has flexibility to configure the end user 

inputs for process discovery. 

 

During process discovery, if recorded infrequent 

behaviors are considered, then it may lead to the 

discovery of a complex process model. The method 

proposed in [36] and [37] is about filtering 

techniques that deals with removing infrequent 

behavior from event logs.  

 

Generalization is one of the several parameters 

available to evaluate the quality of a discovered 

model. A k-fold cross validation method was 

proposed in [38] to evaluate the modeled behavior 

against the observed behavior for an event log on the 

basis of the generalization parameter. 

 

The method described in [39] is an extension of the 

inductive miner [40]. Inductive miner extracts 

process trees from an event log. Discovering process 

models from event logs containing incomplete traces 

is a difficult task. The method proposed in [40] can 

deal with this particular problem. 

 

An enhancement to the heuristic miner [33] was 

presented in [41]. The method is a two-step approach. 

In the first step, an accurate but unstructured and 

unsound process model is discovered. In the 

following step, a sound structured model is filtered 

out from that unstructured model. 

 

Till very recent work proposed in [42], the existing 

literature describes the works relating to process 

discovery with noisy event log data, dealing with 

loops in the process model, cluster-based process 

discovery, decomposing event logs with divide and 

conquer strategies, enhancing quality of the 

discovered model, but not focusing on increasing the 

execution efficiency of the various process discovery 

algorithms by exploiting parallelism. In [42] the 

authors have tried to exploit parallelism by detecting 

independent tasks and running them in parallel in the 

Alpha algorithm. 

 

1.2Motivation and objective 
As efficiency and scalability are the two rudimentary 

factors to be considered for any type of recalibration 

of an existing serial algorithm. The motivation 

behind the proposed work is to investigate these two 

crucial parameters for the Alpha algorithm in a 

parallel computing structure that adopts the features 

available in Open Multi-Processing (OpenMP) API 

[43]. Specifically, the objective of the current work is 

to exploit different types of parallelism present in the 

Alpha algorithm and try to enhance the execution 

efficiency of the Alpha algorithm by utilizing the 

features available for parallel computation in the 

OpenMP library. The present paper proposes to 

exploit both task-level as well as data-level 

parallelism to enhance the run-time efficiency of the 

Alpha algorithm. Hence, a suitable framework has 
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been developed using the OpenMP API for parallel 

mode execution of the said algorithm. 

 

Organization of the remaining sections is as follows: 

section 2 presents the materials and methods like an 

introduction to various ordering relations available in 

an event log, a brief introduction on OpenMP and the 

parallel computing constructs available in OpenMP 

library, and a meticulous depiction of our proposed 

framework to utilize the OpenMP library for the 

parallel execution of the Alpha algorithm. In section 

3 the experimental set up, the results and analysis of 

the results are presented. Section 4 contains the 

discussion on comparing our results with previously 

published results in the context of parallelization of 

the Alpha algorithm. Finally, we present the 

conclusion and future scope for the improvement in 

section 5. 

 

2.Materials and methods 
2.1Ordering relations in event logs 

A run time execution instance of a process essentially 

contains the following three parameters: the process 

instance number (i.e. case id), the event name (or the 

activity that is being performed), and the completion 

time (or timestamp) of that particular activity. An 

event log is an enumeration of several such process 

instances or cases [44]. In a typical business process 

management system completion of each event, type 

is synonymous an activity execution. An event log 

having 5 cases with 15 events is given in Table 1. A 

finite number of events (or activities) within a case 

collectively constitute a trace. 

 

Definition 1. (Trace): A temporally ordered 

sequence of events or activities present in a process 

instance, or case can be termed as a trace and let that 

can be denoted by σ. Hence, σ = t1…tn.       

The traces that constitute the event log given in Table 

1 are: 

σ1 = σ3 = σ5 = <A, B, C>, and σ2 = σ4 = <A, D, E>. 

 

Noise filtering is a critical issue in process mining. 

Remarkably uncommon traces of process instances in 

an event log are treated as “outliers” (not “error”) 

which is further termed as noise [44]. Specifically, in 

process discovery methods like the Alpha algorithm, 

non-removal of noise leads to a massively complex 

process model as the algorithm tries to measure every 

possible ordering relation. Thus, the Alpha algorithm 

does not consider noise to build a process model from 

an event log [1].  

Although other algorithms like the flexible heuristic 

miner algorithm [33, 45, 46] is available to deal with 

the problem of noise present in an event log and build 

a process model by considering the same noisy event 

log, the present work purely focuses on improving 

the execution efficiency of the Alpha algorithm. The 

problem of dealing with noise is beyond the scope of 

this work. 

 

Most of the process discovery algorithms are based 

on the different categories of ordering or follow 

relations that exist between the pairs of activities 

present in an event log. The approach adopted to 

determine the ordering relations varies from one 

algorithm to another algorithm. However, before 

building a process model, all the ordering relations 

that exist in an event log must be traced out and 

accumulated. Thus, it is important to record how pair 

of activities is related to each other and the frequency 

count of that particular relation of that particular pair 

of activities rather than count the process instances. A 

relatively small data set is required to be processed 

for building a process model once all the ordering 

relations are computed. 

 

2.2The OpenMP model 

The OpenMP application programming interface 

(API) was developed to facilitate movable shared 

memory parallel programming [43] in multiprocessor 

environments. The OpenMP API is well supported 

with features like appropriate compiler commands, 

compilation guidance statements and necessary 

library functions for parallel programming. Even 

distribution of load and inter-process communication 

through shared variables are also available to the 

standard FORTRAN, C, and C++ programming 

languages through OpenMP API. OpenMP is not 

only simple, but also fast [47] and is a widely 

accepted industry standard that exploits data-

parallelism as well as task-parallelism [48] through 

portable multiple-thread shared memory 

programming.  

 

The shared memory model is a general centralized 

multi-processing abstract [49] and [47]. It is based on 

the concept that a number of processors can access 

and share the common address in memory. OpenMP 

supports the fork-join multithreading model as shown 

in Figure 2 for parallel programming.  
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Figure 2 The OpenMP execution model 

 

The program execution begins with a master thread. 

While the execution of the serial portion is managed 

by the main thread, the parallel execution is 

performed by other derived threads. The derived 

threads are terminated upon the re-execution of the 

serial part of the program. 

 

2.3The alpha algorithm with the OpenMP 

framework 

The steps of the Alpha algorithm need to be analysed 

thoroughly before doing any kind of parallel 

implementation of the Alpha algorithm using the 

OpenMP API as that would give us a clear view 

towards parallelizing that algorithm. Thus, in section 

2.3.1, first, the Alpha algorithm has been described. 

As the log-based ordering relationship that exits 

between a pair activity in an event log is the basis of 

forming the footprint matrix, special attention was 

given to it while designing the framework for parallel 

mode execution of the Alpha algorithm by using the 

syntaxes available in the OpenMP API in the 

following section 2.3.2. 
2.3.1The alpha algorithm 

The Alpha algorithm does not consider noise to be a 

part of an event log while it tries to generate a 

process model and subsequently graphically 

represents that model through a work flow net [1]. 

All the unique activities present in an event log are 

found out and grouped into a set in the very first step 

of the Alpha algorithm [1]. In the subsequent phases, 

the Alpha algorithm finds out the causal relationship 

[1] derived from different ordering relations existing 

between various pairs of activities in an event log. 

Assuming that X and Y are two unique activities from 

the set of unique activities and it is found that X 

always precedes Y but not the vice versa. Thus, it can 

be concluded that there exists a causal relation 

between X and Y. Depending on the ordering 

relations there can be four categories of causal 

relations that might be existing between a pair of 

activities in an event log. Definition given in 2 

describes these ordering relations. 

 

Definition 2. (Ordering relations between a pair of 

activities): Let P is the event log over a set of unique 

activities denoted by A. Let the activities α, β ϵ A.  

 α >P β iff there is a trace σ = t1t2t3...tn and i ϵ 

{1,...,n-2} such that σ ϵ P, ti= α and ti+1= β  

 α →P β iff α >P β and β ≯P  α 

 α ║P β iff α >P β and β >P α 

 α #P β iff α ≯P β and β ≯P α   

  

The basic temporal ordering relation between a pair 

of activities is represented by >P. Other ordering 

relations such as causal, parallel and unrelated are 

derived from the basic temporal ordering relation. 

The causal ordering relation between a pair of 

activities is denoted by →P. If two activities are 

parallel to each other, then the parallel relation can be 

shown by ║P. Two activities are unrelated to each 

other if neither of them directly follow each other. 

These unrelated activities are shown through #P. 

 

The Alpha algorithm generates a footprint matrix 

using these temporal ordering relationships. Once the 

footprint matrix has been generated, a process model 

can be constructed and represented through a work 

flow net diagram. To have better insights about 

construction of the footprint matrix, [1] can be 

referred. 
2.3.2The OpenMP implementation of the alpha 

algorithm 

The key to have an effective parallelization of any 

serial algorithm is to trace out the discrete and 

independent steps involved in that serial algorithm 

and execute those steps in parallel. A thorough 

review of the Alpha algorithm reveals that several 

steps involved in this algorithm can be run in parallel 

by adopting either data parallelism or task parallelism 

[39]. Moreover, the following observations are made 
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while doing a detailed analysis of the Alpha 

algorithm:  

(i) Step 1 of the Alpha algorithm is to find all the 

unique or distinct activities available in an event 

log and group them into a set denoted by AP.  

This step can be solved in data parallel approach. 

The parallel for directive available in the 

OpenMP API can be used to achieve loop-level 

parallelism to exploit data-parallelism available 

in the first step of the Alpha algorithm. 

(ii) Step 2 and Step 3 of the Alpha algorithm are 

associated with finding out the set of all start 

activities and end activities denoted by AS and AE 

respectively from the event log. The same 

divide-and-conquer approach considered in step 

1 can be adopted for the calculation of these two 

steps too. For these two steps, again we can take 

help of the parallel for directive available in the 

OpenMP API to exploit data parallelism.     

(iii) As computation of AP, AS and AE are independent 

of each other, these steps can be run in parallel 

by exploiting task parallelism. To achieve this, 

we can take help of the section directive 

available in the OpenMP API. 

(iv) To generate the footprint matrix, we need to 

check for the four types of ordering relations 

defined in section 2.3.1 for every pair of 

activities. Thus, each activity needs to be 

compared with every other activity to deduce a 

specific relation between them. The upper bound 

for these comparisons is limited by the count of 

unique or distinct activities discovered from the 

event log. We can consider setting the number of 

threads equals to the number of unique activities 

and using the parallel for directive available in 

the OpenMP API to generate the footprint 

matrix. 

(v) Step 5 and Step 6 of the Alpha algorithm deals 

with computing the set pairs and maximal set 

pairs denoted by RP and QP respectively. Once 

the footprint matrix is generated, a task-parallel 

approach can be considered for executing Step 5 

and Step 6 with the help of sections directive 

available in the OpenMP API. 

 

It is significant to note that the count of distinct 

activities fetched from an event log derives the rest of 

the steps of the Alpha algorithm rather than the 

number of event entries made into the event log. 

Hence, employing a parallel execution framework 

using the OpenMP API to execute the preliminary 

steps of the Alpha algorithm which involves finding 

out the unique or distinct activities and tracing out the 

different categories of ordering relations that exist 

among those activities, becomes important to get 

benefited from the parallel computation. 

 

Considering the above observations, a framework for 

parallel execution of the Alpha algorithm can be 

developed as the schematic representation given in 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 A framework for parallel execution of the Alpha algorithm 
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Pertaining to the parallel execution framework given 

in Figure 3, the pseudocode to implement the 

framework using the OpenMP API can be given as: 

 

int main() 

 {//preprocessing steps 

 # pragma omp parallel{ 

 #pragma omp sections{ 

 #pragma omp section{ 

 #pragma omp parallel for 

 Compute A_P;} 

 #pragma omp section{ 

 #pragma omp parallel for 

 Compute A_S;} 

 #pragma omp section{ 

 #pragma omp parallel for 

 Compute A_E;}} } 

 //intermediate steps 

 #pragma omp parallel for 

 Generate footprint matrix; 

 //intermediate steps 

 #pragma omp parallel{ 

 #pragma omp sections{ 

 #pragma omp section{ 

 Compute R_P;} 

 #pragma omp section{ 

 Compute Q_P;} } } 

/* Execute rest of the steps and draw the 

workflow net */ 

 return 0; } 

 

3.Results 
For the purpose of experiments, we implemented the 

Alpha algorithm in the serial form using the C++ 

language. The parallel version was also implemented 

using the C++ language with the help of OpenMP 3.0 

API. The GCC 4.4.6. was used to develop both the 

versions. All the program executions related to the 

experiments were carried out in one of the computing 

nodes available in a high-performance computing 

cluster (HPCC). The HPCC contains 13 nodes in 

total. Each node in that HPCC is an Intel Xeon E5-

2650 machine having dual CPU’s and 64 GB of 

RAM. Within a node, each CPU was having 8 

computing cores working at a base frequency of 2.0 

GHz. Thus, physically 16 computing cores were 

available for carrying out the program executions. 

The HPCC is equipped with Red Hat Linux 6.3 64-

bit operating system. During the program execution, 

the hyper threading was set on.  

 

The runtime impact of the parallel mode execution of 

the Alpha algorithm was measured through several 

experiments. To visualize the real impact of a parallel 

computing framework: either the computation need 

to be massively complex in nature or the computation 

is based on large volume of data. Thus, our initial 

objective was to find out the real-world event logs of 

very large size. But these were not available. Hence, 

we generated synthetic event logs of large size 

through a home-grown small tool developed using C 

programming language. Specifically, we created 

comma-separated-values (CSV) files to represent 

event log files. Each entry in those synthetic event 

logs was having the following three fields: a process 

instance number (or case id), a reference to the 

activity that has been performed (or the activity 

name), and the completion time of that activity (or 

the time stamp of each activity).  

 

The activity names were strings of variable lengths 

rather than characters. Parameters that would have 

affected the execution of the Alpha algorithm such as 

the number of unique activities and the number of 

different types of splits were considered while 

generating the synthetic event logs using our home-

grown tool. We created five process models by 

setting the number unique activities equal to 5, 10, 

15, 20 and 25 respectively. Each process model 

contained at least one AND split and one XOR split. 

Similarly, we considered the number of unique cases 

as 3, 8, 13, 18 and 23 respectively, for the process 

models having number of unique activities 5, 10, 15, 

20, and 25 respectively and care was taken to 

consider all the variants of cases possible for a 

particular process model. We made near about 4×10
7
 

event entries for each individual event log. Thus, the 

generated event log files were approximately 2 GB 

large to have an effective parallel computation. For 

all the programs, the execution times were recorded 

by considering average of 100 runs. Readings in 

Table 2 shows the average execution time of the 

Alpha algorithm when run in serial mode.  

 

To have a near-to-equal allocation of threads for 

independent execution of tasks, we manually set 12, 

10, 10 threads to compute AP, AS, and AE respectively 

in the parallel mode execution of the Alpha 

algorithm. The readings in Table 2 indicate that the 

task of finding out AP from an event log takes more 

time when compared to the tasks of finding out AS 

and AE. Thus, we decided to allocate a slightly higher 

count of threads for the execution of the step AP than 

the steps AS and AE. The tasks like computing the four 

temporal ordering relations defined in section 2.3.1 

deals with comparing each activity with every other 

activity available in the event log and the upper 

bound of these comparisons were limited by the 
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number of unique activities available in the event log. 

Thus, we manually set the number of threads equal to 

the number of unique activities for computation of 

different temporal ordering relations which 

subsequently generates the footprint matrix. 

Similarly, for the computation of RP and QP, parallel 

sections with the number of threads set to two were 

considered. With this thread set-up, on applying the 

parallel for loop as well as the parallel sections 

syntax available in the OpenMP API, we achieved a 

noticeable reduction in execution time of the Alpha 

algorithm. Here also, we recorded an average of 100 

runs for each case of parallel execution. The readings 

related to the average execution time in parallel mode 

of the Alpha algorithm are presented in Table 3. 

 

 

 

Table 2 Serial mode execution time of the Alpha algorithm 

 

Table 3 Parallel mode execution time of the Alpha algorithm 

 

The speedup [50] parameter plays an important role 

in determining the performance improvement due to 

any kind of enhancement incorporated into an 

existing computational method. Thus, in our case 

also, we considered speedup factor to show the extent 

of performance improvement we achieved through 

the parallel execution of the Alpha algorithm. The 

speedup Equation can be given as follows: 

       ( )  (
    

    
)       (1) 

 

where Told represents the recorded execution time 

without any improvement or serial mode execution 

time and Tnew is the recorded new execution time with 

improvement or parallel mode execution time [42].  

 

For this experimental set up:  

Told = Average Execution Time in Serial mode = Ts 

and Tnew = Average Execution Time in Parallel mode 

= Tp.  

Hence, 

       ( )  (
                      

                        
)  (

  

  
)  (2) 

The base speedup was set to 1x by considering the 

serial mode execution time of the Alpha algorithm. 

Table 4 shows the speedup values that we were able 

to get with different number of distinct activities. 

 

Table 4 Speedup achieved 

No. of 

unique 

activities 

Ts in 

seconds 

Tp in 

seconds 

Speedup 

5 174.8703 37.082 4.71 

10 488.1704 54.867 8.89 

15 976.0405 75.808 12.87 

20 1634.231 123.396 13.24 

25 2447.011 186.971 13.08 

 

4.Discussion 
It can be observed from Table 4 that the speedup is 

increasing as we kept on increasing the number of 

threads. This is obvious as the generation of footprint 

matrix, which is the most time-consuming step in the 

entire Alpha algorithm, relies on the number of 

unique activities and the temporal ordering relations 

existing among those unique activities.  A significant 

reduction in execution time of the Alpha algorithm 

was recorded as the computation of the footprint 

No. of unique 

activities 

Individual module execution time in seconds 
Total execution 

time in seconds AP AS AE 
Footprint 

matrix 
RP QP 

5 15.94 0.00014 0.00015 148.96 4.32 5.65 174.8703 

10 25.89 0.00018 0.00018 448.87 6.18 7.23 488.1704 

15 35.16 0.00023 0.00022 920.98 9.12 10.78 976.0405 

20 42.91 0.00029 0.00028 1562.95 23.26 15.11 1634.231 

25 50.72 0.00035 0.00034 2352.92 20.54 22.83 2447.011 

No. of unique 

activities 

Individual module execution time in seconds Total execution time in 

seconds AP,  AS,  AE Footprint matrix RP,  QP 

5 1.58 29.792 5.71 37.082 

10 2.62 44.887 7.36 54.867 

15 3.49 61.398 10.92 75.808 

20 4.01 104.196 15.19 123.396 

25 4.88 158.981 23.11 186.971 
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matrix was done in parallel mode by launching 

multiple threads equal to the number of unique 

activities extracted from an event log. 

 

The theoretical upper limit of the speedup factor in 

the work done in [42] is 4x as only independent and 

discrete tasks have been identified and run on 

different computing nodes. Given the program 

structure in [42], maximum four independent tasks 

can run in parallel which leads to a maximum 

theoretical speedup of 4x. But the present work 

successfully exploits data as well as task parallelism 

in the Alpha algorithm. Most importantly, the 

performance indicator in terms of the speedup is not 

limited by the number of independent tasks for the 

present work. Rather, the speedup is limited by the 

number of unique activities. Hence, a maximum 

theoretical speedup of 25x could be possible subject 

to availability of such number of physical threads. 

However, with the present set up we were able to get 

a maximum speedup of 13.24x, which outperforms 

the speedup achieved in [42]. Another noticeable 

thing is that the task-level parallelism approach taken 

in [42] was implemented through a message passing 

interface (MPI) programming concept which suffers 

from overheads generated due to communication 

latency. But the present approach has zero or 

negligible communication latency as it is based on 

shared memory multiprocessing model. 

 

The proposed parallel framework based on the 

OpenMP library can now be adopted for computation 

of the different modules available in the Alpha 

algorithm. Tracing out the number of unique 

activities and building a footprint matrix by 

computing different types of ordering relations 

observed in an event log can further be applied 

effectively for large event logs and higher count of 

unique activities. 

 

5.Conclusion 
The performances of the Alpha algorithm in parallel 

mode of execution were observed through a series of 

experiments. The construct and syntaxes available in 

the OpenMP library for parallel computing were used 

for execution of different modules of the Alpha 

algorithm. It can be observed that the highest speedup 

achieved is 13.24x. The noticeable thing is that the 

speedup factor relies on the number of threads. The 

overall execution time of the Alpha algorithm in 

parallel mode was significantly less in comparison to 

the serial mode as the number threads launched 

varied according to the number of unique activities. 

Observations from the readings taken during the 

experiments also indicate that the parallel mode of 

execution outruns the serial mode of execution of a 

larger log data. Thus, an accelerated computation of 

the Alpha algorithm was possible by using the 

proposed parallel framework based on centralized 

shared memory computing available in the OpenMP 

API. 

 

The significant advantages of using the OpenMP API 

are: (i) the memory access time remains uniform as a 

centralized memory is shared among multiple 

processors or cores, (ii) portable multithreading code, 

and (iii) a relatively high-level abstraction is 

available to write parallel programs. The present 

work is limited to a computing environment 

characterized by multi-core processors and shared 

memory architecture. The biggest problem with this 

type of architecture is that the memory system may 

not be able to support the bandwidth demand beyond 

a certain number of processors or cores. We propose 

to extend our work to a computing environment 

characterized by multi-node-multi-core architecture 

with hybrid OpenMP-MPI programming framework 

in a high-performance computing cluster. 
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