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1. Background  
With the immense growth of online information due 

to Internet, text-categorization has become a very 

significant technology to classify a large number of 

documents to make them useful. The concept of text 

classification is to categorize textual data into one or 

more predefined categories [1−3]. It is not possible to 

manage manually these big datasets. As a result, we 

witness the development of various machine learning 

and data mining methods. These methods are being 

used for automatic recognition of the patterns in large 

data sets for gaining useful information. 

 

 
*Author for correspondence 

We can also define this problem as: assigning a 

document D to some pre-determined set of categories 

|C|. Where pre-determined set of categories, C, is 

defined by equation 1. 

                         (1) 

 

In short, text classification is used for categorizing 

documents into predefined classes based on their 

contents. This is an automatic assignment process for 

text categorization. Text classification is the initial 

requirement of Text Retrieval Systems (TRS), which 

digs texts in response to user queries. Nowadays, 

different ML algorithms are in practice to manage 

and organize documents for Information Retrieval 

Systems (IRS) [4]. 
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For the last three decades, the World Wide Web (WWW) has become one of the most widely used podium to generate an 

immense amount of heterogeneous data in a single day. Presently, many organizations aimed to process their domain 

data for taking quick decisions to improve their organizational performance. However, high dimensionality in datasets is 

a biggest obstacle for researchers and domain engineers to achieve their desired performance through their selected 

machine learning (ML) algorithms. In ML, feature selection is a core concept used for selecting most relevant features of 
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methods. The focus of this study is three feature selection algorithms, i.e., Principal Component Analysis (PCA), Chi-
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measure =0.911) but at the same time suffered with model building time. 
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The biggest challenge for existing supervised 

learning methods to classify automatically text is that 

they require sufficient documents to learn accurately.  

 

In most of the cases, a supervised learning approach 

is used for training a text classifier, where a learning 

algorithm provides a set of Labeled training instances 

to process the data. The labeled training instances for 

term L is defined in equation 2.  

  {       )                     (2) 

 

Where     representing i
th

 training document and    is 

the matching category label of   . 

After that the classification algorithm produces a 

prediction function P that maps documents to 

intended categories, as presented in equation 3 

below: 

P:D      C     (3) 

 

For improving the classifier’s accuracy of 

generalization (e.g. resisting the curse of 

dimensionality to improve prediction performance), it 

is common practice to acquire feature selection 

algorithms. The feature selection is a process to select 

an optimum subset from larger pool of feature set. 

Figure 1 depicts the generic process of feature 

selection. The searching process on the feature pool 

is applied in the procedure of creating subsets to 

obtain best performance from classifier. Searching 

algorithms could be heuristic search, complete search 

and random search. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Feature selection process 

 

The term curse of dimensionality refers to a 

phenomenon. Curse of dimensionality describes the 

consequences of performance and accuracy due to 

high-dimensional data in corpus. This problem 

originates when the used algorithm does not scale 

well to high-dimensional data. Time and memory are 

the two exponential variables in processing of data. 

In most of the cases, the maximum number of 

features results in degradation of classifier 

performance. Studies [5, 6] had pointed out that only 

solution to this problem can be found by changing the 

algorithm, or bring data into a lower dimensional 
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space by pre-processing. Feature selection and 

extraction are the two approaches for dimensionality 

reduction [7, 8]. The output of the process of feature 

selection is a subset of available features; while 

feature extraction refers to a method that digs out 

subset of new features by inserting some new rules 

on the existing features (See Figure 2). 

 

 

 
Figure 2 Feature selection and extraction process 

 

The Bayes decision rule deals with the initial space 

R
N
 and the reduced space R

M
 of feature extraction. 

According to Bayes decision rule, given a feature 

space       find a mapping in:  

     )         (4) 

 

Where M < N. 

 

This transformed feature vector       continues 

(most of) the information or structure in R
N
. An 

optimal mapping y=f(x) will be one that can result 

into no addition to the minimum probability of error. 

 

In spite of numerous texts classification applications, 

spam traffic become a serious challenge for search 

engines and filtering systems. Better detection of 

these unwanted messages can only be obtained from 

improved text classification techniques. 

 

Dimensionality Reduction (DR) is an important task 

in machine learning to reduce the number of random 

variables under consideration. DR can be divided into 

feature selection and feature extraction process (see 

Figure 3). 

 

Figure 3 shows many applications of feature 

selection and feature extraction techniques. These 

techniques include text mining, image processing, 

ECG Signals etc. To obtain better results in a text 

classification, we have to identify the relevant 

features from data. Some other approaches, like 

pruning and clustering, can be used to reduce 

dimensionality. These techniques can also be helpful 

in improving performance of text classification.  

 

This study provides some unique contributions to the 

existing knowledge base. First, this is a 

comprehensive study conducted to validate the 

importance of feature selection for achieving 

prominent results. Second, authors have discussed 

some typical applications of machine learning; which 

needs the feature selection process. Third, the 

discriminative capability of different feature selection 

process is discussed.  

 

The rest of the paper is structured as follows. In 

Section 2, we presented related work. In section 3, 

we have discussed the taxonomy of feature selection 

approaches.  Section 4 covers the applications of 

feature selection. In section 5, we describe the 

challenges faced to retrieve appropriate features. In 

section 6, we present a performance evaluation for 

comparing three well-known machine-learning 

approaches. Finally, in section 7 we present 

concluding remarks. 
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Figure 3 Approaches used for reduction of dimensions 

 

2. Related work 

Gilbert et al. [9] coined the idea to use ML 

algorithms for detection of cybercrime threats. 

Cybercrimes is an important issue due to its growing 

global scale and significant impact on people lives 

and national/global economies. Researchers have also 

highlighted the importance of unique feature 

selection for accurate classification of network traffic 

for malign or benign. The technique of feature 

selection is one of the active research areas in the 

domain of data mining. The technique of feature 

selection has been applied in many domains 

including image retrieval [10,11],intrusion detection 

[12], text mining [13],topic detection[14],spam email 

filtering[15], SMS spam filtering[16], author 

identification[17], web page classification[18] and 

sentiment analysis[19].The most well-known 

application of text classification is web spam 

filtering. Search engines may also take advantage of 

text classification techniques to return more accurate 

and desired results to the end user [20]. 

 

Nowadays, two most famous approaches for text 

classification are supervised and un-supervised text 

classification. As name implies, a supervise machine 

learning algorithm needs supervisor. A chunk of 

training data and chunk of test data is needed, during 

the training phase. The training phase is supervised as 

the correct categories or classes have to be assigned 

first. In un-supervised machine learning methods, the 

applied algorithm extracts the rules or attributes for 

classification.  

 

For the accurate categorization of documents, there 

exist many algorithms of machine learning. Some of 

such important algorithms are Support Vector 

Machine (SVM), decision trees, inductive learning, 

neural networks, k-Nearest Neighbors, and Naïve 

Bayes classifiers. These algorithms have been used 

extensively to develop document categorization 

systems. 

 

A comprehensive survey on text classification was 

conducted by Sebastiani [21]. Sebastiani discussed 

three different areas, i.e. document representation, 

classifier construction, and classifier evaluation. 

Additionally, the writer reported the new domains of 

applications, like dealing with noisy data in optical 

character recognition and the use of automatic text 

classification in speech recognition.  

 

In their study, Kohavi and John [22] compared 

different feature selection techniques. They found 

that chi square statistics and information gain (IG) 
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were the most effective parameters for optimizing the 

results of classification.  There is a vast literature 

available on feature selection methods; for instance, 

see, [23─25] for thorough analysis of feature 

selection methods and many references. 

 

3. Taxonomy of feature selection  
As discussed in background section of the paper that 

there are two approaches to solve dimension 

reduction curse from large data sets i.e. feature 

selection and feature extraction. Feature selection is a 

well-studied problem and its main objective is to 

speed up classifier results with accuracy. There are 

three main types (See Figure 4) of feature selection 

methods; which are mostly discussed in different 

studies[26, 27].The filter technique uses independent 

mining algorithms along with general characteristics 

of training cases [28].The Wrapper technique is 

based on the analysis of relationship between feature 

subset selection and relevance. Here, the feature 

subset selection refers to the optimal feature subset 

selection. The wrapper technique attempts to find 

optimal feature subset that can be adapted to some 

specific mining algorithm [29]. The embedded 

technique builds on independent criteria. This 

criterion is used to select optimal feature subsets that 

have known cardinality [29].  Wrappers and 

embedded approaches need a frequent classifier 

interaction during the construction of feature set, 

while the filter scheme does not interact with 

classifier during feature construction process. In the 

feature selection process, more time is required for 

classifier interaction. The classifier interaction may 

also be used to adapt feature selection technique to a 

particular learning model [30]. 

 

 
Figure 4 Classification of feature selection 

 

The feature selection process can be thought of as 

selection of best words from a document that can 

help to categorize that document. This process 

consists of four major steps. These steps are 

generation of subset, evaluation of subset, criteria for 

stopping, and validating results [31]. 

 

Various criteria of feature evaluation are used to 

select optimal subsets in the feature selection process. 

The algorithms used in each evaluation criterion may 

produce different results for a given feature subset. 

The five important feature evaluation criteria include 

measures of information, measures of distance, 

measures of dependency, measures of consistency, 

and measures of classification error-rate [32]. 

 

Feature selection technique is also called attribute or 

variable selection technique; which is conceived to be 

a very significant preprocessing step in ML domain. 

Better selection of features will lead to construction 

of better model, while irrelevant and redundant 

features could give poor results to classifier and 

subsequently will take more computational time [32]. 

Therefore, the primary objective of most of the 

researchers in feature selection process is to explore 

relevant features and remove irrelevant and 

redundant instances. Through this process, we can 

speed up the data mining algorithms. This increased 

speed of algorithms can ultimately improve 

predictive accuracy of classifier. Many induction 

algorithms are already incorporating different 

approaches to eliminate the irrelevant features.  

 

3.1Filter approach  

The filter approach is based on the selection of 

variables regardless of induction model. The feature 

selection is based on the general characteristics of 

variables i.e., distance between classes and statistical 

dependencies i.e., statistical score value is assigned to 

each feature. This method is computationally 

efficient because it acts independently to induction 

method. However, this technique is blind with any 

interaction among other features. This technique can 

ignore features that are not important by themselves. 

These features, when combined with other features, 

can be important [33]. Filter approach can be further 

divided into two categories i.e., global and local. This 

categorization is based on the fact that whether a 

singular or multi class-based score is assigned to any 

feature [34]. Chi squared test, information gain, 

document frequency, improved Gini index and 

correlation coefficient scores are some good 

examples of filter method. Figure 5 depicts the 

working of the filter model. 
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Figure 5The Process of filter model 

 

Description of a general algorithm of filter approach 

can be mathematically defined as:  

For given data set Ds={F, L} (where F and L   

represents the feature set and labels respectively) 

The algorithm begins with   , such as   = {Ø} or 

         or      . Mi(Independent Measure) 

is used to evaluate each generated subset Fg and its 

comparison with the value of the last optimal subset. 

The search stops when the stopping criterion Ø is 

met. The outcome of this process is Fopt, the current 

optimal feature subset. 

  

3.2Wrapper method 

Wrapper method is based on Support Vector Machine 

(SVM) algorithm. It is one of the most widely studied 

technique in the domain of machine learning. A 

learning algorithm is used by wrapper method for 

subset evaluation. Figure 6 demonstrate the general 

wrapper approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 The Process of wrapper model 
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The wrapper method uses a predefined classifier to 

search for a subset of features. It then uses this 

classifier to evaluate the selected subset of features. 

The selection and evaluation of subsets of features 

continues until the desired criterion of quality is met. 

 

In wrapper method, the classifiers are predefined and 

considered as black box. During the search step, the 

wrapper method produces a set of features. During 

the evaluation step, the predefined classifier is used 

to estimate the performance of the subset of features. 

The results of this step are used to refine the search 

step in the next iteration of the process. The final 

feature set is the one whose estimated score is the 

highest. This feature set is then used to learn the 

classifier. The resultant classifier is evaluated using 

an independent feature set. This feature set is the one 

not used during the training [35]. O(2m) is the size of 

search space for “m” features in wrapper technique. 

Therefore, to perform an exhaustive search one needs 

a small value of “m”. 

3.3Embedded models 

The wrapper technique uses a predefined classifier to 

evaluate the quality of the subset of features. Multiple 

time execution of classifier to assess the selected 

subsets of features makes wrapper model 

computationally expensive [36]. Embedded method 

requires less computational cost to interact with 

learning algorithm as compared to wrapper model.  

This method is also related to feature dependencies. 

This technique takes into account the relationship 

between input/output features. This technique also 

provides a selection of optimal feature subsets for a 

known cardinality using an independent criterion 

[37]. Figure 7 illustrate the process of feature 

selection. The embedded model looks into the 

features that contribute the most to the performance 

of classification algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 The process of an embedded model 

 

The embedded method technique uses a sequential 

forward selection method. At the beginning, we have 

an empty set of features. All possible subsets of 

cardinality are searched. This search is based on 

allocation of feature value. This feature value is 

derived from the remaining feature subsets. Once an 

optimal subset of cardinality is found, this subset is 

evaluated using an independent criterion. The 

evaluation result is compared with the evaluation 

results of the previous optimal subset of cardinality. 

The embedded method then uses a learning algorithm 

to evaluate the performance of the current optimal 

subset. The results of this performance evaluation are 

then compared with the performance evaluation 

results of the optimal subset at cardinality. The output 

of the embedded method is a final optimal subset of 

features according to stopping criterion.  

 

4. Applications of feature selection 
Usually, a number of problems are encountered 

during data collection. These problems may include 

high level of feature dependency, a large number of 

features, and irrelevant features. The process of 

feature selection deals with these problems using a 
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ML tools. These tools help to select feature or feature 

subset that can be used for effective learning of 

algorithms [38]. Presently, various applications use 

feature selection process. The consideration of 

appropriate feature selection in  ML is a subject of 

considerable ongoing research and plays an important 

role in various applications.  We are presenting some 

successful applications in followed sections. 

 

4.1Text categorization 

The size of data on World Wide Web is growing 

exponentially due to different internet applications 

like emails, online social networks (OSN) etc. As 

such, the significance of automatic text categorization 

and clustering has increased. Kumar and Minz [39] 

reported that thousands of features exist in mostly 

every text document. Therefore, in order to use 

mining algorithms for classifying text documents 

effectively, feature selection process is considered 

very important. Studies exist that have used 

combination of feature selections process and 

Information Gain Ratio (IGR) for classifying various 

types of text data such as lyrics [40] and poems 

[39,41]. 

 

4.2 Remote sensing 

The remote sensing image classification is another 

important task in feature selection process. A study 

[42] has highlighted and explained various 

issues/challenges in feature selection process and 

hyper-spectral remote sensing image analysis. 

Another study [43] proposed pre-processing 

techniques that can be used for classification of 

hyper-spectral images (HSI). These techniques 

emphasize on the use of feature extraction and 

feature selection. To improve the classification 

performance of hyper-spectral images, a new method 

was proposed by [44]. This method is based on 

selection of a subset of bands from a HSI. 

 

4.3Intrusion detection 

The use of internet is exponentially growing all 

around the world due to esteem benefits of data 

sharing. However, today network security is the 

biggest challenge for internet community. Therefore, 

security of computer networks is an important issue 

to safeguard these networks against possible intrusion 

from hacker/attackers [45].  Intrusion detection is one 

of the ways computer network security can protect 

computer networks. Feature selection technique is 

used to classify various system activities as legitimate 

activities or possible intrusion activities. 

 

 

4.4 Image retrieval  

The exercise of image collection from different 

sources, like military, medical and civilian equipment 

has increased with fast pace. These images should be 

engineered before they can be used for any 

information-related purposes. This image engineering 

should be done in such a way that images can be 

effectively browsed, retrieved, and searched [46]. 

Silva et al. discussed the importance of image 

retrieval in medical sciences; especially in diagnosis, 

surgical planning, therapy process, medical reference, 

and training [47]. Another study [48] suggested that it 

is possible to scale the retrieval of content-based 

images of large size. However, high-dimensionality 

can create problems. A semantic web search engine 

(SE) provides an ability to effectively browse, search, 

and retrieve the web content. A semantic web search 

engine is heavily dependent on accurate feature 

selection process for providing better services to its 

users. 

 

5. Challenges with feature selection  
5.1Dealing with large dimensional data 

With the exponential growth of internet, the amount 

of data collected has increased. This data can be in 

various forms such as text documents, images, and 

videos. This variety of data indicates high 

dimensionality of the data denoted by the letter “D”.  

 

A study [49] suggests that if the value of “D” reaches 

hundreds, the data is considered highly dimensional. 

The feature selection process has been applied to a 

very large number of features to extract useful 

features. Due to high dimensionality problem in large 

data set, a number of feature selection algorithms 

suffer with time complexity to maintain scalability; 

which is the major issue in feature selection process 

[49]. It is obvious that without the use of some 

dimensionality reduction methods i.e. feature 

selection and ranking techniques, it is not possible to 

produce accurate results. Additionally, over fitting 

problem can minimize the dimensionality reduction 

techniques. 

 

One issue with feature selection techniques is the 

scalability issue of feature selection.  The filter 

technique has less computational complexity as 

compared with the wrapper technique.  As such, filter 

technique provides better scalability for feature 

selection process than wrapper technique. As far as 

the embedded approach is concerned, a study [50] 

suggested that embedded approach suffers from the 

same time complexity issue as the filter approach and 

proposed to use a combination of filter and wrapper 
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techniques for highly dimensional data environments 

[51].   

 

5.2Feature selection in sparse data matrix 

Sparse data refers to the instances where actual data 

is not present. When it comes to sparse data, 

literature [52] suggests that there exist two types of 

sparsity: controlled and random. In controlled 

sparsity, data is missing from a range of values of one 

or more dimensions. In random sparsity, the data is 

missing randomly in a data variable. 

 

Various business applications such as consumer 

purchase analysis and email marketing suffer from 

the problems of sparse data. The sparse data sets 

include a sparse matrix having large number of 

attributes. Various sources of content on the Internet, 

such as emails, news, and customer reviews are the 

main sources of sparse data. Nowadays, the amount 

of video streaming data is increasing rapidly. This 

data is highly dimensional because it comes from a 

variety of sources such as surveillance cameras and 

sensors [53].  Many feature  selection  techniques  are  

not  suitable  to deal with highly  dimensional  

labeled or unlabeled sparse  data sets. As such, the 

retrieval of   feature selection from such data sets is a 

difficult and time-consuming task. Therefore, it is the 

need of the hour to develop efficient algorithms for 

feature selection process than can be used for sparse 

data sets [53]. 

 

6. Experiments and results 

The current study focuses on various Feature 

Selection Techniques (FST). The FST is one of the 

most important and frequently used steps in data 

preprocessing for data mining. The main objective of 

any FST is to remove irrelevant features and to keep 

those features that hold useful information. In order 

to judge the performance of different feature 

selection approaches, we have conducted 

experimental work on Chi-Square (CS), Information 

Gain (IG), and Principle Component Analysis (PCA). 

These feature selection methods are precisely 

described below. 

 

6.1Chi-square (CS) 

The Chi-Square method is applied to determine 

whether the variables are related or independent. 

Mathematically we can define Chi-Square as follows: 

          )       ) )               (5) 

 

Where t is term and c represent category, O is 

observed frequencies and E is expected frequencies 

[54].  

 

6.2 Information gain (IG)  

The value of IG is a measure of the amount of 

information achieved by knowing the value of the 

attribute. A simple mathematical expression of IG is 

given below in equation 6. 

            )     (6)  

 

Where Ecd represents entropy of distribution before 

the split, and     represents entropy of distribution 

after it. 

 

Where            )       )    the entropy of 

selected class c and    =      )         )    

the conditional entropy of attributes of given class 

[55].  

 

6.3Principal component analysis (PCA) 

PCA is not considered a feature selection technique. 

It is regarded as a feature combination technique 

[56]. A PCA is performed through following steps: 

 Standardization of the data 

 Computing the covariance matrix 

 Calculating the eigenvectors and Eigen-values of 

covariance matrix  

 Computing the Principal Components (PC) 

 Reducing the dimensions of the data set  

 

6.4 The evaluation  

Open Source Data Mining suite, WEKA was used to 

generate the evaluation measurement of ROC values, 

Precision, Recall, AUC, and F1-Mesures [57]. Figure 

8 shows the general framework for the experimental 

setup used in this study. Following is a list of major 

steps, which were taken to complete the study. 

 

 Features were selected through IG, PCA and CS to 

reduce data dimension  

 The model was trained i.e. learning process was 

performed on sample data  

 The model was fine-tuned through validation data. 

We used K-fold cross validation method to ensure 

less bias in our model. The value of K used in our 

study was 10. 

 Test dataset was used for unbiased evaluation on 

final model.  

 Evaluation methods i.e. Precision, F-measure, 

AUC, building time were used to judge the 

performance of FST  
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Figure 8 General framework for feature selection & evaluation of results 

 

Experiments were performed on Web spam uk2007 

dataset [58,59]. We accomplished  experiment on a 

Windows 7 SP1 machine having configurations  

Intel® Core 2 Duo CPU 32-bit processor 2.93GHz, 

4.00GB RAM. We selected important features for 

Naïve Bayes (NB) classifier through 10-fold cross 

validation. For comparative performance comparison 

of CS, IG, and PCA, we performed 12 experiments 

with different feature set (10 to 40) on dataset and 

summarized the results in Figure 9-13, and Table 1. 

The Naïve Byes algorithm was selected it provides it 

provide following benefits: 

 

 Less of amount of training data is required 

 Less computational time required to train the data  

 Model size is low  

 Simplicity  

 

Effectiveness of the NB algorithm and in 

combination with three feature selection methods on 

Webspam Uk2007 dataset, we selected the different 

size features (See Table 1). The results presented in 

terms of Precision, Recall, and F1-Measure, AUC 

and Model Building time values. In Table 1, it can be 

found out that PCA performance of building time for 

feature selection is comparatively better, when 

dealing with large number of features. 

 

In Table 1, results indicate that in most cases CS 

achieved better score in terms of precision, recall, F1-

measure and AUC with almost all features. Figure 9, 

Figure 10, Figure 11, Figure 12 and Figure 13 

depicted the results of IG, SC and PCA in term of 

above listed metrics. Experimental results also 

indicate that with CS as feature  selection  method  

the  ranking  performances  of  Naïve Bayes  are  

more  stable  than  those  with  IG  and  PCA   as  

feature selection methods. This is especially true; 

when the numbers of selected features are moderate. 

 

 

Table 1 Results of event discovery (Value in bold in each metric column is the best value in the metric) 

 No of features               Precision Recall F-measure AUC Building TIME (MS) 

PCA 10 0.901 0.919 0.91 0.53 0.01 sec 

PCA 20 0.9 0.914 0.907 0.533 0.03 sec 

PCA 30 0.9 0.896 0.898 0.556 0.03 sec 

PCA 40 0.898   0.897 0.898 0.554 0.03 sec 

Chi Square  10 0.901 0.919 0.91 0.53 0.02 sec 

Chi Square 20 0.9 0.918 0.909 0.526 0.04 sec 

Chi Square 30 0.899 0.916 0.908 0.557 0.05 sec 

Chi Square 40 0.9 0.923 0.911 0.553 0.05 sec 

IG 10 0.901     0.919 0.91 0.53 0.01 sec 

IG 20 0.9 0.918 0.909 0.526 0.03 sec 

IG 30 0.899 0.916 0.907 0.556 0.04 sec 

IG 40 0.9 0.923 0.911   0.553 0.06 sec 
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Figure 9 No of attribute vs. building time 
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Figure 10 No of attribute vs. precision 
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Figure 11 No of attribute vs. AUC score 
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Figure 12 No of attribute vs. recall 

10 15 20 25 30 35 40

0.898

0.900

0.902

0.904

0.906

0.908

0.910

0.912

F
1

-m
e

a
su

re

No of Attributes

 IG

 CS

 PCA

 
Figure 13 No of attribute vs. F1-measure 

 

7. Conclusion 
Feature selection is a well-known issue of many 

problems in the domain of machine learning and 

image recognition. For text classification systems, 

selection of correct features is of vital importance. 

This is because of the large size of sets of potential 

features found in different problems. If we take a text 

document as an example, each word can be 

considered a feature. Feature selection techniques can 

help to reduce the number of potentially useful 

features. 

 

The job of features selection algorithm is to retrieve 

the most relevant features, or words, in a document. 

This study has briefly introduced some current work 

in the area of text classification, followed by a 

number of common methods for feature selection, 

and applications of feature selection in machine 

learning. Experimental results of our study 

effectively supported the well-known fact that 

accuracy in terms of recall, F1-measure, precision 

and AUC can be achieved by selecting the optimum 

number features. 

 

Features selected through CS, the AUC score are 

comparatively better than PCA and IG. Down the 

road, it could be possible to add these methods to 

encounter to reduce dimensionality, but we must be 

cautiously attentive to avoid removing features 

whose variance does not satisfy some threshold 

values. 
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