
International Journal of Advanced Computer Research, Vol 9(43)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.PID29

186

Non-preemptive chaotic cat swarm optimization scheme for task scheduling

on cloud computing environment

Danlami Gabi
1*

, Nasiru Muhammad Dankolo
2
, Abdul Samad Ismail

3
, Anazida Zainal

4
 and

Zalmiyah Zakaria
4

Lecturer, Kebbi State University of Science and Technology, P.M.B 1144, Aliero, Kebbi State, Nigeria
1

Assistant Lecturer, Kebbi State University of Science and Technology, P.M.B 1144, Aliero, Kebbi State, Nigeria
2

Professor, School of Computing, Universiti Teknologi Malaysia, P.M.B. 81310, Skudai, Johor, Malaysia
3

Senior Lecturer, School of Computing, Universiti Teknologi Malaysia, P.M.B. 81310, Skudai, Johor, Malaysia
4

Received: 9-September-2018; Revised: 28-November-2018; Accepted: 30-January-2019

©2019 Danlami Gabi et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.Introduction
Cloud computing is a consumable technology of our

time that allow sharing of resources (e.g. virtual

machines, storage, bandwidth) to meet the

exponential demand of cloud end-users [1−4]. Three

service models associated with cloud computing

environment include software as a service (SaaS),

platform as a service (PaaS) and infrastructure as a

service (IaaS). The SaaS layer of cloud computing

allows cloud customers to run applications remotely,

where application delivery is carried out via the

Internet and manage by a third-party vendor. The

cloud customers often interact with SaaS layer to get

their task submitted to the IaaS layer (e.g. datacenter)

and later receives its processed results via the SaaS

layer.

*Author for correspondence

The SaaS layer function with the support of PaaS

layer, providing interactive mechanisms for both

cloud customers and service providers [5] while PaaS

allow cost-efficient development and deployment of

applications [6,7]. On the other hand, the IaaS layer

provides services for cloud customers in terms of

infrastructure (e.g. virtual machine) as a service. The

IaaS provide a pool of resources of varied types that

can be leased by cloud customers according to their

computing requirements.

Currently, due to escalating number of end-users

accessing the cloud services, providing efficient

scheduling to meet their QoS expectations has

become a greater concern. Although, high-level

research has been conducted in unveiling the

supremacy of metaheuristic techniques toward

mitigating these concerns [8], however, the

metaheuristics are attributed to global and local

Research Article

Abstract
With exponential growth in the number of customers accessing the cloud services, scheduling tasks at cloud datacenter

poses the greatest challenge in meeting end-user’s quality of service (QoS) expectations in terms of time and cost. Recent

research makes use of metaheuristic task scheduling techniques in addressing this concern. However, metaheuristic

techniques are attributed with certain limitation such as premature convergence, global and local imbalance which

causes insufficient task allocation across cloud virtual machines. Thus, resulting in inefficient QoS expectation. To

address these concerns while meeting end-users QoS expectation, this paper puts forward a non-preemptive chaotic cat

swarm optimization (NCCSO) scheme as an ideal solution. In the developed scheme, chaotic process is introduced to

reduce entrapment at local optima and overcome premature convergence and Pareto dominant strategy is used to address

optimality problem. The developed scheme is implemented in the CloudSim simulator tool and simulation results show the

developed NCCSO scheme compared to the benchmarked schemes adopted in this paper can achieve 42.87%, 35.47% and

25.49% reduction in term of execution time, and also 38.62%, 35.32%, 25.56% in term of execution cost. Finally, we also

unveiled that a statistical significance on 95% confidential interval has shown that our developed NCCSO scheme can

provide a remarkable performance that can meet end-user QoS expectations.

Keywords
Cloud computing, Cat swarm optimization, Chaotic process, Pareto dominance.

International Journal of Advanced Computer Research, Vol 9(43)

187

imbalanced and slow convergence speed which leads

to insufficient task schedule on cloud virtual

machines. Thus, affecting the provisioning of

customers QoS expectation. The need to improve

metaheuristic scheduling schemes to provide better

QoS that can meet end-user’s expectation is

paramount. The conventional cat swarm optimization

(CSO) is a metaheuristic technique put forward in

[9]. This technique mimics the behavior of natural cat

and has relatively proven better in term of both global

and local convergence than particle swarm

optimization (PSO) [9, 10].

To ensure the conventional CSO algorithm become

suitable for cloud task scheduling, we adopted the use

of chaotic process and Pareto dominance and

developed an NCCSO scheme. In the developmental

scheme, the chaotic and Pareto dominant strategy is

used to overcome the problem of local and global

imbalanced and slow convergence speed. A multi-

objective QoS task scheduling model based on

execution time and execution cost is then proposed

upon which our NCCSO scheme was used to solve

the model on CloudSim simulator tools.

Experimental results via simulation has shown that

we developed NCCSO scheme had an outstanding

performance compared to that of the benchmarked

schemes.

The contribution of this study is as follows:

 Development of a multi-objective task scheduling

model for cloud computing.

 An improvement is developed for the CSO using

chaotic and Pareto-dominance approach and the

resultant solution in solving task scheduling

problem is cost optimal and minimum computation

time.

 Development of an NCCSO task scheduling

scheme to addressing customers QoS expectations.

2.Related work
Task scheduling has become a significant research

topic with the objective of ensuring that every

computing resources (e.g. virtual machines) are

equitably distributed on cloud tasks to meet

customers QoS expectations. Recent research has

shown that a set of scheduling strategies (based on

heuristic and metaheuristic techniques) can solve

multi-objective task scheduling problem with the aim

of ensuring customers’ QoS expectation. Although

metaheuristics techniques can handle the large tasks

scheduling problem and converges faster than the

heuristic techniques, their incorporation with chaotic

process/or some greedy based techniques can further

increase its performance towards addressing cost and

time objectives. Researchers that explored the

concept of incorporating and hybridizing these

techniques in addressing the concerns of the cloud

task scheduling problem are discussed in the

following:

In Zuo et al. [8], a Multi-Objective Ant Colony

Optimization (MOACO) algorithm is developed to

minimize the makespan time and customer budget

cost. According to the researchers, their proposed

cost model reflects the relationship between customer

's resource cost and budgetary cost. Their simulation

results have shown the proposed algorithm can

achieve the optimum solution for both performance

and cost. In Ramezani et al. [11], the researchers

developed a multi-objective particle swarm

optimization (MOPSO) algorithm. The results of the

experiment via simulation with CloudSim simulator

shows their method can find the optimal solution in a

reasonable amount of time. Although hybridization,

can help improve better quality of solution for end-

user’s service preferences during task scheduling. In

Gabi et al. [10], the researchers put forward an

orthogonal Taguchi-based cat swarm optimization

(OTB-CSO) algorithm to improve the performance of

cloud computing systems in term of makspan. The

researchers incorporated Taguchi Orthogonal

approach in the local search of the conventional CSO

to increase its convergence speed which later reduces

local trapping that led to minimum makespan time.

However, the algorithm only handles a single

objective optimization problem. Improving this

algorithm can help to address a multi-objective task

scheduling problem.

 Liu et al. [12] developed an improved min-min

algorithm for cloud computing environment. The

researchers aimed at addressing three basic objectives

(quality of service, dynamic priority model and cost

of service) for their scheduled task. The simulation

results from their proposed algorithm when compare

with the traditional min-min algorithm unveiled that

it can increase resource utilization rate and execute

longer task at reasonable times. In another

development, Xu et al. [13] put forward a multi-

objective genetic optimization algorithm (MOGA) to

minimize average completion time, total completion

time. In their scheduling process, a complex, large

task was divided into multiple sub-tasks where

allocation of task of research is carried out based on

chromosomes encoding. The researchers designed

three different fitness function to evaluate the fitness

of each chromosome line with their task scheduling

Danlami Gabi et al.

188

objectives. The simulation results as unveiled by the

researchers has shown that their developed MOGA

algorithm can produce faster convergence speed

which led to better performance. Khajehvand et al.

[14] put forward a hybrid first-fit cost-time trade-off

(FCTT) and workflow planning cost-based (WPC)

model. Their objective is to minimize task runtime

and execution cost. In the schedule method adopted

by the researchers, each task is assigned a rank using

a bottom-up traversal technique which allows child

tasks to first be assigned a rank prior to the parent

task assignment. The tasks are then sorted by ranking

them in a non-increasing manner. The researchers

then adopted the FCTT scheduling algorithm to select

task whose execution of all parents’ tasks is

completed. The experimental results via simulation

shows their proposed FCTT can reduce task runtime

and allocation cost compared with MOGA and best

effort (BE) algorithms. However, task updating

method by WPC can lead to long computation time,

since the performance of the algorithm depends upon

it update process.

From the review conducted on related work,

metaheuristic techniques usually exhibit certain

limitations such as high dimensional complexity,

slow convergence speed, local trapping and

imbalance between global and local optima. All these

limitations can lead to inefficient task schedule.

Therefore, an improvement is required to provide an

ideal solution to cloud task scheduling process in

cloud computing. This study addresses the concern of

scheduling of task at the IaaS layer of cloud

computing with a focus on multi-objective task

scheduling.

3.Cat swarm optimization and the need

for improvement

In [9], the researchers introduced CSO technique that

mimics common behavior of natural cat. As put

forward by the researchers, their proposed algorithm

operates in two modes; the resting (seeking) and

chasing (tracing) mode (detail about these modes can

be found in [9]. A control factor known as the mixed

ratio (MR) is used to discover if the position at which

the cat is currently standing is in either seeking or

tracing mode. The position of the cat signifies

possible solution sets, while the velocity of the cat is

associated with a dimension and a fitness value.

According to [9], as the cat progresses closer to the

solution (fitness), the cat updates itself with best

results in the memory continuously until all cats

achieve the best solution (also known as the fitness)

[15].

Although, the conventional CSO exhibit better

performance in term of convergent speed than PSO

[9], however, certain limitations are associated with

the conventional CSO. The global search may not

always provide a superior solution when its search

space increases exponentially. Besides, the number of

cats that usually goes into the global search region of

the conventional CSO always exceeds that of the

local search. These can lead to poor convergence

speed, causing tasks entrapment at the local optimal.

On the other hand, operation executed by the

conventional CSO at both global and local searches is

independently carried out for each iteration. This,

likewise, causes velocity and position update of the

conventional CSO to perform a similar process, thus,

leading to long computation time. Similarly,

imbalance between global and local search is another

concern exhibited by the conventional CSO.

Therefore, there is a need to improve on the

conventional CSO technique so that efficient

scheduling can be achieved in a cloud computing

environment [16].

4.The Pareto dominance and chaotic

process
For any task scheduling problem, the chances of

locating an optimal solution that will ensure

minimum execution time and cost is becoming harder

in a large search space like the cloud environment

[17]. Due to multi-criteria associated with scheduling

of task in the cloud, the concept of optimality needs

to be achieved. Multi-objective optimization is

characterized with trade-off factors, where each of

the trade-off that serves as a solution correspond to a

specific order of importance of the objectives [18].

In another development, dynamic and nonlinear

systems usually exhibit certain processes that look

similar to a deterministic chaotic process. The chaotic

process contains a very high sensitivity to initial

condition and parameter change. It is derived from

the term chaos known as randomness of a simple

dynamic system. This motivates its use as a source of

randomness in optimization theory on various fields.

Recent research, e.g., in [19] have shown the

adoption of chaotic sequences in stochastic

optimization techniques for providing population

diversity in the search space which ensured global

convergence and avoidance of local optima

entrapment. The equation of the chaos is shown in

Equation (1) and the logistic course adopted in [20]

will be used in this paper due to its successful

application to address optimization problems.

 (()) (1)

International Journal of Advanced Computer Research, Vol 9(43)

189

where* + is the sets of numbers that are

generated from logistic chaotic map; , - is the

control parameter of logistic equation; () is

the chaotic number and () and
* + .

 The incorporation of chaotic approach provides

better tasks mapping sequence and overcome

premature convergence to reduce task execution time

[19]. In another development, Pareto-Optimization

can be used to provide cloud end-users with many

non-dominant solutions as possible, by allowing sets

of trade-offs between execution time and execution

cost [21, 22]. These will guide the end-users to select

their service preferences. Since the actual cloud end-

users’ service preference is very difficult to predict in

cloud computing, cloud end-user’s attention can be

restricted on trade-off points P* known as Pareto

front, where cloud customers select their service

preference in terms of the virtual machine that

guarantees minimum execution time and cost [14].

Since in cloud computing environment, end-users

often affected by their budget constraint, [15], several

issues may still surface when several cloud end-users

request cloud resources at the same time. The cloud

end-users not only have to manage conflicting

requirements under its budget constraint, but also

have to manage trade-off between time and cost in

such a way that could guarantee the execution of their

task in minimum time [23]. The main goal of this

research is to make sure that the Pareto optimal set

are discovered for all tasks schedule based on the

proposed scheduling technique. This study used the

following definition in solving our multi-objective

task scheduling problem:

Definition 1.1 Multi-objective Optimization problem

A typical multi-objective optimization problem can

be expressed as a minimization of a components of

a vector function in the form [11]:

 M ⃗⃗⃗ (⃗⃗⃗) , (⃗⃗⃗) (⃗⃗⃗) (⃗⃗⃗) (⃗⃗⃗)- (2)

where, vector of decision variable is given as

 ⃗⃗⃗ ⃗⃗⃗ * + such that

* + are the objective functions in a universe

 . ⃗⃗⃗ (⃗⃗⃗) is the multi-objective function.

5.Problem description
The problem is first represented by considering a set

of independent tasks to be schedule on sequence of

heterogeneous virtual machines for processing.

 * ∣∣ +, are the sets of virtual

machines and is the number of virtual machines.

 * ∣∣ + represents the tasks groups and

 is the overall number of tasks [22]. The goal of the

scheduling problem is to dynamically assign each

tasks * + to appropriate cloud virtual

machines * + in order to determine

the sequence as well as the timing of task executed

and the amounts of cost for executing the task. This is

followed with a task scheduling model that

accommodate various objectives, such as the

minimization of execution time and minimization of

the execution cost (if tasks incur a cost) for a

specified demand. We assume the following

descriptions for the scheduling problem formulation:

(i) Two datacentres are considered for the schedule;

(ii) The datacentres belong to the same service

provider, where the cost of transmission is ignored;

(iii) Tasks are assigned to virtual machine

sequentially and the total number of all possible

schedules is () for the problem with number of

task and number of virtual machine; (iv) Pre-

emptive scheduling allocation policy is not allowed;

(v) The cost of using a virtual machine for a time

quantum varies from one virtual machine to the other.

By considering an entry such as the Expected Time to

Compute () matrix in Equation (3), our goal is to

make sure each tasks are dynamically assign to

virtual machine with the right computing capacity

in order to find the optimum value of the total

expected execution time and total expected execution

cost incurred in executing all tasks.

⌈
⌈
⌈
⌈

 ⌉
⌉
⌉
⌉

 (3)

Let * + denote set of tasks independent of

one to another and * + denote the set of

heterogeneous virtual machines. Suppose
* + is scheduled on a , the execution time

 of all tasks processed on a is computed

using Equation (4) (Ramezani et al., 2013). The total

execution time of all tasks processed on all

virtual machines * + is computed

using Equation (5) [24].

 ∑

 (4)

 ∑ ∑

 (5)

Danlami Gabi et al.

190

Where, is the execution time of running tasks

on one virtual machine; is equal to one 1 if task
is assign to otherwise, ; is the task

whose length is given in Millions Instructions (MI);

 is the speed whose unit is in Million

Instructions Per Second (MIPS); is the number

of processing element of a virtual machine

The execution cost model is a multi-objective model

that incorporates the execution time model as shown

in Equation (5). This model is based on pay-as-you-

go basis, where cloud customers are charged

according to time quantum, they have used the virtual

machines. The time quantum [25], is the smallest

discrete unit to compute cost of using a virtual

machine. In this paper, we assume the cost of

memory and central processing unit (CPU) are all

included in the monetary cost of using a virtual

machine. For instance, assume for every one-minute

N of using a virtual machine, the price specified by

the service provider is 0.5 dollars per hour(/hr), then,

for a time period in minutes of using a virtual

machine, the cost will be computed as ()

dollars.

Therefore, virtual machines with highest execution

time will always return the lowest execution cost and

vice versa. Assume the cost of executing tasks on a

virtual machine per hour (hr) is known, Equation (6)

hold for cost of executing tasks on a

virtual machine per time quantum in second [11].

 ∑

 (6)

where, is the monetary cost of one unit in

US dollar per hour.

Such that:

 {
 ()

When more than one * } are used

by a service provider to execute several tasks, the

total tasks execution cost, , by all virtual

machines in a datacenter iscomputed using Equation

(8).

 ∑ ∑

 (8)

The multi-objective task scheduling mathematical

model can therefore by expressed as follows:

 () [() ()] (9)

Subject to:

∑

 * +

Equation (9) is the multi-objective optimization

model to be solved by applying our proposed multi-

objective scheme.

6.The developed task scheduling scheme
The proposed NCCSO scheme consists of two phases

(global and local search) that combined and solved

the optimization problem. The following attributes

were first considered to arrive at an optimal solution;

the tasks number, budget costs, the number of virtual

machines and other relevant parameters such as count

dimension to change (CDC), seeking range of

selected dimension (SRD), the seeking memory pool

(SMP) and self-position considering (SPC) of the cat.

Each cat symbolizes the choice of a virtual machine

used for the task schedule. This is encoded in [1 × n]

vector, with n belonging to a number of tasks. We

assumed that each virtual machine in a datacenter has

different cost per time quantum (heterogeneous).

Based on the expected time to compute (ETC)

matrix, when the tasks are schedule by the NCCSO

scheduler, each task is assigned a cat (where the cat

represents the virtual machine). Every cat has

dimension D with n tasks assigned and the model

associated with each cat are based on two objective

function; the total execution time (()) and

total execution cost (()). When a cat

traverses all tasks, the cat formed a feasible solution

to the problem. Each cat has both position and

velocity vector. The position of the cat symbolizes

the solution that is attained by the cat. A Mixed Ratio

(MR) is used to specify two group of cats (seeking

and tracing). The cats are moved into either seeking

or tracing mode at random using value specified by

the MR. When the cats reach their desired target, their

fitness value are computed based on defined

objective of the scheduling problem (and

).

A dominant strategy is used to compare the optimum

solution and is stored at the archive, where the final

velocity that formulates the latest velocity is selected.

This velocity returns optimal solution which is used

to compute the new position of the cat as shown in

Equation (10).

 ⃗ (10)

Where, is the position of the Cat; ⃗ is the

velocity attain by the cat. In order to ensure the

International Journal of Advanced Computer Research, Vol 9(43)

191

quality of the solution, avoid being trapped at the

local optima, the quality of the feasible solution is

evaluated using the fitness function. The fitness

function is set based on an optimization model of the

scheduling problem. As earlier reported, the optimal

solution of each cat is stored at the archive. Every

cat is assessed with a value of fitness functions and

all Pareto optimal solutions that are stored at the

archive. Hence, the fitness function () using

Equation (11) was used for the evaluation:

 () ∑ (⃗⃗ ⃗)

 { ⃗⃗ ⃗ } (11)

Where, is the number of objective functions and

 is the preference weight for every objective

function ((⃗⃗ ⃗)). Algorithm 1 shows the pseudocode

for the developed NCCSO task scheduling algorithm.

Algorithm 1: NCCSO-based algorithm

INPUT: Task number, lengths, initialize mixed ratio MR; virtual machine (VM) number and their

required attributes (number of processing elements, unit cost of using one VM);

 Generate an empty non-dominant archive of (n × m) size of uniform random number [0, 1]

 Compute all cats according to defined objective (Fitness) functions
OUTPUT: Optimal Task Schedule

 Identify best optimal solution for the trade-off values.

Compare fitness functions of all cats, keep position with best fitness value into the archive

1. While condition is not reached

2. increment_iteration_number
3. DO
4. If ()

5. Generate () copies of cat

6. Change at random the dimension of cats as per using mutation operation

7. Determine the fitness of changed cats.

8. Discover suitable cats based on their fitness values.

9. Else

10. Chaos (): chaotic generated number according to Equation (1)

11. Calculate the fitness values of the n experiments using Equation (11) and store Pareto optimal

value in the archive

12. Endif

13. ()

14.

15. // current best position becomes the global best position

16. If (termination condition reached)
17. Output position of best minimum total execution time

18. Output position of the best minimum total execution cost

19. Else
20. Go to step 2

21. Endif

22. Endif

23. EndWhile

Simulation environment

CloudSim 3.0.3 [26] tool was installed on Eclipse-

Java-Luna-SR2-win32-x86-64 for the simulation.

The developed NCCSO task scheduling scheme is

compared with Multi-Objective Ant Colony

Optimization (MOACO) [8], Multi-Objective Particle

Swarm Optimization (MOPSO) [11] and Min-Min

[12] task scheduling schemes. The choice of

properties for the datacenter host, task and virtual

machines were selected as used in [16]. The

estimated cost (0.17$ + 0.05$=0.22$/hr) of using a

unit virtual machine for a time quantum is based on

(Ramezani et al., 2015), while the selected values for

inertia weight and coefficient factors () for the

MOACO, MOPSO, and NCCSO were based in [27].

The parameter settings for the scheduling algorithms

are; 1:) MOPSO (Particle size:100, Self-recognition

coefficients () 2.0, Uniform random number

() [0,1], Maximum iteration:1000, Inertia weight
(): 90-40%, Mixed ratio:2%); 2:) NCCSO (Cat

size:100, Count Dimension to Change: 5%, Self-

recognition coefficients () 2.0, Uniform random

number () [0,1], Maximum iteration:1000, Inertia

weight () 90-40%, Mixed ratio: 2%) and 3:)

MOACO (Pheromone persistence 0.3, Importance

Danlami Gabi et al.

192

of pheromone ():1, Importance of resource innate

attribute ():1, Pheromone evaporation value ():

0.3, Iteration number:1000, Number of ant).

7.Simulation results and discussion
In order to provide a concise explanation on the

results obtained, we scheduled task instances from 20

to 100 on 20 heterogeneous virtual machines. Ten

(10) independent simulation runs were conducted and

the efficiency of the developed NCCSO was

revealed. Table 1 shows the results of the average

value of the simulation runs. Table 2 shows

improvement gained by the developed NCCSO task

scheduling scheme compared to the benchmarked

schemes. The performance improvement is computed

using Equation (12) [10]. To further reveal how

significant our developed NCCSO over the

benchmarked algorithm.

PIR(%) =
 () ()

 ()

 (12)

In Table 1 precisely, Min-Min scheduling scheme

showed reduction in execution time and execution

cost compared to MOACO, MOPSO and NCCSO

schemes when 20 to 50 task instances are scheduled

on virtual machines. As the task scheduling intervals

changes over time (see task instances from 70 to

100), its performance degrades further. This is

because, unlike the metaheuristic, the heuristic

techniques usually performe better with small task

instances. When the task sizes become larger, their

performance is seen degrading often at times. This

makes the Min-Min scheduling scheme not suitable

for scheduling tasks on cloud computing environment

where tasks instances are unpredictable in numbers as

they arrive the cloud datacenters. The MOACO task

scheduling scheme likewise performed better with 20

to 40 tasks instances scheduled on heterogeneouse

virtual machines. Its performance suddenly degrades

with increase in task sizes.

This can be attributed to the traversing process of the

ant colony technique as its convergence speed tend to

be slower, due to tasks increase in the scheduling

process which normally causes its entrapment at the

local region. In another development, the MOPSO

task scheduling scheme shows better improvement

when 50 to 100 tasks are schedule on heterogeneous

virtual machines compared to MOACO and Min-Min

scheduling schemes. Although, Min-Min scheduling

schemes shows better improvement with 20 to 30

tasks instances scheduled on 20 heterogeneous virtual

machines, the results revealed that, as task instances

gets larger, our developed NCCSO scheduling

scheme gets better compared to all the benchmarked

schemes in term of minimum execution time and

execution cost. This shows that the developed

scheme can adapt fluctuating tasks sizes, making it

suitable for cloud computing environments. To

further unveil the advantages of our developed

scheme over the benchmarked schemes, Table 2

shows the results on performance improvement

gained. In the overall performance, our proposed

NCCSO task scheduling scheme was able to

minimized the total tasks execution time of 42.87%,

35.47% and 25.49% compared to Min-Min, MOACO

and MOPSO task scheduling schemes, and also

outperformed the benchmarked algorithm in term of

execution cost with 38.62%, 35.32% and 25.56%

improvement.

From the simulation results, it has been shown that

our developed NCCSO task scheduling scheme has

ability to find the best virtual machines with

minimum execution of time and cost to execute end-

user’s tasks compared to the benchmarked schemes.

Figures 1 and 2 is used to further illustrated the

performance of our proposed NCCSO scheme over

the benchmarked schemes. This performance is

attributed to the incorporation of chaotic and Pareto

based approaches at the local search procedure of the

conventional CSO. This helps in traversing all cats

(virtual machines) and find best virtual machines

suitable for the cloud end-users by overcoming

premature convergence at the local search process of

the metaheuristic technique. This performance can

also be attributed to the fact that, our developed

NCCSO task scheduling scheme exhibits an

intelligent updating of positions while reaching at

best solutions.

International Journal of Advanced Computer Research, Vol 9(43)

193

Table 1 Comparison of execution time and execution cost

Task Improved Min-Min MOACO MOPSO NCCSO

 Execution

time (s)

Execution

cost ($)/hr

Execution

time (s)

Execution

cost ($)/hr

Execution

time (s)

Execution

cost ($)/hr

Execution

time (s)

Execution

cost ($)/hr

20 21.46 4.72 27.54 6.05 26.86 5.90 25.40 5.47

30 39.16 8.61 56.32 12.39 70.29 15.45 53.58 11.78

40 60.44 13.29 87.56 19.26 92.29 20.59 53.92 11.86

50 66.62 14.65 163.49 35.96 147.28 32.40 129.19 28.42

60 209.82 46.15 243.89 53.65 206.50 45.43 162.77 35.80

70 318.81 70.13 312.78 68.10 287.21 63.18 240.12 52.82

80 505.02 111.10 407.54 89.65 334.99 73.69 312.28 68.70

90 768.78 169.13 674.89 148.47 538.09 118.37 331.62 72.94

100 1096.40 241.21 754.90 166.07 663.34 145.93 454.52 99.98

Table 2 Performance improvement rate (PIR%)

 Improved min-

min

MOACO MOPSO NCCSO

Total execution time 3086.51 2732.94 2366.85 1763.40

PIR (%) over Improved Min-Min 11.455 23.31 42.87

PIR (%) over MOACO 13.39 35.47

PIR (%) over MOPSO 25.49

Total execution Cost 631.84 599.60 520.94 387.77

PIR (%) over Improved Min-Min 5.10 17.55 38.62

PIR (%) over MOACO 13.11 35.32

PIR (%) over MOPSO 25.56

Figure 1 Comparison on the total execution time

20 40 60 80 100

0

150

300

450

600

750

900

1050

1200

T
ot

al
 E

xe
cu

ti
on

 T
im

e
(s

ec
)

Number of Tasks

 Improved-Min-Min

 MOACO

 MOPSO

 NCCSO

Danlami Gabi et al.

194

Figure 2 Comparison on the total execution cost

8.Statistical significance based on

confidential interval
To further elaborate performance of our developed

NCCSO task scheduling scheme, a computed

statistical significance on the scheduling schemes

based on 95% confidential intervals are provided in

Table 3. The computed value is derived using

Equation (13) [28].

Confidential Interval (CI)= ̅

√
, (13)

where, ̅ is the mean; represent the t-distribution

that is derived from the t distribution table; is the

standard deviation of the sample data derived after

running the task instances on a virtual machine and

represent the number of samples. The computed

confidential intervals on the scheduling schemes will

help justify how significant our scheme for the

scheduling performance in term of tasks execution

time. The smaller the value of the confidence

intervals shows how precise our estimate compared

to the benchmarked schemes. Table 3 shows the

results on 95% confidential interval computed after

20 simulation runs. The results are to show whether

execution time obtained by our developed NCCSO

scheduling scheme is significantly less compared to

the benchmarked schemes for all task instances. It

has been shown in Table 3 that; the value obtained by

our developed NCCSO is significantly less

considering the benchmarked schemes. These means

there is a significant difference between the

performance of our developed NCCSO scheduling

scheme and that of the benchmarked schemes in term

of execution time. It can be concluded that our

developed NCCSO scheduling scheme can provide

better service to the cloud end-users and meet cloud

providers satisfactions.

Table 3 Comparison of execution time

 Improved MIN-

MIN

MOACO MOPSO NCCSO

Degree of freedom 9 9 9 9

Confidence level 0.025 0.025 0.025 0.025

t-distribution 2.262 2.267 2.267 2.262

Mean 342.94 303.21 262.98 195.93

Standard deviation 378.38 264.49 218.04 148.25

Lower bound 72.28 114.02 107.01 90.04

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Total Execution Cost($)

N
u

m
b

er
 o

f
T

as
k

s

 NCCSO

 MOPSO

 MOACO

 Improved-Min-Min

International Journal of Advanced Computer Research, Vol 9(43)

195

 Improved MIN-

MIN

MOACO MOPSO NCCSO

Upper bound 613.60 492.40 418.95 254.14

95% confidential interval (72.28,613.60) (114.02,492.40) (107.01,418.95) (90.04,254.14)

9.Conclusion
In this paper, we unveiled the efficiency of our

developed NCCSO scheduling scheme on the

CloudSim simulator tool. The obtained results had

shown that our developed NCCSO scheduling

scheme is promising in providing the minimum

execution time and execution cost compared to the

benchmarked schemes. This was as a result of

incorporation of chaotic process and Pareto-

dominance techniques within the local search process

of the conventional cat swarm optimization. Causing

NCCSO scheduling scheme to overcome global and

local imbalanced as well as premature convergence,

which led to its best performance in term of the

minimum execution time and execution cost. The

paper further revealed how significant the

performance of the NCCSO scheme. As a result,

computation based on 95% confidential intervals to

show the statistical significance of the developed

NCCSO was revealed. It was concluded that, the

developed NCCSO scheduling scheme can meet

cloud customers QoS expectations. In the future, we

intend to investigate the scalability of the proposed

scheme using larger computing workloads.

Acknowledgment
We hereby acknowledged the financial support of the

Tertiary Education Trust Fund (TETFund) Nigeria.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Gui Z, Yang C, Xia J, Huang Q, Liu K, Li Z, et al. A

service brokering and recommendation mechanism for

better selecting cloud services. PloS one. 2014; 9(8):

e105297.

[2] Adebisi AA, Adekanmi AA, Oluwatobi AE. A study

of cloud computing in the university enterprise.

International Journal of Advanced Computer

Research. 2014; 4(15):450-8.

[3] Soni A, Hasan M. Pricing schemes in cloud

computing: a review. International Journal of

Advanced Computer Research. 2017; 7(29):60-70.

[4] Gabi D, Ismail AS, Zainal A, Zakaria Z. Solving task

scheduling problem in cloud computing environment

using orthogonal Taguchi-cat algorithm. International

Journal of Electrical and Computer Engineering

(IJECE). 2017; 7(3):1489-97.

[5] Meena M, Bharadi VA. Performance analysis of

cloud-based software as a service (SaaS) model on

public and hybrid cloud. In symposium on colossal

data analysis and networking (CDAN) 2016 (pp. 1-6).

IEEE.

[6] Gabi D, Ismail AS, Zainal A. Systematic review on

existing load balancing techniques in cloud

computing. International Journal of Computer

Applications. 2015; 125(9):16-24.

[7] Zhang Y, Qian C, Lv J, Liu Y. Agent and cyber-

physical system based self-organizing and self-

adaptive intelligent shopfloor. IEEE Transactions on

Industrial Informatics. 2017; 13(2):737-47.

[8] Zuo L, Shu L, Dong S, Zhu C, Hara T. A multi-

objective optimization scheduling method based on

the ant colony algorithm in cloud computing. IEEE

ACCESS. 2015; 3:2687-99.

[9] Chu SC, Tsai PW. Computational intelligence based

on the behavior of cats. International Journal of

Innovative Computing, Information and Control.

2007; 3(1):163-73.

[10] Gabi D, Ismail AS, Zainal A, Zakaria Z, Abraham A.

Orthogonal Taguchi-based cat algorithm for solving

task scheduling problem in cloud computing. Neural

Computing and Applications. 2018; 30(6):1845-63.

[11] Ramezani F, Lu J, Hussain F. Task scheduling

optimization in cloud computing applying multi-

objective particle swarm optimization. In international

conference on service-oriented computing 2013 (pp.

237-51). Springer, Berlin, Heidelberg.

[12] Liu G, Li J, Xu J. An improved min-min algorithm in

cloud computing. In proceedings of the international

conference of modern computer science and

applications 2013 (pp. 47-52). Springer, Berlin,

Heidelberg.

[13] Xu Z, Xu X, Zhao X. Task scheduling based on multi-

objective genetic algorithm in cloud computing.

Journal of Information & Computational Science.

2015; 12(4):1429-38.

[14] Kahejvand V, Pedram H, Zandieh M. Multi-objective

and scalable heuristic algorithm for workflow task

scheduling in utility grids. Journal of optimization in

industrial engineering. 2014; 7(14):27-36.

[15] Pradhan PM, Panda G. Solving multiobjective

problems using cat swarm optimization. Expert

Systems with Applications. 2012; 39(3):2956-64.

[16] Gabi D, Ismail AS, Zainal A, Zakaria Z, Al-

Khasawneh A. Hybrid cat swarm optimization and

simulated annealing for dynamic task scheduling on

cloud computing environment. Journal of ICT. 2018;

17(3):435-67.

[17] Saule C, Giegerich R. Pareto optimization in algebraic

dynamic programming. Algorithms for Molecular

Biology. 2015; 10(1):1-20.

[18] Kalyanmoy D. Multi-objective optimization using

evolutionary algorithms: an introduction. KanGAL

Report. 2011(2011003).

Danlami Gabi et al.

196

[19] Li X, Xu J, Yang Y. A chaotic particle swarm

optimization-based heuristic for market-oriented task-

level scheduling in cloud workflow systems.

Computational Intelligence and Neuroscience. 2015;

2015:81.

[20] Abdullahi M, Ngadi MA, Dishing SI. Chaotic

symbiotic organisms search for task scheduling

optimization on cloud computing environment. In ICT

international student project conference (ICT-ISPC)

2017 (pp. 1-4). IEEE.

[21] Chang HC, Chen YP, Liu TK, Chou JH. Solving the

flexible job shop scheduling problem with makespan

optimization by using a hybrid Taguchi-genetic

algorithm. IEEE Access. 2015; 3:1740-54.

[22] Liu J, Pacitti E, Valduriez P, De Oliveira D, Mattoso

M. Multi-objective scheduling of scientific workflows

in multisite clouds. Future Generation Computer

Systems. 2016; 63:76-95.

[23] Farahabady MR, Lee YC, Zomaya AY. Pareto-

optimal cloud bursting. IEEE Transactions on Parallel

and Distributed Systems. 2014; 25(10):2670-82.

[24] Ramezani F, Lu J, Taheri J, Hussain FK. Evolutionary

algorithm-based multi-objective task scheduling

optimization model in cloud environments. World

Wide Web. 2015; 18(6):1737-57.

[25] Pachorkar N, Ingle R. Affinity aware VM colocation

mechanism for cloud. International Journal of

Advanced Computer Research. 2014; 4(17):956-60.

[26] Calheiros RN, Ranjan R, Beloglazov A, De Rose CA,

Buyya R. CloudSim: a toolkit for modeling and

simulation of cloud computing environments and

evaluation of resource provisioning algorithms.

Software: Practice and experience. 2011; 41(1):23-50.

[27] Eberhart RC, Shi Y. Comparing inertia weights and

constriction factors in particle swarm optimization. In

proceedings of the congress on evolutionary

computation. CEC00 2000 (pp. 84-88). IEEE.

[28] Hosmer DW, Lemeshow S. Confidence interval

estimation of interaction. Epidemiology (Cambridge,

Mass.). 1992; 3(5):452-6.

Danlami Gabi received his Ph.D.

degree in Computer Science from

Universiti Teknologi Malaysia. He is

currently a Lecturer at Kebbi State

University of Science and Technology

Aliero, Nigeria. His research interests

include Complex Algorithm Design for

Distributed Systems, Cloud Computing,

Mobile Edge Computing and Management beyond the

edge.

Email: gabsonley@gmail.com

Nasiru Muhammad Dankolo received

his MSc. degree in Computer Science

at Universiti Teknologi Malaysia in

2018. He currently serves as an

Assistant Lecturer at Kebbi State

University of Science and Technology

Aliero, Nigeria. His research interests

are Machine Learning, Data Mining

and Deep Learning.

Email: nasirdankolo@gmail.com

Abdul Samad Ismail received his

Ph.D. degree in Computer Science from

Aston University, Birmingham UK. His

current position is Professor at the

Department of Computer Science,

School of Computing, Universiti

Teknologi Malaysia. His research

interests are in Wireless Networking,

Cloud Computing, and Network Security.

Email: abdsamad@utm.my

Anazida Zainal received her Ph.D.

degree in Computer Science from

Universiti Teknologi Malaysia, Skudai

Johor, Malaysia. Her current position is

Senior Lecturer at Department of

Computer Science, School of

Computing, Universiti Teknologi

Malaysia. Her research interests are in

Network Security, Intrusion Detection System, Intrusion

Prevention System and Soft Computing.

Email: anazida@gmail.com

Zalmiya Zakaria received her Ph.D.

degree in Computer Science from

Universiti Teknologi Malaysia, Skudai

Johor, Malaysia. Her current position is

a Senior Lecturer at the Department of

Computer Science, School of

Computing, Universiti Teknologi

Malaysia. Her research interests are in

Optimization in Planning, Scheduling and Timetabling,

Machine Learning and Automated Reasoning, Intelligent

System Design and Development, Artificial Intelligence

Programming (Prolog and LISP).
Email: zalmiyah@utm.my

mailto:nasirdankolo@gmail.com

