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1.Introduction 
Cloud computing is a consumable technology of our 

time that allow sharing of resources (e.g. virtual 

machines, storage, bandwidth) to meet the 

exponential demand of cloud end-users [1−4]. Three 

service models associated with cloud computing 

environment include software as a service (SaaS), 

platform as a service (PaaS) and infrastructure as a 

service (IaaS). The SaaS layer of cloud computing 

allows cloud customers to run applications remotely, 

where application delivery is carried out via the 

Internet and manage by a third-party vendor. The 

cloud customers often interact with SaaS layer to get 

their task submitted to the IaaS layer (e.g. datacenter) 

and later receives its processed results via the SaaS 

layer.  

 

 
*Author for correspondence 

The SaaS layer function with the support of PaaS 

layer, providing interactive mechanisms for both 

cloud customers and service providers [5] while PaaS 

allow cost-efficient development and deployment of 

applications [6,7]. On the other hand, the IaaS layer 

provides services for cloud customers in terms of 

infrastructure (e.g. virtual machine) as a service.  The 

IaaS provide a pool of resources of varied types that 

can be leased by cloud customers according to their 

computing requirements.   

 

Currently, due to escalating number of end-users 

accessing the cloud services, providing efficient 

scheduling to meet their QoS expectations has 

become a greater concern. Although, high-level 

research has been conducted in unveiling the 

supremacy of metaheuristic techniques toward 

mitigating these concerns [8], however, the 

metaheuristics are attributed to global and local 
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imbalanced and slow convergence speed which leads 

to insufficient task schedule on cloud virtual 

machines. Thus, affecting the provisioning of 

customers QoS expectation.  The need to improve 

metaheuristic scheduling schemes to provide better 

QoS that can meet end-user’s expectation is 

paramount. The conventional cat swarm optimization 

(CSO) is a metaheuristic technique put forward in 

[9]. This technique mimics the behavior of natural cat 

and has relatively proven better in term of both global 

and local convergence than particle swarm 

optimization (PSO) [9, 10]. 

 

To ensure the conventional CSO algorithm become 

suitable for cloud task scheduling, we adopted the use 

of chaotic process and Pareto dominance and 

developed an NCCSO scheme. In the developmental 

scheme, the chaotic and Pareto dominant strategy is 

used to overcome the problem of local and global 

imbalanced and slow convergence speed. A multi-

objective QoS task scheduling model based on 

execution time and execution cost is then proposed 

upon which our NCCSO scheme was used to solve 

the model on CloudSim simulator tools. 

Experimental results via simulation has shown that 

we developed NCCSO scheme had an outstanding 

performance compared to that of the benchmarked 

schemes. 

 

The contribution of this study is as follows: 

 Development of a multi-objective task scheduling 

model for cloud computing. 

 An improvement is developed for the CSO using 

chaotic and Pareto-dominance approach and the 

resultant solution in solving task scheduling 

problem is cost optimal and minimum computation 

time. 

 Development of an NCCSO task scheduling 

scheme to addressing customers QoS expectations. 

 

2.Related work  
Task scheduling has become a significant research 

topic with the objective of ensuring that every 

computing resources (e.g. virtual machines) are 

equitably distributed on cloud tasks to meet 

customers QoS expectations.  Recent research has 

shown that a set of scheduling strategies (based on 

heuristic and metaheuristic techniques) can solve 

multi-objective task scheduling problem with the aim 

of ensuring customers’ QoS expectation. Although 

metaheuristics techniques can handle the large tasks 

scheduling problem and converges faster than the 

heuristic techniques, their incorporation with chaotic 

process/or some greedy based techniques can further 

increase its performance towards addressing cost and 

time objectives. Researchers that explored the 

concept of incorporating and hybridizing these 

techniques in addressing the concerns of the cloud 

task scheduling problem are discussed in the 

following: 

 

In Zuo et al. [8], a Multi-Objective Ant Colony 

Optimization (MOACO) algorithm is developed to 

minimize the makespan time and customer budget 

cost. According to the researchers, their proposed 

cost model reflects the relationship between customer 

's resource cost and budgetary cost. Their simulation 

results have shown the proposed algorithm can 

achieve the optimum solution for both performance 

and cost.  In Ramezani et al. [11], the researchers 

developed a multi-objective particle swarm 

optimization (MOPSO) algorithm. The results of the 

experiment via simulation with CloudSim simulator 

shows their method can find the optimal solution in a 

reasonable amount of time.  Although hybridization, 

can help improve better quality of solution for end-

user’s service preferences during task scheduling.  In 

Gabi et al. [10], the researchers put forward an 

orthogonal Taguchi-based cat swarm optimization 

(OTB-CSO) algorithm to improve the performance of 

cloud computing systems in term of makspan. The 

researchers incorporated Taguchi Orthogonal 

approach in the local search of the conventional CSO 

to increase its convergence speed which later reduces 

local trapping that led to minimum makespan time. 

However, the algorithm only handles a single 

objective optimization problem. Improving this 

algorithm can help to address a multi-objective task 

scheduling problem.  

 

 Liu et al. [12] developed an improved min-min 

algorithm for cloud computing environment.  The 

researchers aimed at addressing three basic objectives 

(quality of service, dynamic priority model and cost 

of service) for their scheduled task. The simulation 

results from their proposed algorithm when compare 

with the traditional min-min algorithm unveiled that 

it can increase resource utilization rate and execute 

longer task at reasonable times.  In another 

development, Xu et al. [13] put forward a multi-

objective genetic optimization algorithm (MOGA) to 

minimize average completion time, total completion 

time. In their scheduling process, a complex, large 

task was divided into multiple sub-tasks where 

allocation of task of research is carried out based on 

chromosomes encoding. The researchers designed 

three different fitness function to evaluate the fitness 

of each chromosome line with their task scheduling 
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objectives. The simulation results as unveiled by the 

researchers has shown that their developed MOGA 

algorithm can produce faster convergence speed 

which led to better performance.  Khajehvand et al. 

[14] put forward a hybrid first-fit cost-time trade-off 

(FCTT) and workflow planning cost-based (WPC) 

model. Their objective is to minimize task runtime 

and execution cost.  In the schedule method adopted 

by the researchers, each task is assigned a rank using 

a bottom-up traversal technique which allows child 

tasks to first be assigned a rank prior to the parent 

task assignment. The tasks are then sorted by ranking 

them in a non-increasing manner. The researchers 

then adopted the FCTT scheduling algorithm to select 

task whose execution of all parents’ tasks is 

completed. The experimental results via simulation 

shows their proposed FCTT can reduce task runtime 

and allocation cost compared with MOGA and best 

effort (BE) algorithms. However, task updating 

method by WPC can lead to long computation time, 

since the performance of the algorithm depends upon 

it update process.  

 

From the review conducted on related work, 

metaheuristic techniques usually exhibit certain 

limitations such as high dimensional complexity, 

slow convergence speed, local trapping and 

imbalance between global and local optima. All these 

limitations can lead to inefficient task schedule. 

Therefore, an improvement is required to provide an 

ideal solution to cloud task scheduling process in 

cloud computing. This study addresses the concern of 

scheduling of task at the IaaS layer of cloud 

computing with a focus on multi-objective task 

scheduling.  

 

3.Cat swarm optimization and the need 

for improvement 

In [9], the researchers introduced CSO technique that 

mimics common behavior of natural cat.  As put 

forward by the researchers, their proposed algorithm 

operates in two modes; the resting (seeking) and 

chasing (tracing) mode (detail about these modes can 

be found in [9]. A control factor known as the mixed 

ratio (MR) is used to discover if the position at which 

the cat is currently standing is in either seeking or 

tracing mode. The position of the cat signifies 

possible solution sets, while the velocity of the cat is 

associated with a dimension and a fitness value. 

According to [9], as the cat progresses closer to the 

solution (fitness), the cat updates itself with best 

results in the memory continuously until all cats 

achieve the best solution (also known as the fitness) 

[15].   

Although, the conventional CSO exhibit better 

performance in term of convergent speed than PSO 

[9], however, certain limitations are associated with 

the conventional CSO. The global search may not 

always provide a superior solution when its search 

space increases exponentially. Besides, the number of 

cats that usually goes into the global search region of 

the conventional CSO always exceeds that of the 

local search. These can lead to poor convergence 

speed, causing tasks entrapment at the local optimal. 

On the other hand, operation executed by the 

conventional CSO at both global and local searches is 

independently carried out for each iteration. This, 

likewise, causes velocity and position update of the 

conventional CSO to perform a similar process, thus, 

leading to long computation time. Similarly, 

imbalance between global and local search is another 

concern exhibited by the conventional CSO.  

Therefore, there is a need to improve on the 

conventional CSO technique so that efficient 

scheduling can be achieved in a cloud computing 

environment [16]. 

 

4.The Pareto dominance and chaotic 

process 
For any task scheduling problem, the chances of 

locating an optimal solution that will ensure 

minimum execution time and cost is becoming harder 

in a large search space like the cloud environment 

[17]. Due to multi-criteria associated with scheduling 

of task in the cloud, the concept of optimality needs 

to be achieved. Multi-objective optimization is 

characterized with trade-off factors, where each of 

the trade-off that serves as a solution correspond to a 

specific order of importance of the objectives [18].  

 

In another development, dynamic and nonlinear 

systems usually exhibit certain processes that look 

similar to a deterministic chaotic process. The chaotic 

process contains a very high sensitivity to initial 

condition and parameter change. It is derived from 

the term chaos known as randomness of a simple 

dynamic system. This motivates its use as a source of 

randomness in optimization theory on various fields. 

Recent research, e.g., in [19] have shown the 

adoption of chaotic sequences in stochastic 

optimization techniques for providing population 

diversity in the search space which ensured global 

convergence and avoidance of local optima 

entrapment. The equation of the chaos is shown in 

Equation (1) and the logistic course adopted in [20] 

will be used in this paper due to its successful 

application to address optimization problems. 

      (  (    ))            (1) 
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where*  +         is the sets of numbers that are 

generated from logistic chaotic map;    ,   - is the 

control parameter of logistic equation;    (   ) is 

the    chaotic number and    (   ) and     
*                      + .  
 

 The incorporation of chaotic approach provides 

better tasks mapping sequence and overcome 

premature convergence to reduce task execution time 

[19].  In another development, Pareto-Optimization 

can be used to provide cloud end-users with many 

non-dominant solutions as possible, by allowing sets 

of trade-offs between execution time and execution 

cost [21, 22]. These will guide the end-users to select 

their service preferences. Since the actual cloud end-

users’ service preference is very difficult to predict in 

cloud computing, cloud end-user’s attention can be 

restricted on trade-off points P* known as Pareto 

front, where cloud customers select their service 

preference in terms of the virtual machine that 

guarantees minimum execution time and cost [14].  

Since in cloud computing environment, end-users 

often affected by their budget constraint, [15], several 

issues may still surface when several cloud end-users 

request cloud resources at the same time. The cloud 

end-users not only have to manage conflicting 

requirements under its budget constraint, but also 

have to manage trade-off between time and cost in 

such a way that could guarantee the execution of their 

task in minimum time [23]. The main goal of this 

research is to make sure that the Pareto optimal set 

are discovered for all tasks schedule based on the 

proposed scheduling technique. This study used the 

following definition in solving our multi-objective 

task scheduling problem: 

 

Definition 1.1 Multi-objective Optimization problem 

A typical multi-objective optimization problem can 

be expressed as a minimization of a   components of 

a vector function    in the form [11]:  

 M  ⃗⃗⃗  (  ⃗⃗⃗  )  ,  (  ⃗⃗⃗  )   (  ⃗⃗⃗  )   (  ⃗⃗⃗  )    (  ⃗⃗⃗  )-      (2)     

                 

where, vector of decision variable is given as 

  ⃗⃗⃗       ⃗⃗⃗   *     + such that      
      

*       + are the objective functions in a universe 

 .   ⃗⃗⃗  (  ⃗⃗⃗  ) is the multi-objective function. 

 

5.Problem description  
The problem is first represented by considering a set 

of independent tasks to be schedule on sequence of 

heterogeneous virtual machines for processing. 

  *   ∣∣      +, are the sets of virtual 

machines and   is the number of virtual machines. 

  *   ∣∣      + represents the tasks groups and 

  is the overall number of tasks [22]. The goal of the 

scheduling problem is to dynamically assign each 

tasks        *       +  to appropriate cloud virtual 

machines        *       + in order to determine 

the sequence as well as the timing of task executed 

and the amounts of cost for executing the task. This is 

followed with a task scheduling model that 

accommodate various objectives, such as the 

minimization of execution time and minimization of 

the execution cost (if tasks incur a cost) for a 

specified demand. We assume the following 

descriptions for the scheduling problem formulation: 

(i) Two datacentres are considered for the schedule; 

(ii) The datacentres belong to the same service 

provider, where the cost of transmission is ignored; 

(iii) Tasks are assigned to virtual machine 

sequentially and the total number of all possible 

schedules is (  )  for the problem with    number of 

task and   number of virtual machine; (iv) Pre-

emptive scheduling allocation policy is not allowed; 

(v) The cost of using a virtual machine for a time 

quantum varies from one virtual machine to the other.  

By considering an entry such as the Expected Time to 

Compute (   ) matrix in Equation (3), our goal is to 

make sure each tasks are dynamically assign to 

virtual machine   with the right computing capacity 

in order to find the optimum value of the total 

expected execution time and total expected execution 

cost incurred in executing all tasks. 
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Let *          + denote set of tasks independent of 

one to another and *          + denote the set of 

heterogeneous virtual machines. Suppose      
*       + is scheduled on a   , the execution time  

      of all tasks processed on a    is computed 

using Equation (4) (Ramezani et al., 2013). The total 

execution time       of all tasks    processed on all 

virtual machines        *       + is computed 

using Equation (5) [24]. 

 

      ∑    
 
     

  

           
                      (4) 
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              (5) 
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Where,       is the execution time of running tasks 

on one virtual machine;     is equal to one 1 if task    
is assign to    otherwise,      ;     is the task 

whose length is given in Millions Instructions (MI); 

       is the    speed whose unit is in Million 

Instructions Per Second (MIPS);      is the number 

of processing element of a virtual machine    

 

The execution cost model is a multi-objective model 

that incorporates the execution time model as shown 

in Equation (5). This model is based on pay-as-you-

go basis, where cloud customers are charged 

according to time quantum, they have used the virtual 

machines.  The time quantum [25], is the smallest 

discrete unit to compute cost of using a virtual 

machine. In this paper, we assume the cost of 

memory and central processing unit (CPU) are all 

included in the monetary cost of using a virtual 

machine. For instance, assume for every one-minute 

N of using a virtual machine, the price specified by 

the service provider is 0.5 dollars per hour(/hr), then, 

for a time period in minutes of using a virtual 

machine, the cost will be computed as (     )    

dollars.   

 

Therefore, virtual machines with highest execution 

time will always return the lowest execution cost and 

vice versa. Assume the cost of executing tasks on a 

virtual machine per hour (hr) is known, Equation (6) 

hold for cost           of executing tasks    on a 

virtual machine    per time quantum in second [11]. 

         

  
 

    
 ∑            
 
    

  

           
        (6) 

where,        is the monetary cost of one unit     in 

US dollar per hour. 

 

Such that:  

     {
                                             ( )

                                                                     
             

When more than one       *       } are used 

by a service provider to execute several tasks, the 

total tasks execution cost,           , by all virtual 

machines in a datacenter iscomputed using Equation 

(8). 

             
 

    
 ∑ ∑           

 
     

   
  

           

                                                     (8) 

The multi-objective task scheduling mathematical 

model can therefore by expressed as follows: 

       ( )  [ (      )   (          )]      (9) 

Subject to:     

∑                     

   

        *   +      

 

Equation (9) is the multi-objective optimization 

model to be solved by applying our proposed multi-

objective scheme. 

 

6.The developed task scheduling scheme 
The proposed NCCSO scheme consists of two phases 

(global and local search) that combined and solved 

the optimization problem. The following attributes 

were first considered to arrive at an optimal solution; 

the tasks number, budget costs, the number of virtual 

machines and other relevant parameters such as count 

dimension to change (CDC), seeking range of 

selected dimension (SRD), the seeking memory pool 

(SMP) and self-position considering (SPC) of the cat. 

Each cat symbolizes the choice of a virtual machine 

used for the task schedule. This is encoded in [1 × n] 

vector, with n belonging to a number of tasks. We 

assumed that each virtual machine in a datacenter has 

different cost per time quantum (heterogeneous). 

Based on the expected time to compute (ETC) 

matrix, when the tasks are schedule by the NCCSO 

scheduler, each task is assigned a cat (where the cat 

represents the virtual machine).  Every cat has 

dimension D with n tasks assigned and the model 

associated with each cat are based on two objective 

function; the total execution time ( (      )) and 

total execution cost ( (          )). When a cat 

traverses all tasks, the cat formed a feasible solution 

to the problem.  Each cat has both position and 

velocity vector. The position of the cat symbolizes 

the solution that is attained by the cat. A Mixed Ratio 

(MR) is used to specify two group of cats (seeking 

and tracing).  The cats are moved into either seeking 

or tracing mode at random using value specified by 

the MR. When the cats reach their desired target, their 

fitness value are computed based on defined 

objective of the scheduling problem (       and 

          ). 

 

A dominant strategy is used to compare the optimum 

solution and is stored at the archive, where the final 

velocity that formulates the latest velocity is selected.  

This velocity returns optimal solution which is used 

to compute the new position of the cat as shown in 

Equation (10). 

 

                     ⃗            (10) 

 

Where,       is the position of the Cat;  ⃗     is the 

velocity attain by the cat. In order to ensure the 
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quality of the solution, avoid being trapped at the 

local optima, the quality of the feasible solution is 

evaluated using the fitness function. The fitness 

function is set based on an optimization model of the 

scheduling problem. As earlier reported, the optimal 

solution of each cat is stored at the archive.  Every 

cat is assessed with a value of fitness functions and 

all Pareto optimal solutions that are stored at the 

archive. Hence, the fitness function    (  ) using 

Equation (11) was used for the evaluation: 

 

   (  )  ∑     (  ⃗⃗  ⃗)
 
    {   ⃗⃗  ⃗          }     (11) 

 

Where,   is the number of objective functions and 

   is the preference weight for every objective 

function (  (  ⃗⃗  ⃗)). Algorithm 1 shows the pseudocode 

for the developed NCCSO task scheduling algorithm. 

 

 

 

Algorithm 1: NCCSO-based algorithm 

INPUT:  Task number, lengths, initialize mixed ratio MR; virtual machine (VM) number and their 

required attributes (number of processing elements, unit cost of using one VM);  

 Generate an empty non-dominant archive of (n × m) size of uniform random number [0, 1]  

 Compute all cats according to defined objective (Fitness) functions 
OUTPUT: Optimal Task Schedule  

 Identify best optimal solution for the trade-off values. 

Compare fitness functions of all cats, keep position with best fitness value into the archive 

1. While condition is not reached 

2. increment_iteration_number      
3. DO 
4. If (      )  

5. Generate   (           ) copies of      cat  

6. Change at random the dimension of cats as per     using        mutation operation  

7. Determine the fitness of changed cats. 

8. Discover suitable cats based on their     fitness values. 

9. Else 

10. Chaos (): chaotic generated number according to Equation (1) 

11. Calculate the fitness values of the n experiments using Equation (11) and store Pareto optimal 

value in the archive 

12. Endif  

13.    (             ) 

14.               

15.                 // current best position becomes the global best position 

16. If (termination condition reached) 
17. Output position of best minimum total execution time  

18. Output position of the best minimum total execution cost  

19. Else  
20. Go to step 2 

21. Endif 

22. Endif 

23.  EndWhile 

 

Simulation environment  

CloudSim 3.0.3 [26] tool was installed on Eclipse-

Java-Luna-SR2-win32-x86-64 for the simulation. 

The developed NCCSO task scheduling scheme is 

compared with Multi-Objective Ant Colony 

Optimization (MOACO) [8], Multi-Objective Particle 

Swarm Optimization (MOPSO) [11] and Min-Min 

[12] task scheduling schemes. The choice of 

properties for the datacenter host, task and virtual 

machines were selected as used in [16]. The 

estimated cost (0.17$ + 0.05$=0.22$/hr) of using a 

unit virtual machine for a time quantum  is based on 

(Ramezani et al., 2015), while the selected values for 

inertia weight and coefficient factors (    ) for the 

MOACO, MOPSO, and NCCSO were based in [27]. 

The parameter settings for the scheduling algorithms 

are; 1:) MOPSO (Particle size:100, Self-recognition 

coefficients (    )  2.0, Uniform random number 

(  )  [0,1], Maximum iteration:1000, Inertia weight 
( ): 90-40%, Mixed ratio:2%); 2:) NCCSO (Cat 

size:100, Count Dimension to Change: 5%, Self-

recognition coefficients  (  )  2.0, Uniform random 

number (  )  [0,1], Maximum iteration:1000, Inertia 

weight ( )  90-40%, Mixed ratio: 2%) and 3:) 

MOACO (Pheromone persistence     0.3, Importance 



Danlami Gabi et al. 

192 

 

of pheromone ( ):1, Importance of resource innate 

attribute ( ):1, Pheromone evaporation value (  ): 

0.3, Iteration number:1000, Number of ant       ).  

 

7.Simulation results and discussion 
In order to provide a concise explanation on the 

results obtained, we scheduled task instances from 20 

to 100 on 20 heterogeneous virtual machines. Ten 

(10) independent simulation runs were conducted and 

the efficiency of the developed NCCSO was 

revealed. Table 1 shows the results of the average 

value of the simulation runs. Table 2 shows 

improvement gained by the developed NCCSO task 

scheduling scheme compared to the benchmarked 

schemes. The performance improvement is computed 

using Equation (12) [10]. To further reveal how 

significant our developed NCCSO over the 

benchmarked algorithm. 

 

PIR(%) = 
                    (             )                      (     )

                    (             )
 

            (12) 

 

In Table 1 precisely, Min-Min scheduling scheme 

showed reduction in execution time and execution 

cost compared to MOACO, MOPSO and NCCSO 

schemes when 20 to 50 task instances are scheduled 

on virtual machines. As the task scheduling intervals 

changes over time (see task instances from 70 to 

100), its performance degrades further.  This is 

because, unlike the metaheuristic, the heuristic 

techniques usually performe better with small task 

instances. When the task sizes become larger, their 

performance is seen degrading often at times. This 

makes the Min-Min scheduling scheme not suitable 

for scheduling tasks on cloud computing environment 

where tasks instances are unpredictable in numbers as 

they arrive the cloud datacenters. The MOACO task 

scheduling scheme likewise performed better with 20 

to 40 tasks instances scheduled on heterogeneouse 

virtual machines. Its performance suddenly degrades 

with increase in task sizes.  

 

This can be attributed to the traversing process of the 

ant colony technique as its convergence speed tend to 

be slower, due to tasks increase in the scheduling 

process which normally causes its entrapment at the 

local region. In another development, the MOPSO 

task scheduling scheme shows better improvement 

when 50 to 100 tasks are schedule on heterogeneous 

virtual machines compared to MOACO and Min-Min 

scheduling schemes. Although, Min-Min scheduling 

schemes shows better improvement with 20 to 30 

tasks instances scheduled on 20 heterogeneous virtual 

machines, the results revealed that, as task instances 

gets larger, our developed NCCSO scheduling 

scheme gets better compared to all the benchmarked 

schemes in term of minimum execution time and 

execution cost. This shows that the developed 

scheme can adapt fluctuating tasks sizes, making it 

suitable for cloud computing environments.  To 

further unveil the advantages of our developed 

scheme over the benchmarked schemes, Table 2 

shows the results on performance improvement 

gained. In the overall performance, our proposed 

NCCSO task scheduling scheme was able to 

minimized the total tasks execution time of 42.87%, 

35.47% and 25.49% compared to Min-Min, MOACO 

and MOPSO task scheduling schemes, and also 

outperformed the benchmarked algorithm in term of 

execution cost with 38.62%, 35.32% and 25.56% 

improvement. 

  

From the simulation results, it has been shown that 

our developed NCCSO task scheduling scheme has 

ability to find the best virtual machines with 

minimum execution of time and cost to execute end-

user’s tasks compared to the benchmarked schemes. 

Figures 1 and 2 is used to further illustrated the 

performance of our proposed NCCSO scheme over 

the benchmarked schemes. This performance is 

attributed to the incorporation of chaotic and Pareto 

based approaches at the local search procedure of the 

conventional CSO. This helps in traversing all cats 

(virtual machines) and find best virtual machines 

suitable for the cloud end-users by overcoming 

premature convergence at the local search process of 

the metaheuristic technique. This performance can 

also be attributed to the fact that, our developed 

NCCSO task scheduling scheme exhibits an 

intelligent updating of positions while reaching at 

best solutions. 
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Table 1 Comparison of execution time and execution cost 

Task Improved Min-Min MOACO MOPSO NCCSO 

 Execution 

time (s) 

Execution 

cost ($)/hr 

Execution 

time (s) 

Execution 

cost ($)/hr 

Execution 

time (s) 

Execution 

cost ($)/hr 

Execution 

time (s) 

Execution 

cost ($)/hr 

20 21.46 4.72 27.54 6.05 26.86 5.90 25.40 5.47 

30 39.16 8.61 56.32 12.39 70.29 15.45 53.58 11.78 

40 60.44 13.29 87.56 19.26 92.29 20.59 53.92 11.86 

50 66.62 14.65 163.49 35.96 147.28 32.40 129.19 28.42 

60 209.82 46.15 243.89 53.65 206.50 45.43 162.77 35.80 

70 318.81 70.13 312.78 68.10 287.21 63.18 240.12 52.82 

80 505.02 111.10 407.54 89.65 334.99 73.69 312.28 68.70 

90 768.78 169.13 674.89 148.47 538.09 118.37 331.62 72.94 

100 1096.40 241.21 754.90 166.07 663.34 145.93 454.52 99.98 

 

Table 2 Performance improvement rate (PIR%) 

 Improved min-

min 

MOACO MOPSO NCCSO 

Total execution time 3086.51 2732.94 2366.85 1763.40 

PIR (%) over Improved Min-Min  11.455 23.31 42.87 

PIR (%) over MOACO   13.39 35.47 

PIR (%) over MOPSO    25.49 

Total execution Cost 631.84 599.60 520.94 387.77 

PIR (%) over Improved Min-Min  5.10 17.55 38.62 

PIR (%) over MOACO   13.11 35.32 

PIR (%) over MOPSO    25.56 
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Figure 2 Comparison on the total execution cost 

 

8.Statistical significance based on 

confidential interval 
To further elaborate performance of our developed 

NCCSO task scheduling scheme, a computed 

statistical significance on the scheduling schemes 

based on 95% confidential intervals are provided in 

Table 3. The computed value is derived using 

Equation (13) [28]. 

 

Confidential Interval (CI)=  ̅    
 

√ 
,                (13) 

 

where,   ̅ is the mean;   represent the t-distribution 

that is derived from the t distribution table;   is the 

standard deviation of the sample data derived after 

running the task instances on a virtual machine and   

represent the number of samples. The computed 

confidential intervals on the scheduling schemes will 

help justify how significant our scheme for the 

scheduling performance in term of tasks execution 

time. The smaller the value of the confidence 

intervals shows how precise our estimate compared 

to the benchmarked schemes. Table 3 shows the 

results on 95% confidential interval computed after 

20 simulation runs. The results are to show whether 

execution time obtained by our developed NCCSO 

scheduling scheme is significantly less compared to 

the benchmarked schemes for all task instances. It 

has been shown in Table 3 that; the value obtained by 

our developed NCCSO is significantly less 

considering the benchmarked schemes. These means 

there is a significant difference between the 

performance of our developed NCCSO scheduling 

scheme and that of the benchmarked schemes in term 

of execution time. It can be concluded that our 

developed NCCSO scheduling scheme can provide 

better service to the cloud end-users and meet cloud 

providers satisfactions.  

 

 

Table 3 Comparison of execution time 

 Improved MIN-

MIN 

MOACO MOPSO NCCSO 

Degree of freedom 9 9 9 9 

Confidence level 0.025 0.025 0.025 0.025 

t-distribution 2.262 2.267 2.267 2.262 

Mean 342.94 303.21 262.98 195.93 

Standard deviation 378.38 264.49 218.04 148.25 

Lower bound 72.28 114.02 107.01 90.04 
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 Improved MIN-

MIN 

MOACO MOPSO NCCSO 

Upper bound 613.60 492.40 418.95 254.14 

95% confidential interval (72.28,613.60) (114.02,492.40) (107.01,418.95) (90.04,254.14) 

 

9.Conclusion  
In this paper, we unveiled the efficiency of our 

developed NCCSO scheduling scheme on the 

CloudSim simulator tool. The obtained results had 

shown that our developed NCCSO scheduling 

scheme is promising in providing the minimum 

execution time and execution cost compared to the 

benchmarked schemes. This was as a result of 

incorporation of chaotic process and Pareto-

dominance techniques within the local search process 

of the conventional cat swarm optimization. Causing 

NCCSO scheduling scheme to overcome global and 

local imbalanced as well as premature convergence, 

which led to its best performance in term of the 

minimum execution time and execution cost.  The 

paper further revealed how significant the 

performance of the NCCSO scheme. As a result, 

computation based on 95% confidential intervals to 

show the statistical significance of the developed 

NCCSO was revealed. It was concluded that, the 

developed NCCSO scheduling scheme can meet 

cloud customers QoS expectations. In the future, we 

intend to investigate the scalability of the proposed 

scheme using larger computing workloads. 
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