
International Journal of Advanced Computer Research, Vol 9(41)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/2015.16.17.7435

112

An efficient parallel framework for process discovery using OpenMP

Muktikanta Sahu
1*

 and Gopal Krishna Nayak
2

Assistant Professor, Department of Computer Science & Engineering, International Institute of Information

Technology, Bhubaneswar, Odisha, India
1

Professor, Department of Computer Science & Engineering, International Institute of Information Technology,

Bhubaneswar, Odisha, India
2

Received: 07-December-2018; Revised: 28-January-2019; Accepted: 31-January-2019

©2019 Muktikanta Sahu and Gopal Krishna Nayak. This is an open access article distributed under the Creative Commons

Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

1.Introduction
In the recent decade, process mining [1−6] has

evolved as a novel discipline in data science. The

basis of process mining combines features from the

domains of data mining and business process

intelligence. A comprehensive set of tools is

available in the domain of process mining which can

be used for process analysis and enhancement of

existing business processes. As a result, many

researchers have shifted their focus to process mining

and its related areas to get better insights into

business processes. The primary step in process

mining is to discover process models and represent

them in graphical form which is purely based on the

information extracted from the recorded event log

[1]. The other key areas of process mining are

processed conformance checking and improvement

of existing processes [1]. Thus, considering process

discovery as the preliminary step in process mining,

event log play an important role as they capture

execution histories (or traces) of business processes.

*Author for correspondence

The least three essential features that must be

recorded in an event log on which process discovery

techniques rely are: (i) name of the activity that has

executed, (ii) a case identifier to which that particular

activity belongs, and (iii) the completion timestamp

of that activity [7]. Aggregating all the recorded

events having the above three essential features

constitute an event log. Table 1 displays a sample

event log consisting of 15 events in 5 cases. Process

discovery algorithms try to correlate different events

based on their respective case identifiers to form

individual clusters that can subsequently be used to

build a process model. The example event log given

in Table 1 contains three process instances from the

case <A, B, C> and two process instances from the

case <A, D, E>. The respective case identifiers for

the recorded traces are 1, 2, 3, 4, and 5. The

corresponding graphical representation of the

discovered model is shown in Figure 1 and the

mining for the same has been carried out by the

Disco process mining tool [8].

Research Article

Abstract
A process model is a graphical representation of the actual business process that is being executed. To build a process

model from an event log, process discovery algorithms are used which are complex in nature and require prolonged

execution as they involve extraction of the various ordering relations that exist between the events present in that event

log. Given the exponential increase of data in event log, it is significant to have a robust and effective implementation of

the computation intensive process discovery algorithms through parallel computing to generate a process model.

Motivated by this theme the present work proposes a parallel computing approach to implement the Alpha algorithm for

process discovery using the OpenMP application programming interface (API). An appropriate parallel programming

framework to reduce the execution time by exploiting parallelism at the level of data, as well as task through a thorough

analysis of the steps involved in the Alpha algorithm, has been developed. The effectiveness of the developed approach is

presented on the basis of speedup factor through several experiments. The highest and the lowest speedups achieved were

13.24x and 4.71x respectively.

Keywords
Process model discovery, Alpha algorithm, OpenMP, Speedup.

International Journal of Advanced Computer Research, Vol 9(41)

113

Table 1 An event log example

Figure 1 Process model discovered from the events in Table 1

Most of the business organizations nowadays use

information technology (IT) as their backbones for

execution of their day to day business processes.

These IT-enabled organizations produce data in large

volumes while executing their business processes.

Subsequently, to get a better insight into their

executed business processes, they also record the

events that are a part of the business process in an

event log. Due to the exponential increase in

producing data, the event log size for a particular

business process also increases rapidly. To do a better

analysis of the existing business processes the

computationally exhaustive process mining

algorithms need to be dealt with effectively. The task

becomes challenging as it requires a thorough

analysis of the voluminous amount of data available

in an event log. Specifically, the process discovery

algorithms which are computationally intensive in

nature need to be recalibrated so that they can work

effectively on ever-increasing event log. One of the

effective ways of dealing with this type of situation is

parallel processing. Thus, the algorithms available for

process discovery at present need to be updated and

equipped with the parallel processing features.

1.1Literature review

Process discovery inherits its basis from data mining

and business process intelligence. The Alpha

algorithm [1] is the oldest algorithm out of several

algorithms available for process discovery. The

Alpha algorithm considers an event log to be noise

free and builds a process model from that event log.

A graphical way to present process models is to

display them in the form of block-structured Petri

nets. An approach to generate a block-structured Petri

nets from a log of recorded events has been proposed

in [9]. The approach consisted of two steps. In the

first step, an adjacency matrix is built between all the

pairs of tasks. The next step involves a deep analysis

Case ID Activity Timestamp

1 A 10:02 AM

1 B 10:04 AM

1 C 10:06 AM

2 A 10:09 AM

2 D 10:13 AM

2 E 10:17 AM

3 A 10:23 AM

3 B 10:28 AM

3 C 12:32 PM

4 A 12:38 PM

4 D 12:45 PM

4 E 12:50 PM

5 A 13:10 PM

5 B 13:26 PM

5 C 13:35 PM

D E

B C

A

Muktikanta Sahu and Gopal Krishna Nayak

114

of finding the basic structures like sequence, loop,

choice, parallel and self-loop to extract the block

structured models.

One of the drawbacks of the Alpha algorithm [1] is

that it cannot discover the invisible tasks associated

with non-free-choice constructs. The authors of [10]

developed α
$
 algorithm to eradicate this problem.

To tackle the problem of process model discovery

from very large event log, a divide-and-conquer

technique was adopted in the work done in [11]. The

approach begins with partitioning a large event log

into several smaller event log and then, construct

process models for each such small event log. In the

next step, all those models are assembled to form the

final process model. The objective of the work was to

reduce the overall complexity while producing high

quality models.

In [12], the authors proposed an integer linear

programming (ILP) based method for process

discovery. But, the average computation time to solve

the ILP problem was too high. Thus, an improvement

of this ILP miner was proposed by Van Zelst et al.

[13−15]. They emphasized on using regions based

on variables. By varying the count of variables (and,

hence the regions), the average computation time to

solve the ILP problem would be low.

With a limited amount of data available, it is very

difficult to build a sound process model and analyze

the process behavior. The methods described in [16]

and [17] are based on the grammatical inference

theory to construct predictive process models from

event log. The graphical representations of these

predictive models are done through Petri nets. The

developed method was named as RegPFA and it was

a standalone application.

If the activities in an event log are independent of

each other, then they can be executed in parallel.

Based on this observation, the authors in [18]

proposed an approach to discover process models

with concurrency from event log which may not be

complete.

Petri nets can be discovered from large event logs by

using numerical abstract domains. This concept was

used in [19]. The method adopted for implementation

of this concept ensures that the discovered models in

the form of Petri nets can exactly regenerate all the

traces of that log. It also ensures that the log behavior

can be represented through these minimal traces.

If an event log does not contain all the execution

histories of a process, then the log is treated as an

incomplete log. Hence, discovering a correct process

model and representing that model with the help of a

workflow net becomes challenging. In [20], the

authors introduced the concept of invariant

occurrence between activities to extract a workflow

net from an incomplete log. The approach was based

on identifying conjoint occurrence classes of

activities. The non-exhibiting behaviors of an event

log can be inferred through these conjoint occurrence

classes of activities.

Some business processes generate token logs. The

data carried through these tokens during a business

process execution can not only be helpful in tracking

the change of states in such logs, but also, they can be

used to enhance the performance of process

discovery algorithms. The work done in [21] was

based on this theme.

Process model discovery through causal nets were

proposed by Greco et al. [22]. The causal relations

between activities in an event log is represented in a

causal net. The method is based on collecting all the

causal relations from an event log and the related

knowledge to form the topology for a process model

is derived from precedence constraints.

In [23] and [24], Vazquez et al. proposed a genetic

algorithm-based method for process model discovery

from logs of events. The discovered models were

represented through causal nets. The authors

developed a standalone miner named as ProDiGen.

Like any other genetic algorithm-based approach, this

method was also based on the features like fitness,

completeness and precision, and operators like

crossover and mutation.

The authors in [25] did an extension of the previously

available process discovery methods based on causal

nets. An optimization method was developed for the

causal net output parameters like scalability and

interpretability in this work. To analyze a process,

first of all, the said process was split into a number of

stages and care was taken so that each stage could be

mined separately. The objective of the work was to

maximize modularity while discovering stage

decomposition.

In [26] and [27], the authors proposed a method to

discover process models in the form of state

machines from event log. They named it CSM Miner.

The method focused on different states of a process

International Journal of Advanced Computer Research, Vol 9(41)

115

and the relationships among those states rather than

the events present in a process. Further, a composite

state machine was formed using those relations.

Another form of representing the discovered process

models is business process model network (BPMN)

which was proposed in [28]. In this work, the authors

developed a tool named as a BPMN Miner for

automated discovery of processes from event logs.

The BPMN miner was able to generate BPMN

models having loops, activity markers, and sub-

processes along with the capability to model

exception handling. A subsequent improvement was

made to this method in [29] which enables it to deal

with the noise present in an event log more effective.

The authors in their work in [30] and [31] proposed

approaches to discover declare constraints through

the SQLMiner. The standard structured query

language (SQL) was used for querying over a

relational event log data in [30]. The mining

procedure was extremely fast as database

performance tuning techniques was applied.

Customization of queries and using them from

visualizing process perspective beyond control flow

was possible [31].

A discovered process model is treated as simple, if it

has less branching. Also, the fitness, precision and

generalization parameters need to be consistently

high and balanced. To discover simple process

models an approach had been proposed in [32]. The

approach first identifies the splits correctly to record

the concurrency, conflict and causal relations among

different activities in an event log and then filter out

the final directly-follows graph to represent a process

model.

Initially, the heuristic miner was proposed in [33]

which was able to deal with noises unlike the Alpha

algorithm [1]. An improvement to the heuristic miner

[33] was proposed in the works [34] and [35]. The

tool developed was named as Fodina. Fodina is

different from the heuristic miner as the former is

more robust in dealing with noises present in an event

log. Fodina is also capable of discovering duplicate

activities and has flexibility to configure the end user

inputs for process discovery.

During process discovery, if recorded infrequent

behaviors are considered, then it may lead to the

discovery of a complex process model. The method

proposed in [36] and [37] is about filtering

techniques that deals with removing infrequent

behavior from event logs.

Generalization is one of the several parameters

available to evaluate the quality of a discovered

model. A k-fold cross validation method was

proposed in [38] to evaluate the modeled behavior

against the observed behavior for an event log on the

basis of the generalization parameter.

The method described in [39] is an extension of the

inductive miner [40]. Inductive miner extracts

process trees from an event log. Discovering process

models from event logs containing incomplete traces

is a difficult task. The method proposed in [40] can

deal with this particular problem.

An enhancement to the heuristic miner [33] was

presented in [41]. The method is a two-step approach.

In the first step, an accurate but unstructured and

unsound process model is discovered. In the

following step, a sound structured model is filtered

out from that unstructured model.

Till very recent work proposed in [42], the existing

literature describes the works relating to process

discovery with noisy event log data, dealing with

loops in the process model, cluster-based process

discovery, decomposing event logs with divide and

conquer strategies, enhancing quality of the

discovered model, but not focusing on increasing the

execution efficiency of the various process discovery

algorithms by exploiting parallelism. In [42] the

authors have tried to exploit parallelism by detecting

independent tasks and running them in parallel in the

Alpha algorithm.

1.2Motivation and objective
As efficiency and scalability are the two rudimentary

factors to be considered for any type of recalibration

of an existing serial algorithm. The motivation

behind the proposed work is to investigate these two

crucial parameters for the Alpha algorithm in a

parallel computing structure that adopts the features

available in Open Multi-Processing (OpenMP) API

[43]. Specifically, the objective of the current work is

to exploit different types of parallelism present in the

Alpha algorithm and try to enhance the execution

efficiency of the Alpha algorithm by utilizing the

features available for parallel computation in the

OpenMP library. The present paper proposes to

exploit both task-level as well as data-level

parallelism to enhance the run-time efficiency of the

Alpha algorithm. Hence, a suitable framework has

Muktikanta Sahu and Gopal Krishna Nayak

116

been developed using the OpenMP API for parallel

mode execution of the said algorithm.

Organization of the remaining sections is as follows:

section 2 presents the materials and methods like an

introduction to various ordering relations available in

an event log, a brief introduction on OpenMP and the

parallel computing constructs available in OpenMP

library, and a meticulous depiction of our proposed

framework to utilize the OpenMP library for the

parallel execution of the Alpha algorithm. In section

3 the experimental set up, the results and analysis of

the results are presented. Section 4 contains the

discussion on comparing our results with previously

published results in the context of parallelization of

the Alpha algorithm. Finally, we present the

conclusion and future scope for the improvement in

section 5.

2.Materials and methods
2.1Ordering relations in event logs

A run time execution instance of a process essentially

contains the following three parameters: the process

instance number (i.e. case id), the event name (or the

activity that is being performed), and the completion

time (or timestamp) of that particular activity. An

event log is an enumeration of several such process

instances or cases [44]. In a typical business process

management system completion of each event, type

is synonymous an activity execution. An event log

having 5 cases with 15 events is given in Table 1. A

finite number of events (or activities) within a case

collectively constitute a trace.

Definition 1. (Trace): A temporally ordered

sequence of events or activities present in a process

instance, or case can be termed as a trace and let that

can be denoted by σ. Hence, σ = t1…tn.

The traces that constitute the event log given in Table

1 are:

σ1 = σ3 = σ5 = <A, B, C>, and σ2 = σ4 = <A, D, E>.

Noise filtering is a critical issue in process mining.

Remarkably uncommon traces of process instances in

an event log are treated as “outliers” (not “error”)

which is further termed as noise [44]. Specifically, in

process discovery methods like the Alpha algorithm,

non-removal of noise leads to a massively complex

process model as the algorithm tries to measure every

possible ordering relation. Thus, the Alpha algorithm

does not consider noise to build a process model from

an event log [1].

Although other algorithms like the flexible heuristic

miner algorithm [33, 45, 46] is available to deal with

the problem of noise present in an event log and build

a process model by considering the same noisy event

log, the present work purely focuses on improving

the execution efficiency of the Alpha algorithm. The

problem of dealing with noise is beyond the scope of

this work.

Most of the process discovery algorithms are based

on the different categories of ordering or follow

relations that exist between the pairs of activities

present in an event log. The approach adopted to

determine the ordering relations varies from one

algorithm to another algorithm. However, before

building a process model, all the ordering relations

that exist in an event log must be traced out and

accumulated. Thus, it is important to record how pair

of activities is related to each other and the frequency

count of that particular relation of that particular pair

of activities rather than count the process instances. A

relatively small data set is required to be processed

for building a process model once all the ordering

relations are computed.

2.2The OpenMP model

The OpenMP application programming interface

(API) was developed to facilitate movable shared

memory parallel programming [43] in multiprocessor

environments. The OpenMP API is well supported

with features like appropriate compiler commands,

compilation guidance statements and necessary

library functions for parallel programming. Even

distribution of load and inter-process communication

through shared variables are also available to the

standard FORTRAN, C, and C++ programming

languages through OpenMP API. OpenMP is not

only simple, but also fast [47] and is a widely

accepted industry standard that exploits data-

parallelism as well as task-parallelism [48] through

portable multiple-thread shared memory

programming.

The shared memory model is a general centralized

multi-processing abstract [49] and [47]. It is based on

the concept that a number of processors can access

and share the common address in memory. OpenMP

supports the fork-join multithreading model as shown

in Figure 2 for parallel programming.

International Journal of Advanced Computer Research, Vol 9(41)

117

Figure 2 The OpenMP execution model

The program execution begins with a master thread.

While the execution of the serial portion is managed

by the main thread, the parallel execution is

performed by other derived threads. The derived

threads are terminated upon the re-execution of the

serial part of the program.

2.3The alpha algorithm with the OpenMP

framework

The steps of the Alpha algorithm need to be analysed

thoroughly before doing any kind of parallel

implementation of the Alpha algorithm using the

OpenMP API as that would give us a clear view

towards parallelizing that algorithm. Thus, in section

2.3.1, first, the Alpha algorithm has been described.

As the log-based ordering relationship that exits

between a pair activity in an event log is the basis of

forming the footprint matrix, special attention was

given to it while designing the framework for parallel

mode execution of the Alpha algorithm by using the

syntaxes available in the OpenMP API in the

following section 2.3.2.
2.3.1The alpha algorithm

The Alpha algorithm does not consider noise to be a

part of an event log while it tries to generate a

process model and subsequently graphically

represents that model through a work flow net [1].

All the unique activities present in an event log are

found out and grouped into a set in the very first step

of the Alpha algorithm [1]. In the subsequent phases,

the Alpha algorithm finds out the causal relationship

[1] derived from different ordering relations existing

between various pairs of activities in an event log.

Assuming that X and Y are two unique activities from

the set of unique activities and it is found that X

always precedes Y but not the vice versa. Thus, it can

be concluded that there exists a causal relation

between X and Y. Depending on the ordering

relations there can be four categories of causal

relations that might be existing between a pair of

activities in an event log. Definition given in 2

describes these ordering relations.

Definition 2. (Ordering relations between a pair of

activities): Let P is the event log over a set of unique

activities denoted by A. Let the activities α, β ϵ A.

 α >P β iff there is a trace σ = t1t2t3...tn and i ϵ

{1,...,n-2} such that σ ϵ P, ti= α and ti+1= β

 α →P β iff α >P β and β ≯P α

 α ║P β iff α >P β and β >P α

 α #P β iff α ≯P β and β ≯P α

The basic temporal ordering relation between a pair

of activities is represented by >P. Other ordering

relations such as causal, parallel and unrelated are

derived from the basic temporal ordering relation.

The causal ordering relation between a pair of

activities is denoted by →P. If two activities are

parallel to each other, then the parallel relation can be

shown by ║P. Two activities are unrelated to each

other if neither of them directly follow each other.

These unrelated activities are shown through #P.

The Alpha algorithm generates a footprint matrix

using these temporal ordering relationships. Once the

footprint matrix has been generated, a process model

can be constructed and represented through a work

flow net diagram. To have better insights about

construction of the footprint matrix, [1] can be

referred.
2.3.2The OpenMP implementation of the alpha

algorithm

The key to have an effective parallelization of any

serial algorithm is to trace out the discrete and

independent steps involved in that serial algorithm

and execute those steps in parallel. A thorough

review of the Alpha algorithm reveals that several

steps involved in this algorithm can be run in parallel

by adopting either data parallelism or task parallelism

[39]. Moreover, the following observations are made

F

O

R

K

J

O

I

N

F

O

R

K

J

O

I

N
Main thread

Parallel section Parallel section

Main thread

Muktikanta Sahu and Gopal Krishna Nayak

118

while doing a detailed analysis of the Alpha

algorithm:

(i) Step 1 of the Alpha algorithm is to find all the

unique or distinct activities available in an event

log and group them into a set denoted by AP.

This step can be solved in data parallel approach.

The parallel for directive available in the

OpenMP API can be used to achieve loop-level

parallelism to exploit data-parallelism available

in the first step of the Alpha algorithm.

(ii) Step 2 and Step 3 of the Alpha algorithm are

associated with finding out the set of all start

activities and end activities denoted by AS and AE

respectively from the event log. The same

divide-and-conquer approach considered in step

1 can be adopted for the calculation of these two

steps too. For these two steps, again we can take

help of the parallel for directive available in the

OpenMP API to exploit data parallelism.

(iii) As computation of AP, AS and AE are independent

of each other, these steps can be run in parallel

by exploiting task parallelism. To achieve this,

we can take help of the section directive

available in the OpenMP API.

(iv) To generate the footprint matrix, we need to

check for the four types of ordering relations

defined in section 2.3.1 for every pair of

activities. Thus, each activity needs to be

compared with every other activity to deduce a

specific relation between them. The upper bound

for these comparisons is limited by the count of

unique or distinct activities discovered from the

event log. We can consider setting the number of

threads equals to the number of unique activities

and using the parallel for directive available in

the OpenMP API to generate the footprint

matrix.

(v) Step 5 and Step 6 of the Alpha algorithm deals

with computing the set pairs and maximal set

pairs denoted by RP and QP respectively. Once

the footprint matrix is generated, a task-parallel

approach can be considered for executing Step 5

and Step 6 with the help of sections directive

available in the OpenMP API.

It is significant to note that the count of distinct

activities fetched from an event log derives the rest of

the steps of the Alpha algorithm rather than the

number of event entries made into the event log.

Hence, employing a parallel execution framework

using the OpenMP API to execute the preliminary

steps of the Alpha algorithm which involves finding

out the unique or distinct activities and tracing out the

different categories of ordering relations that exist

among those activities, becomes important to get

benefited from the parallel computation.

Considering the above observations, a framework for

parallel execution of the Alpha algorithm can be

developed as the schematic representation given in

Figure 3.

Figure 3 A framework for parallel execution of the Alpha algorithm

Mai

n

Data

Footprint

AP

AS

A

E

Data

Data

Data RP

QP

Serial
Serial Execution

Serial Execution

Join (Threads) Fork (Threads)

Parallel Execution
Parallel Execution Parallel Execution

International Journal of Advanced Computer Research, Vol 9(41)

119

Pertaining to the parallel execution framework given

in Figure 3, the pseudocode to implement the

framework using the OpenMP API can be given as:

int main()

 {//preprocessing steps

 # pragma omp parallel{

 #pragma omp sections{

 #pragma omp section{

 #pragma omp parallel for

 Compute A_P;}

 #pragma omp section{

 #pragma omp parallel for

 Compute A_S;}

 #pragma omp section{

 #pragma omp parallel for

 Compute A_E;}} }

 //intermediate steps

 #pragma omp parallel for

 Generate footprint matrix;

 //intermediate steps

 #pragma omp parallel{

 #pragma omp sections{

 #pragma omp section{

 Compute R_P;}

 #pragma omp section{

 Compute Q_P;} } }

/* Execute rest of the steps and draw the

workflow net */

 return 0; }

3.Results
For the purpose of experiments, we implemented the

Alpha algorithm in the serial form using the C++

language. The parallel version was also implemented

using the C++ language with the help of OpenMP 3.0

API. The GCC 4.4.6. was used to develop both the

versions. All the program executions related to the

experiments were carried out in one of the computing

nodes available in a high-performance computing

cluster (HPCC). The HPCC contains 13 nodes in

total. Each node in that HPCC is an Intel Xeon E5-

2650 machine having dual CPU’s and 64 GB of

RAM. Within a node, each CPU was having 8

computing cores working at a base frequency of 2.0

GHz. Thus, physically 16 computing cores were

available for carrying out the program executions.

The HPCC is equipped with Red Hat Linux 6.3 64-

bit operating system. During the program execution,

the hyper threading was set on.

The runtime impact of the parallel mode execution of

the Alpha algorithm was measured through several

experiments. To visualize the real impact of a parallel

computing framework: either the computation need

to be massively complex in nature or the computation

is based on large volume of data. Thus, our initial

objective was to find out the real-world event logs of

very large size. But these were not available. Hence,

we generated synthetic event logs of large size

through a home-grown small tool developed using C

programming language. Specifically, we created

comma-separated-values (CSV) files to represent

event log files. Each entry in those synthetic event

logs was having the following three fields: a process

instance number (or case id), a reference to the

activity that has been performed (or the activity

name), and the completion time of that activity (or

the time stamp of each activity).

The activity names were strings of variable lengths

rather than characters. Parameters that would have

affected the execution of the Alpha algorithm such as

the number of unique activities and the number of

different types of splits were considered while

generating the synthetic event logs using our home-

grown tool. We created five process models by

setting the number unique activities equal to 5, 10,

15, 20 and 25 respectively. Each process model

contained at least one AND split and one XOR split.

Similarly, we considered the number of unique cases

as 3, 8, 13, 18 and 23 respectively, for the process

models having number of unique activities 5, 10, 15,

20, and 25 respectively and care was taken to

consider all the variants of cases possible for a

particular process model. We made near about 4×10
7

event entries for each individual event log. Thus, the

generated event log files were approximately 2 GB

large to have an effective parallel computation. For

all the programs, the execution times were recorded

by considering average of 100 runs. Readings in

Table 2 shows the average execution time of the

Alpha algorithm when run in serial mode.

To have a near-to-equal allocation of threads for

independent execution of tasks, we manually set 12,

10, 10 threads to compute AP, AS, and AE respectively

in the parallel mode execution of the Alpha

algorithm. The readings in Table 2 indicate that the

task of finding out AP from an event log takes more

time when compared to the tasks of finding out AS

and AE. Thus, we decided to allocate a slightly higher

count of threads for the execution of the step AP than

the steps AS and AE. The tasks like computing the four

temporal ordering relations defined in section 2.3.1

deals with comparing each activity with every other

activity available in the event log and the upper

bound of these comparisons were limited by the

Muktikanta Sahu and Gopal Krishna Nayak

120

number of unique activities available in the event log.

Thus, we manually set the number of threads equal to

the number of unique activities for computation of

different temporal ordering relations which

subsequently generates the footprint matrix.

Similarly, for the computation of RP and QP, parallel

sections with the number of threads set to two were

considered. With this thread set-up, on applying the

parallel for loop as well as the parallel sections

syntax available in the OpenMP API, we achieved a

noticeable reduction in execution time of the Alpha

algorithm. Here also, we recorded an average of 100

runs for each case of parallel execution. The readings

related to the average execution time in parallel mode

of the Alpha algorithm are presented in Table 3.

Table 2 Serial mode execution time of the Alpha algorithm

Table 3 Parallel mode execution time of the Alpha algorithm

The speedup [50] parameter plays an important role

in determining the performance improvement due to

any kind of enhancement incorporated into an

existing computational method. Thus, in our case

also, we considered speedup factor to show the extent

of performance improvement we achieved through

the parallel execution of the Alpha algorithm. The

speedup Equation can be given as follows:

 () (

) (1)

where Told represents the recorded execution time

without any improvement or serial mode execution

time and Tnew is the recorded new execution time with

improvement or parallel mode execution time [42].

For this experimental set up:

Told = Average Execution Time in Serial mode = Ts

and Tnew = Average Execution Time in Parallel mode

= Tp.

Hence,

 () (

) (

) (2)

The base speedup was set to 1x by considering the

serial mode execution time of the Alpha algorithm.

Table 4 shows the speedup values that we were able

to get with different number of distinct activities.

Table 4 Speedup achieved

No. of

unique

activities

Ts in

seconds

Tp in

seconds

Speedup

5 174.8703 37.082 4.71

10 488.1704 54.867 8.89

15 976.0405 75.808 12.87

20 1634.231 123.396 13.24

25 2447.011 186.971 13.08

4.Discussion
It can be observed from Table 4 that the speedup is

increasing as we kept on increasing the number of

threads. This is obvious as the generation of footprint

matrix, which is the most time-consuming step in the

entire Alpha algorithm, relies on the number of

unique activities and the temporal ordering relations

existing among those unique activities. A significant

reduction in execution time of the Alpha algorithm

was recorded as the computation of the footprint

No. of unique

activities

Individual module execution time in seconds
Total execution

time in seconds AP AS AE
Footprint

matrix
RP QP

5 15.94 0.00014 0.00015 148.96 4.32 5.65 174.8703

10 25.89 0.00018 0.00018 448.87 6.18 7.23 488.1704

15 35.16 0.00023 0.00022 920.98 9.12 10.78 976.0405

20 42.91 0.00029 0.00028 1562.95 23.26 15.11 1634.231

25 50.72 0.00035 0.00034 2352.92 20.54 22.83 2447.011

No. of unique

activities

Individual module execution time in seconds Total execution time in

seconds AP, AS, AE Footprint matrix RP, QP

5 1.58 29.792 5.71 37.082

10 2.62 44.887 7.36 54.867

15 3.49 61.398 10.92 75.808

20 4.01 104.196 15.19 123.396

25 4.88 158.981 23.11 186.971

International Journal of Advanced Computer Research, Vol 9(41)

121

matrix was done in parallel mode by launching

multiple threads equal to the number of unique

activities extracted from an event log.

The theoretical upper limit of the speedup factor in

the work done in [42] is 4x as only independent and

discrete tasks have been identified and run on

different computing nodes. Given the program

structure in [42], maximum four independent tasks

can run in parallel which leads to a maximum

theoretical speedup of 4x. But the present work

successfully exploits data as well as task parallelism

in the Alpha algorithm. Most importantly, the

performance indicator in terms of the speedup is not

limited by the number of independent tasks for the

present work. Rather, the speedup is limited by the

number of unique activities. Hence, a maximum

theoretical speedup of 25x could be possible subject

to availability of such number of physical threads.

However, with the present set up we were able to get

a maximum speedup of 13.24x, which outperforms

the speedup achieved in [42]. Another noticeable

thing is that the task-level parallelism approach taken

in [42] was implemented through a message passing

interface (MPI) programming concept which suffers

from overheads generated due to communication

latency. But the present approach has zero or

negligible communication latency as it is based on

shared memory multiprocessing model.

The proposed parallel framework based on the

OpenMP library can now be adopted for computation

of the different modules available in the Alpha

algorithm. Tracing out the number of unique

activities and building a footprint matrix by

computing different types of ordering relations

observed in an event log can further be applied

effectively for large event logs and higher count of

unique activities.

5.Conclusion
The performances of the Alpha algorithm in parallel

mode of execution were observed through a series of

experiments. The construct and syntaxes available in

the OpenMP library for parallel computing were used

for execution of different modules of the Alpha

algorithm. It can be observed that the highest speedup

achieved is 13.24x. The noticeable thing is that the

speedup factor relies on the number of threads. The

overall execution time of the Alpha algorithm in

parallel mode was significantly less in comparison to

the serial mode as the number threads launched

varied according to the number of unique activities.

Observations from the readings taken during the

experiments also indicate that the parallel mode of

execution outruns the serial mode of execution of a

larger log data. Thus, an accelerated computation of

the Alpha algorithm was possible by using the

proposed parallel framework based on centralized

shared memory computing available in the OpenMP

API.

The significant advantages of using the OpenMP API

are: (i) the memory access time remains uniform as a

centralized memory is shared among multiple

processors or cores, (ii) portable multithreading code,

and (iii) a relatively high-level abstraction is

available to write parallel programs. The present

work is limited to a computing environment

characterized by multi-core processors and shared

memory architecture. The biggest problem with this

type of architecture is that the memory system may

not be able to support the bandwidth demand beyond

a certain number of processors or cores. We propose

to extend our work to a computing environment

characterized by multi-node-multi-core architecture

with hybrid OpenMP-MPI programming framework

in a high-performance computing cluster.

Acknowledgment
None.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Van Der Aalst W, Weijters T, Maruster L. Workflow

mining: discovering process models from event logs.

IEEE Transactions on Knowledge & Data

Engineering. 2004; 16(9):1128-42.

[2] Kindler E, Rubin V, Schäfer W. Process mining and

petri net synthesis. In international conference on

business process management 2006 (pp. 105-16).

Springer, Berlin, Heidelberg.

[3] Bergenthum R, Desel J, Lorenz R, Mauser S. Process

mining based on regions of languages. In international

conference on business process management 2007 (pp.

375-83). Springer, Berlin, Heidelberg.

[4] Motahari-Nezhad HR, Saint-Paul R, Benatallah B,

Casati F. Deriving protocol models from imperfect

service conversation logs. IEEE Transactions on

Knowledge and Data Engineering. 2008; 20(12):1683-

98.

[5] Bergenthum R, Desel J, Mauser S, Lorenz R.

Construction of process models from example runs. In

transactions on petri nets and other models of

concurrency II 2009 (pp. 243-59). Springer, Berlin,

Heidelberg.

[6] Solé M, Carmona J. Region-based foldings in process

discovery. IEEE Transactions on Knowledge and Data

Engineering. 2013; 25(1):192-205.

Muktikanta Sahu and Gopal Krishna Nayak

122

[7] Van Dongen BF, De Medeiros AA, Wen L. Process

mining: overview and outlook of petri net discovery

algorithms. In transactions on petri nets and other

models of concurrency II 2009 (pp. 225-42). Springer,

Berlin, Heidelberg.

[8] Günther CW, Rozinat A. Disco: discover your

processes. BPM (Demos). 2012; 940:40-4.

[9] Huang Z, Kumar A. A study of quality and accuracy

trade-offs in process mining. INFORMS Journal on

Computing. 2012; 24(2):311-27.

[10] Guo Q, Wen L, Wang J, Yan Z, Philip SY. Mining

invisible tasks in non-free-choice constructs. In

international conference on business process

management 2015 (pp. 109-25). Springer, Cham.

[11] Verbeek HM, Van Der Aalst WM, Munoz-Gama J.

Divide and conquer: a tool framework for supporting

decomposed discovery in process mining. The

Computer Journal. 2017; 60(11):1649-74.

[12] Van DerWerf JM, Van Dongen BF, Hurkens CA,

Serebrenik A. Process discovery using integer linear

programming. Fundamenta Informaticae. 2009; 94(3-

4):387-412.

[13] Van Zelst SJ, Van Dongen BF, Van Der Aalst WM,

Verbeek HM. Discovering workflow nets using

integer linear programming. Computing. 2018;

100(5):529-56.

[14] Van Zelst SJ, Van Dongen BF, Van Der Aalst WM.

Avoiding over-fitting in ILP-based process discovery.

In international conference on business process

management 2016 (pp. 163-71). Springer, Cham.

[15] Van Zelst SJ, Van Dongen BF, Van Der Aalst WM.

ILP-based process discovery using hybrid regions. In

ATAED@ petri nets/ACSD 2015 (pp. 47-61).

[16] Breuker D, Matzner M, Delfmann P, Becker J.

Comprehensible predictive models for business

processes. MIS Quarterly. 2016.

[17] Breuker D, Delfmann P, Matzner M, Becker J.

Designing and evaluating an interpretable predictive

modeling technique for business processes. In

international conference on business process

management 2014 (pp. 541-53). Springer, Cham.

[18] Song W, Jacobsen HA, Ye C, Ma X. Process

discovery from dependence-complete event logs.

IEEE Transactions on Services Computing. 2016;

9(5):714-27.

[19] Carmona J, Cortadella J. Process discovery algorithms

using numerical abstract domains. IEEE Transactions

on Knowledge and Data Engineering. 2014;

26(12):3064-76.

[20] Tapia-Flores T, Rodríguez-Pérez E, López-Mellado E.

Discovering process models from incomplete event

logs using conjoint occurrence classes. In ATAED@

petri nets/ACSD 2016 (pp. 31-46).

[21] Li C, Ge J, Huang L, Hu H, Wu B, Yang H, et al.

Process mining with token carried data. Information

Sciences. 2016; 328:558-76.

[22] Greco G, Guzzo A, Lupia F, Pontieri L. Process

discovery under precedence constraints. ACM

Transactions on Knowledge Discovery from Data.

2015; 9(4).

[23] Vázquez-Barreiros B, Mucientes M, Lama M.

ProDiGen: mining complete, precise and minimal

structure process models with a genetic algorithm.

Information Sciences. 2015; 294:315-33.

[24] Vázquez-Barreiros B, Mucientes M, Lama M. A

genetic algorithm for process discovery guided by

completeness, precision and simplicity. In

international conference on business process

management 2014 (pp. 118-33). Springer, Cham.

[25] Nguyen H, Dumas M, Ter Hofstede AH, La Rosa M,

Maggi FM. Mining business process stages from event

logs. In international conference on advanced

information systems engineering 2017 (pp. 577-94).

Springer, Cham.

[26] Van Eck ML, Sidorova N, Van Der Aalst WM.

Discovering and exploring state-based models for

multi-perspective processes. In international

conference on business process management 2016 (pp.

142-57). Springer, Cham.

[27] Van Eck ML, Sidorova N, Van Der Aalst WM.

Guided interaction exploration in artifact-centric

process models. IEEE conference on business

informatics 2017 (109-18). IEEE.

[28] Conforti R, Dumas M, García-Bañuelos L, La Rosa

M. Beyond tasks and gateways: discovering BPMN

models with subprocesses, boundary events and

activity markers. In international conference on

business process management 2014 (pp. 101-17).

Springer, Cham.

[29] Conforti R, Dumas M, García-Bañuelos L, La Rosa

M. BPMN miner: automated discovery of BPMN

process models with hierarchical structure.

Information Systems. 2016; 56:284-303.

[30] Schönig S, Rogge-Solti A, Cabanillas C, Jablonski S,

Mendling J. Efficient and customisable declarative

process mining with SQL. In international conference

on advanced information systems engineering 2016

(pp. 290-305). Springer, Cham.

[31] Schönig S, Di Ciccio C, Maggi FM, Mendling J.

Discovery of multi-perspective declarative process

models. In international conference on service-

oriented computing 2016 (pp. 87-103). Springer,

Cham.

[32] Augusto A, Conforti R, Dumas M, La Rosa M. Split

miner: discovering accurate and simple business

process models from event logs. International

conference on data mining 2017 (pp. 1-10). IEEE.

[33] Weijters AJ, Van Der Aalst WM. Rediscovering

workflow models from event-based data using little

thumb. Integrated Computer-Aided Engineering.

2003; 10(2):151-62.

[34] Vanden Broucke SK, De Weerdt J. Fodina: a robust

and flexible heuristic process discovery technique.

Decision Support Systems. 2017; 100:109-18.

[35] De Weerdt J, Vanden Broucke SK, Caron F.

Bidimensional process discovery for mining BPMN

models. In international conference on business

process management 2014 (pp. 529-40). Springer,

Cham.

International Journal of Advanced Computer Research, Vol 9(41)

123

[36] Conforti R, La Rosa M, Ter Hofstede AH. Filtering

out infrequent behavior from business process event

logs. IEEE Transactions on Knowledge and Data

Engineering. 2017; 29(2):300-14.

[37] Mannhardt F, De Leoni M, Reijers HA, Van Der Aalst

WM. Data-driven process discovery-revealing

conditional infrequent behavior from event logs. In

international conference on advanced information

systems engineering 2017 (pp. 545-60). Springer,

Cham.

[38] Van Dongen B, Carmona J, Chatain T, Taymouri F.

Aligning modeled and observed behavior: a

compromise between computation complexity and

quality. In international conference on advanced

information systems engineering 2017 (pp. 94-109).

Springer, Cham.

[39] Leemans M, Van Der Aalst WM. Modeling and

discovering cancelation behavior. In OTM

confederated international conferences" on the move

to meaningful internet systems" 2017 (pp. 93-113).

Springer, Cham.

[40] Leemans SJ, Fahland D, Van Der Aalst WM.

Discovering block-structured process models from

event logs containing infrequent behaviour. In

international conference on business process

management 2013 (pp. 66-78). Springer, Cham.

[41] Augusto A, Conforti R, Dumas M, La Rosa M, Bruno

G. Automated discovery of structured process models

from event logs: the discover-and-structure approach.

Data & Knowledge Engineering. 2018; 117:373-92.

[42] Sahu M, Chakraborty R, Nayak G. A task-level

parallelism approach for process discovery.

International Journal of Engineering & Technology.

2018: 7(4):2446-52.

[43] Ciorba FM, Iwainsky C, Buder P. OpenMP loop

scheduling revisited: making a case for more

schedules. In international workshop on OpenMP

2018 (pp. 21-36). Springer, Cham.

[44] Van Der Aalst WM. Process mining: data science in

action. Springer; 2016.

[45] Weijters AJ, Van Der Aalst WM, De Medeiros AA.

Process mining with the heuristics miner-algorithm.

Technische Universiteit Eindhoven, Tech. Rep. WP.

2006; 166:1-34.

[46] Weijters AJ, Ribeiro JT. Flexible heuristics miner

(FHM). In symposium on computational intelligence

and data mining 2011 (pp. 310-7). IEEE.

[47] Serrano MA, Royuela S, Quiñones E. Towards an

OpenMP specification for critical real-time systems.

In international workshop on OpenMP 2018 (pp. 143-

59). Springer, Cham.

[48] Pacheco P. An introduction to parallel programming.

Elsevier; 2011.

[49] Kemp J, Chapman B. Mapping OpenMP to a

distributed tasking runtime. In international workshop

on OpenMP 2018 (pp. 222-35). Springer, Cham.

[50] Hennessy JL, Patterson DA. Computer architecture: a

quantitative approach. Elsevier; 2011.

Muktikanta Sahu is working as an

Assistant Professor in the Department

of Computer Science & Engineering at

IIIT Bhubaneswar. He has completed

his B.Tech. and M.Tech. in Computer

Science & Engineering from Biju

Pattanaik University of Technology,

Odisha in 2003 and 2007 respectively.

His current research projects are on Parallel Computing and

Process Mining. He has published his past research work in

IEEE Transaction on Neural Networks and International

Journal of Engineering & Technology.

Email: muktikanta@iiit-bh.ac.in

Dr. Gopal Krishna Nayak has

graduated from Indian Institute of

Technology Kharagpur and Indian

Institute of Management Bangalore.

Presently he is a professor in the

Department of Computer Science &

Engineering at IIIT Bhubaneswar. He

has nearly 30 years of teaching and

research experience. He is also an advisor to the

Government of Odisha on adoption of technology. He has

nearly 30 years of teaching and research experience.
Email: gopal@iiit-bh.ac.in

mailto:muktikanta@iiit-bh.ac.in

