
International Journal of Advanced Computer Research, Vol 11(55)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2021.1152017

67

GU_DB : a database management system prototype for academia

Bhumika Shah* and Jyoti Pareek
Department of Computer Science, Gujarat University, Ahmedabad, India

Received: 15-May-2021; Revised: 15-July-2021; Accepted: 17-July-2021

©2021 Bhumika Shah and Jyoti Pareek. This is an open access article distributed under the Creative Commons Attribution (CC

BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1.Introduction
Database Management System (DBMS) is the basic

course in any undergraduate / postgraduate courses for

Computer science/computer engineering degrees. All

the computer science courses demand practical hands-

on in the subject, which is performed in laboratory

hours. Database management systems are mainly

classified as divided into two categories Commercial

Database Systems and Open Source Database systems.

Proprietary database systems come with a huge license

cost, and hence nowadays almost all the

educational/research bodies are moving towards Open

Source Database systems. However, all these open

source database systems are designed with enterprise

or business considerations. There is hardly any open

source database system which has Academic or

Research considerations. Peters and Sikorski [1]

mention in their article that the researchers who wish

to test new concepts are forced to build the entire

system from scratch.

*Author for correspondence

And as (Pavlo, n.d.) mentions that building a DBMS

for academia is hard and finding resources for the

same is even harder.

The paper focuses on to the issue of populating

databases which are reliable for hidden queries, and

hence presents the hydra generator to showcase

metadata statistics and optimizer estimates [1].

Moreover, the open-source databases do not provide

the developers the ease of implementing and testing

their research work. We could not get full flexibility to

analyze and implement our research proposal in any of

the database system we approached. This issues like

lack of flexibility and no academic considerations

motivated authors to develop our own Database

management system, which can provide us complete

flexibility over the system, starting from the phase of

the compilation till execution.

Our development has given wings to the new Database

Management System prototype named GU_DB,

which is equipped with all the basic features of

Abstract
There is hardly any open source database system having Academic or Research considerations. Moreover, the open-source

databases do not provide developers, ease of implementing and testing their research work. We could not get full flexibility

to analyze and implement our research proposal in any of the database system we approached. All the database systems

approached, required the proposed work to be tested somewhere, before it could be implemented. This motivated us to

develop our own Database management system that provides complete flexibility over the system, starting from the phase

of the compilation till execution. GU_DB integrates our own Lexical and Syntax analysis engine which help in fetching the

exact errors/messages for the query passed by the user. The ability of the database to plugin easily helps smooth connectivity

with any front-end. The multi-threading nature of the database helps to seamlessly connect multiple web users. Our

development has given wings to the new Database Management System Prototype named GU_DB, which is equipped with

the basic features of a DBMS and has all academic and research considerations. The GU_DB is now built into a complete

learning management system (LMS) in form of Virtual laboratory and is approved by Virtual Labs (a project under MHRD

NMEICT) and the content is hosted at the Vlabs-Dev portal by IIT-Bombay. The Virtual laboratory hosted exist as a front-

end and as a back-end of the same system, GU_DB exists in form of a database system.

Keywords
Database management system (DBMS), Open-source database systems, Learning management system (LMS), DBMS

prototype, Academic DBMS, Custom DBMS development, Virtual laboratory.

Review Article

Bhumika Shah and Jyoti Pareek

68

Database management system and has all academic

and research considerations. The objective of the

proposed system is to build our own database

prototype which can give us full flexibility over the

back end and helps us to make database learning easier

for students by integrating it with the LMS (Learning

Management System). GU_DB has been completely

integrated with Virtual laboratory for Databases which

is hosted at IIT-Bombay and is used by student

community world-wide.

2.Literature review
The database system is one such area where there are

varied research interests. There has been a lot of

research in areas like Query Optimization, Large

Databases, Big Data, Multi-Lingual Database systems,

Data mining, to name a few. However, new Database

development platforms dedicated for academia is one

such research category, which has been almost

untouched.

Peters and Sikorski [1] mention in their article that the

researchers who wish to test new concepts are forced

to build the entire system from scratch. Moreover,

anybody who wants to develop the database prototype

has a tough time finding resources. COBRA: The

program transformation technique is used in

developing a framework which can generate different

alternatives of a program and selecting the least cost

for optimizing relational algebra expressions is

proposed for real life applications. The paper focuses

on cost based model for optimizing programs with

regions [2].

This research focuses on novel research approaches

for robust query processing and characterizes their

strength and limitations to describe the open

challenges for query processing problems and

discusses about various robust query processing

techniques considering the novel areas in databases

like big data and some machine learning approaches

namely query based and data-based implementations

[3].

There hardly exists any research for the development

of database management systems for academia. As

(Pavlo, n.d.) points out that building DBMS is hard,

but building DBMS for Academia is even harder.

This was one of the core motivation for the authors to

develop a database system dedicated for Academia,

which can help researchers to explore many other

possibilities and areas of research in the area of

database systems in academia. Variety of Database

systems are accessible for the student/learner

community to implement the database knowledge they

have acquired, but there exists hardly any complete

guided Learning Management System.

Limitations of existing DBMSs:

 Most of the existing DBMS have commercial

purposes none of them are solely for academia

 Most of the DBMS provide a syntax error on an

incorrect SQL Statement, which is usually not self-

explanatory and student struggles to interpret the

error

 None of the DBMS mentioned have LMS (Learning

Management System) considerations

There hardly exists any research for the development

of database management systems for academia. As

(Pavlo, n.d.) points out that building DBMS is hard,

but building DBMS for Academia is even harder [4].

2.1Need for database prototype for academia

This was one of the core motivation for the authors to

develop a database system dedicated for Academia,

which can help researchers to explore many other

possibilities and areas of research in the area of

database systems for academia and help students in

understanding the concepts thoroughly by integrating

the concepts of the subject in the system.

2.2Commercial databases and open source

databases

The Database management systems are divided into

two broad categories viz.

For Commercial Database systems, licensing fees are

to be paid to get the stable version and hence most of

the institutions have moved towards Open-Source

Database systems [5]. However, all the mentioned

database systems have a commercial purpose and none

of them is dedicated for learning or for the academic

purposes [6].

Apart from commercial considerations, Open source

databases will restrict the user in the following ways:

 Researchers are not able to propose their idea,

without proper testing and implementation.

However to propose your idea, you need the same

environment, which is not available.

 Open source is not completely open source , there

are many considerations to be applied before you

actually try to reuse the code

 The error messages in any of these open source

systems are not self-explanatory.

International Journal of Advanced Computer Research, Vol 11(55)

69

The students struggle to understand the message,

hence end up spending more time on searching for the

error, than solving the error. This generates the need

for Database management system which is dedicated

for learning and hence a DBMS for Academia is the

need of the current learning environment (Table 1).

Table 1 Commercial databases Vs open source databases
Open source Commercial

Available without paying fees in open Licensing scheme Huge Licensing fees are to be paid

Need to rely on community support Dedicated support by the vendor is provided

Lesser features in comparison with proprietary database Feature Rich Database

Less support for advanced features Support for information replication, Backup and retrieval of
data

Dependability based on community support Dependability and Stability for all systems

Simple implementation Domain Expertise required

Abolishes single point failure This systems have dedicated support system to hold
responsible for any kinds of bugs

Open source Communities can propose new features For the new features, you need to depend on next release from
the vendor.

2.3Motivation

The above reasons and many other, which are

discussed in the later sections of chapter, motivated the

authors to come up with the prototype of Database

Management Systems, known as GU_DB.

GU_DB is the prototype created and implemented by

the authors to incorporate features required for guided

learning. The Database management system prototype

(GU_DB) integrates basic features of any open source

database system. Moreover, it also serves as the

guided learning system for the students which is

incorporated in the Virtual laboratory.

The virtual laboratory for Database Systems has

support for following SQL Queries

 Data Definition Language Commands (DDL-

Create, Alter, Drop)

 Data Manipulation Language Commands (DML-

Insert, Update, Delete)

 Data Query Language Commands (DQL-Select)

 Transaction Control Language Commands (TCL-

Commit, Rollback)

As the Database system developed by authors is

dedicated for Academia it has many distinguishing

features dedicated for learning like Hints, pitfalls etc.

Moreover, the capability of GU_DB to easily plug-in

enables easy connectivity with the front-end system.

2.4Problems with existing database systems with

respect to Academia

 Commercial considerations

 Lack of guided support to students with reference to

learning

 No flexibility over the database system, user needs

to rely on error messages provided by the third party

database (e.g: MySQL, PostgreSQL, etc.)

 No Research scope by academicians

2.5Objective

The reasons like LMS considerations, Academia

support, customized messages in form of hints and the

development of learner centric system motivated the

authors to come up with the prototype of the Database

Management System, which is named as GU_DB.

The proposed DATABASE SYSTEM PROTOTYPE:

GU_DB has academic considerations which help the

student to understand and interpret the error message

in a self-explanatory manner. The error messages are

provided in form of hints which help the student to try

on his own and reach the goal which leads the student

towards a higher cognitive level considering all the

aspects of a complete LMS (Learning Management

System are considered.
2.5.1Features of GU_DB

Authors have developed their own database

management system (GU_DB) to integrate various

features needed for guided learning and to have

complete control and flexibility over the system.

GU_DB has support for following SQL Commands

 Data Definition Language Commands (DDL-

Create, Alter, Drop)

 Data Manipulation Language Commands (DML-

Insert, Update, Delete)

 Data Query Language Commands (DQL-Select)

 Transaction Control Language Commands (TCL-

Commit, Rollback) & Describe Statement
2.5.2Advantages of the proposed system: GU_DB

The proposed DBMS (GU_DB) has academic

considerations which help the student to understand

and interpret the error message in a self-explanatory

Bhumika Shah and Jyoti Pareek

70

manner. The error messages are provided in form of

hints which help the student to try on his own and

reach the goal which leads the student towards a higher

cognitive level considering all the aspects of a

complete LMS (Learning Management System.

The proposed system helps in achieving the following

objectives

 Complete flexibility over the database system. As

the back-end comprises of our own database

prototype(GU_DB) we have full control over the

system

 Complete guided support for students, which helps

students in learning as they get guided message in

terms of Hints/pitfalls

 It has been observed that there is very little/no

research available with reference to new Database

system development. Hence, authors plan to share

the database system as open access to academicians

to increase the research scope in database

community.

3.Methods
A Database in simplest terms is the collection of Data.

However, the simpler it looks, the more complex it is

to implement. For any Database Management System

to be implemented, following are the core

functionalities required.

 Pre-Processor

 Parser

 Query Executor

 Disk Management/Memory

 Hash Table

 Transactions

 Index Handling

As the database system prototype (GU_DB) created by

authors is dedicated for Academia, it has variety of

eminent features dedicated for learning like Hints,

pitfalls etc. At the highest level of abstraction, the

database systems are viewed as Garlan and Shaw

layered architecture consisting of three broad

components.

3.1Components of Garlan and Shaw layered

architecture
3.1.1Application layer

The clients interact with the database in the

Application layer which communicates with the users

directly (Figure 1). The users could be the people

managing the system (Admins) or the end-users of the

system. The end-users of the system access the

database through some front end editor. The front-end

editor of our system is “Query Editor.” Query Editor

helps the users directly communicate to the database

engine “GU_DB.” Due to the pluggable nature of the

database, there can be one more category of users:

“Clients,” who access the system through APIs.

Figure 1 Garlan & Shaw architecture

3.1.2 Logical layer

The logical layer will take the data from the

application layer and will process it. The task of

processing the query, storage, and management of

data, are the responsibility of the Logical layer.
3.1.3Logical architecture

In the logical architecture, the first component is the

Thread Handling. Thread handling refers to managing

the multi-user thread. Especially in the web-based

environment, Thread handling has a considerable

impact in the efficiency of the system. A new thread

needs to be allocated for each client. Moreover, the

combined threads are nothing but a process, so each

client is allocated a process. Hence when the client

fires a query, it technically initiates an individual

thread and then goes to the Query Processor. The

detailed discussion of all the components of logical

architecture (Figure 2) is discussed in the later

sections.
3.1.4Physical layer

In the database architecture, the physical layer is

lowest layer. It has to take care of how the data will be

stored on the disk. It manages the storage engine. The

storage engine consists of the file system, different

types of files, the directories created for the schema.

The physical layer consists of different type of files

like:

 Data Files: Files related to users

 Data Dictionary: It stores the metadata and other

structural information

 Index information: It stores the information about

the indexes for each table

 Log information: keeps track of executed queries

and default table space details.

International Journal of Advanced Computer Research, Vol 11(55)

71

Figure 2 Logical architecture

Different database systems maintain different types of

storage engines. The storage engines are the blueprint

of how the data is stored. The storage engines could be

Transactional or Non-Transactional. They differ on

how locks are handled, what is the thread pool etc. Our

System is equipped with the Transactional storage

engine which manages all the memory requirements

(including Thread pool considerations) of the

Database.

Hence, the overall architecture of GU_DB is as

follows (Figure 3):

3.2 Architecture of GU_DB

Figure 3 Architecture of GU_DB

3.2.1 Query processing

The query given by the user through query editor is

parsed to check the syntactic correctness of the query.

Lexical analysis:

The purpose of lexical analysis is to extract the

individual words from an input stream and in return

provide the tokens to the parser. The tokenization

processes take input and pass this input for the

classification of keywords, identifiers, number, string,

etc. The goal of the lexical analyser is to classify the

input in tokens and help to identify them. The lexical

analyser gives the token to Syntax analyser for

Bhumika Shah and Jyoti Pareek

72

validating the syntactic correctness of the query.

Lexical Analysis is implemented using Automata. The

sequence of tokens is returned as output to the parser

for syntax analysis. The DFA for lexical analysis is as

follows (Figure 4):

Figure 4 Finite automata for lexical analysis

Process of lexical analysis

Syntax analysis:

Syntax Analyser takes input from Lexical Analyser.

Syntax Analysis (Parsing) is used to determine whether

the tokens provided are valid for the given system. The

parser analyses the token stream against the rules

defined to detect any errors in the input string.

However, all the valid tokens might not always be

meaningful and appropriate as per the rules defined.

Hence, Semantic analysis is applied after syntax

analysis.

The goal of syntax analyser is:

 Check that the input string is well-formed

 Helps to detect all type of Syntax errors

 Give the exact position where the error occurred

Hence, to check syntactic correctness of queries, a state

diagram has been designed (Figure 5). The goal of the

parser is to find all syntax errors: for each error,

produce an appropriate message and recover quickly.

To analyse the syntax, we have used finite automata.

Deterministic Finite Automata (DFA) has a strong

mathematical background and there are already some

real-world systems which used DFA’s [7]. DFA’s are

used for text parsing, protocol analysis, natural

language processing, speech recognition, and video

games. Following diagram depicts the Finite automata

for Create table statement, which is part of DDL

statements.

The DFA here represents various states which are

defined for a Create Table statement. The initial state

International Journal of Advanced Computer Research, Vol 11(55)

73

starts at 0, and all the accepted states like input,

keywords, datatypes; identifiers are defined. The final

state is 25, which depicts that the valid end of statement

is “;” The states of the machine correspond to the user

input, which changes according to various events.

Hence, the complete “Create Table” statement has 25

valid states. It processes the words in the ordered state

(Create, table, identifier (Tablename), bracket, and so

on.). It also has a resemblance with the Mealy machine

state which processes the output based on the input

being processed.

Though state machines are not the most sophisticated

means of processing SQL Queries, but due to the

simplicity in nature and non-Turing compliance of

SQL queries, it is easy to depict the state-based

behaviours effectively using state machines (Figure 6).

Figure 5 Process of lexical analysis

Figure 6 State diagram of create

Bhumika Shah and Jyoti Pareek

74

3.2.2 Pluggable storage engine

With the advent of Web-based systems, it has become

imperative to provide Inter-process and Inter-

application communication. The Database engine also

needs to communicate with the front-end systems

(GUI) which directly communicate with the clients

and then process the data on the server. To provide

such a facility, there is a need for the database engine

to be pluggable.

We had explored various approaches to make the

Database engine pluggable and establish

intercommunication of PHP and Java:

Various approaches explored for development of

Pluggable Database engine are as follows

 Build Native Library

 Write our own Library and compile the Source code

 Use Some Inter-communication tools like JSon or

any other.

Hence, we developed a C++ utility (which uses all the

three approaches) to establish a connection between

the Client and the server.

The following diagram depicts the approach followed

by us for development of the Pluggable Database

engine (Figure 7).

Pluggable DB:

Figure 7 Pluggable database diagram

3.2.3 How GU_DB executes queries

The user interacts with the system with the help of the

GUI Simulator: “Query Editor”. The most essential

and important part of the entire system is Query Editor.

It enables the communication between the front-end

system (DB Vlab) and the DBMS prototype

(GU_DB). The query is entered in the editor by the

user and it is parsed to the database engine by the

Query processing engine. The syntactical correctness

of the query is checked and the output in tabular form

is generated else hint is provided to the user which

guides the user on the exact mistake made by them.

The advantage of being able to provide the flexibility

in hints or the message is core advantage of GU_DB

which plays a crucial role in enhancing the

pedagogical perspective in student learning. All other

commercial systems need to depend on message

provided by the database whether it is MySQL or any

other commercial or open source database [8].

In order to communicate with the back-end, Query

editor needs to maintain the Session.

3.2.4 Session management of front-end with back-end

(GU_DB)

Web-based and implicit login system:

The Database which resides on the back-end is

accessed without any specific user-id. The

authentication details are managed implicitly. Hence,

to maintain the session with the Database, the front end

takes care of managing the session. However, the

back-end also needs to maintain the User log for the

schema.

Each user is associated with unique id in the form of

login, and that is to be referenced every time a user

tries to access the database. The schema is to be

attached with the user-id created. Our system handles

such types of requirements implicitly.

In any database system, no login means no customized

user experience or no user-specific schema. However,

that means, without login, there is only a single default

user that is accessed by all the users in the system. This

gives rise to the Transaction management issues. Even

in the multi-user environment, it is imperative to give

full support for ACID (Atomicity, Consistency,

Isolation, and Durability) properties. Though modern-

day database systems are turning to Transaction-less

systems wherein, they are not bound to support

Transactions safe tables, which implies that database

is not supposed to worry about rolling back changes.

MySQL maintains different storage engines and

allows the user to choose Transaction less engine to

get a faster response to the queries. The transaction

safe environment also exists for GU_DB, however,

since it was integrated with the web based system,

transaction less model is followed to provide faster

retrieval. Our Web based system: Virtual laboratory

provides implicit login facility and hence it is not

possible to Rollback sessions [9]. Therefore, the

International Journal of Advanced Computer Research, Vol 11(55)

75

transaction-less environment is used and gives the

advantage of Multi user and Mobil systems.

Moreover, the database systems need to maintain the

user schema or should be given a default schema to

work on. Hence to maintain the user schema,

identification is mandatory, which can associate the

user id to the database schema.

Implicit login architecture

The database system needs to maintain the schema of

the user. Each user is associated with his/her own

database schema. In order to give user a personalised

schema experience, there was a need to maintain user

login in the web based system. Hence, the following

features were added to add the login implicitly in front

end (Virtual Laboratory).

 Generate unique userid based on the user session in

the browser

 Display the ID to the user in the system

 Attach the ID to the Database(GU_DB)

 Allow the user to download the login

details(credentials) if the user wishes to download

 Next time, when the user visits the system, fetch the

login details implicitly if he access the lab from the

same system.

 If the same user tries to access the system from

another environment/system/browser, provide the

user the option to upload the login details (After

fetching from GU_DB) he had downloaded in the

previous session. Hence, the user gets his own

schema he had used in the previous environment.

Our system (Front-end Side: Virtual laboratory) uses

client-side cookies to achieve customized session

experience. The requirement for the system was to

detect whether it is the new user or existing user. The

system then looks for the session entry in the database

metadata. If the entry is found, the user is assigned the

previous session, else the user is granted with the new

session. The user will get his/her session in encrypted

form, and they can access the session back by

uploading that encrypted credential to the Query

Editor.

Thread pool in GU_DB

Connections and sessions are closely maintained in the

database instance. Communication is instantiated once

the connection is established (Figure 8). Our system

maintains the sessions with each unique user session

id implicitly assigned.

Clients: Clients are the different users accessing the

system from the front-end

Connection request: The Query Editor (Web

interface) sends requests to the GU_DB Server. It is

established through socket communication.

Receiver thread: Incoming connections are queued

and processed one by one. The receiver thread

instantiates the user thread and the user thread does

further processing

Thread cache: Our system uses the thread cache

maintained by the OS, wherein either free existing

thread is been used or new thread is instantiated.

Database point of view, Buckets are an integral part of

efficient storage. And Bucket is one element of

hashmap array which is used to store nodes. The

bucket utilization depends on how optimal is your

hashcode().

Motivation for using hashmap data structure

Hashmap data structures efficiently utilize the multi-

threading concept, which means that only one thread

can modify a hash table at one point of time, which

implies that threads are synchronized. Hashmap uses

array in background. Each element is another data

structure (like binary tree or linked list etc.). Hashmap

solves the problems of searching objects from a large

data set. Hash code is an integer value given to each

object it identifies. Every object has Hashcode()

method that identifies the object, which primarily

helps to make searching faster[10].

The technicalities of GU_DB were discussed in the

previous sections. The following sections highlight the

flow of execution of any query in GU_DB with the

help of the example. The example provides clarity on

each of the stage discussed in the previous sections and

how GU_DB traverses to each of the stages for

execution of any of the query. The example is taken of

a Data Definition Language (DDL) command-Create

Table.

Figure 8 Thread pool in GU_DB

Bhumika Shah and Jyoti Pareek

76

3.2.5 Flow of execution for create table query

For creation of the table, the user would fire a query

similar to the query displayed:

Create table emp (empid number (5), ename varchar

(10), salary number(5,2));

Once user writes the query, the query passes through

lexical and syntax analysis phase as discussed in the

previous sections. Once the query is syntactically

correct, the value of Table name is checked in

metadata, if that table does not exist in the database,

further processing is to be done. In further processing,

list of columns, primary key availability, any not null

constraints and size and type of data are read and a

column list is built in Usercolumn Add this

information in two tables (Tableinfo and

Table_Metadata):

1. Add new table row in Tableinfo

2. Generate new table index to be stored in table meta

data

3. Create key to store in hashmap (key;table

name;value;index in table meta data)

4. Put key in Hash map data structure

5. Add new table entry in Table Metadata

6. Set Numberofrows = Size of row size of Table info

7. Assign the starting row to metadata

8. Add records to metadata (tablename, startrow,

numberofRow)

9. Add Metadata and table_info into a file

The above steps explain the flow of Create table

statement, however other DDL statement like Drop

table and Alter table have similar type of flow, with

only change of modification in metadata by locating

the Table info with help of the index key as discussed

in the previous section. [Flow Charts for Query flow

execution added in appendix]

The alter table and drop table statements first need to

locate the metadata entry with the help of the index

key and changes are made accordingly in the

respective associated tables. Similarly for the DML

statements like Insert, Update and Delete, the metadata

information of the table is located and accordingly the

data is inserted or modified in the said table and other

metadata tables are also updated at the same instance.

The DQL Statement Select fetches the details from the

underlying table based on the user query. However,

the compiler needs to locate the metadata entry, match

it with the table requested, check for the filters if any

and then display the data. Each command cannot be

explained in detail due to content restictions.

To understand the technicality in detail, let us have a

look at the algorithm:
3.2.6 Create table algorithm

The create table algorithm is employed in the database

engine main thread, which is used to Create the new

table and give user the output about success or failure

of table creation.

Algorithm

This section describes the algorithm to create the table.

The Finite Automata (FA) will check the validity of

the create table statement and return the status as

success or failure of the statement. Depending on the

correctness status of the statement, further processing

is done.

The overview of the algorithm is presented as follows

i)Check if Directory exists for the table/user. If it does

not exist create the same
ii)The scanner examines the query submitted and

extracts the tokens (call Tokenization function: (A:
Tokenisation)) If the scanner cannot ascertain an
appropriate token, the user is displayed a message
(Hint) with the wrong token and guided on how to
convert it into a valid token (reserved word,
keyword, new identifier)

A: Tokenisation

iii)The syntax analyser checks the validity of query

with the help of FA using reserved words, keywords

and symbol table

B: Syntax checker, and if query syntactically correct

query execution starts.

iv)The Metadata information is checked for the

existence of the table, the parser checks if the table

exists For creating a new table

The new table entry along with the table name, number

of attributes, primary key information and index

information if any, is done in metadata table.

The User gets the message “Table Created.”

Tokenisation Process: (Tokenisation ())

v)Pre-processing (Lexical analyser)

Iterate for all the tags defined in

lexical_analysis_scanner Return with the Keywords,

accepted states, dump states, columnlist, value list,

special input values etc.

Syntax analysis: (Syntax_checker())

Send list of tokens to appropriate Syntaxcheckers like

CreateSyntaxchecker, alter, drop, etc. based on the

token fetched The Create table Query is passed for

valid query checking, There are total 25 valid states

International Journal of Advanced Computer Research, Vol 11(55)

77

defined for create table finite automata. The last state

“;” is considered the end of the statement.

Return with message (True/False)

Once the query passes through all the above stages, the

user gets the message “Table Created” and new table

information is updated in metadata.

4.Results
4.1 Implementation

GU_DB is implemented as back-end in the Database

Virtual Laboratory. The laboratory is approved by

Virtual Labs (a project under MHRD NMEICT) and

the content is hosted at the Vlabs-Dev portal by IIT-

Bombay.

Following are some of the screen-shots of the

implementation of GU_DB with Virtual Laboratory

(Figure 9).

Figure 9 First Screen to enter the Query after clicking

on the simulator

To create a new table, user will issue the following
statement. Figure 10 shows that the user receives exact
hint of his mistake of the mistake made and the
correction to be done of adding datatype and size.
Hence, the user gets self-explanatory message and is
able to correct own mistake.

Figure 10 Hint screenshot

In Figure 11, 12 above, the user has entered the correct

query, and hence, the output is displayed on the same

screen

Figure 11 Screenshot displaying the corrected and the

message table created

Figure 12 Error in select parameter

The system asks the user, whether he/she meant

Select?

This clearly displays that system is also correcting the

user on wrong spelling, and it also shows that system

is able to read each character and process it. The

algorithm developed here reads each character and

compares it with the valid keyword, identifies the

incorrect character(s) and provides suggestions

accordingly (Figure 13).

Figure 13 Correct query – output displayed

4.2 Evaluation

The Database virtual laboratory which integrates

GU_DB, was submitted to IIT Bombay Virtual Labs.

IIT Bombay got the submitted Database lab evaluated

by various experts. With final approval from MHRD,

Bhumika Shah and Jyoti Pareek

78

the lab has been hosted at IIT Bombay Virtual Labs

development portal in approved labs section.

VLab is a project initiated by the Ministry of Human

Resource Development, Government of India, under

the National Mission on Education through

Information and Communication Technology. The

project aims to provide remote-access to Laboratories

in various disciplines of science and engineering for

students at all levels from under-graduate to research

[11].

The Virtual Laboratory for Database is accessed by the

student’s nation-wide to learn basic database concepts.

Moreover, it proved to be of great help during the

lockdown, when students could not go to their

laboratories for practical’s, they were able to perform

DBMS practical in our laboratory simulator. The

simulator was accessible from desktop/laptop or even

mobile, hence there was no need for students to

download any DBMS software.

4.2.1Results

To understand the utility of the Database virtual

laboratory, the students of Department of computer

science, Gujarat university were asked to perform the

experiments in the vlab. They performed some of the

basic queries of SQL in the Virtual Laboratory.

Figure 14 displays the ratings provided by the students

in a questionnaire after the end of evaluation:

The feedback received from students are quiet

promising. Following Table 2 displays the average of

all the ratings received.

Limitations of GU_DB

GU_DB is introduced with basic features of SQL like

Create, Alter, Drop and Select. Some advanced

features like subqueries, Joins and views will be

incorporated in future.

Figure 14 Student-Feedback ratings

Table 2 Average ratings of the responses received

Average of the ratings

Theoretical concepts

clarity (10)

Did you get a feel of the

traditional lab (10)

Experiments

performed from

manual(10)

Database knowledge

gained

 (10)

How well were you

able to implement

pretest and posttest

exercises (10)

7.925 7.3 7.225 6.95 7.35

4.3 Other Utilities Of GU_DB

Multilingual Support for storage and retrieval in

GU_DB

GU_DB allows data to be stored in Gujarati and would

be enhanced for efficient retrieval for multi-lingual

data. A lot of research exists on many other languages

except Gujarati language. The repository of the

multilingual data must be as inherent as those in the

default database character set [12].

Novel Approach to Optimize Sub Queries

Subquery optimization tool proposes the algorithm for

subquery optimization. There might be various

International Journal of Advanced Computer Research, Vol 11(55)

79

alternative plans which could be selected for a given

query. The crucial aspect for such plans is usually the

total time required for such a query to execute. The

authors have evaluated the existing algorithms on how

the sub queries are joined for different relations and

proposed an innovative sorting based algorithm for

optimally processing these queries. The testing of the

algorithm is done in the simulator developed and the

results obtained are compared with the existing

strategies of MySQL. Authors tried working on and

overcoming the limitations of the existing algorithms

by proposing the novel enhanced sorting based join

algorithm using sorting and merging techniques. The

algorithm was tested and implemented in the web

based join optimization tool having our algorithm at

its depth [13].

5.Discussion
There is hardly any open source database system

which has Academic or Research considerations.

There hardly exists any research for the development

of database management systems for academia. As

(Pavlo, n.d.) points out that building DBMS is hard,

but building DBMS for Academia is even harder [4].

(Peters & Sikorski, 2003) mention in their article that

the researchers who wish to test new concepts are

forced to build the entire system from scratch [3].

Moreover, anybody who wants to develop the

database prototype has a tough time finding resources.

All the database systems approached by us required

the proposed work to be tested somewhere, before they

could allow us to implement our research work. This

motivated us to develop our own Database

management system, which can provide us complete

flexibility over the system, starting from the phase of

the compilation till execution.

The GU_DB which originated as just a Database

prototype has now ended up into a complete learning

management system (LMS) which can provide a

complete learning environment to the learners. The

LMS is equipped with the Tutorial of the subject,

Procedure to implement the concepts learnt, the

simulator for implementing the queries, and the

assessment system. The learner is not required to go to

any other system, and he can learn, implement, and

validate the concepts learned of SQL in one system

only at his own pace, time, and location. The research

related to our LMS development is published at [8,

14].

Flow charts for execution of create table query are

shown in Figure 15 to Figure 20.

6.Conclusion and future work
The paper discusses the development of our Database

Management System prototype (GU_DB). It focuses

on the detailed implementation of the internal working

of the development of the DBMS dedicated for

Academia. The paper describes the complete

architecture of the DBMS and explains various levels

at its core, namely Application, Physical, and Logical.

The layers are, in turn, elaborated with the type of

information they store. The paper highlights the

Architecture of GU_DB, detailing all the important

components of our DBMS. The Query processor is

elaborated by explaining how the lexical and syntax

analysis works. The system has pluggable storage

engine, implicit login feature and easy connectivity

with the Web-based front-end system. GU_DB is used

as back-end in Database virtual laboratory which is

successfully hosted at IIT-Bombay portal.

GU_DB would be further enhanced with the advanced

features like Joins, Subqueries, Views etc. Authors

plan to provide open access of the database system to

the academicians/researchers to take the research

further in proposing new features in the database

prototype. The system will be deployed on the global

repository like GitHub or similar platform to take the

research further. Moreover, the system will be further

enhanced for Automated Evaluation of SQL Queries

integrating GU_DB. Authors have done a detailed

study on various automated assessment system, and

one such system performs automated assessment of

use-case diagrams [15].

Acknowledgment
The authors would like to extend special thanks to VLabs

IIT-Bombay for their continuous support in Virtual Lab

development and also congratulates them for various

initiatives taken for Virtual labs project.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Peters R, Sikorski R. Building your own: a physician's

guide to creating a Web site. JAMA. 1998;

280(15):1365-6.

[2] Venkatesh Emani K, Sudarshan S. Cobra: a framework

for cost based rewriting of database applications. arXiv

e-prints. 2018: arXiv-1801.

[3] Khurana K, Haritsa JR. UNMASQUE: a hidden SQL

query extractor. Proceedings of the VLDB Endowment.

2020; 13(12):2809-12.

[4] https://www.cs.cmu.edu/~pavlo/blog/2017/03/building

-a-new-database-management-system-in-

academia.html. Accessed 20 March 2021.

https://www.cs.cmu.edu/~pavlo/blog/2017/03/building-a-new-database-management-system-in-academia.html
https://www.cs.cmu.edu/~pavlo/blog/2017/03/building-a-new-database-management-system-in-academia.html
https://www.cs.cmu.edu/~pavlo/blog/2017/03/building-a-new-database-management-system-in-academia.html

Bhumika Shah and Jyoti Pareek

80

[5] https://www.trustradius.com/open-source-database.

Accessed 20 March 2021.

[6] Tan WC, Zhang M, Elmeleegy H, Srivastava D.

REGAL+ reverse engineering SPJA queries.

Proceedings of the VLDB Endowment. 2018;

11(12):1982-5.

[7] Gribkoff E. Applications of deterministic finite

automata. UC Davis. 2013:1-9.

[8] Shah B, Pareek J, Patel S, Patel V. Database Virtual

laboratory for guided learning.2019; 8(2):5418-25.

[9] Shah B, Pareek J. Virtual Laboratories in STEM

courses: a critical review. 2019; 14(2):118-29.

[10] https://en.wikipedia.org/wiki/Hash_table. Accessed 20

March 2021.

[11] https://www.vlab.co.in/. Accessed 20 March 2021.

[12] Shah B, Pareek J. Query optimization for information

retrieval in multilingual environment for e-governance

resources. In international conference on ICT in

business industry & government 2016 (pp. 1-4). IEEE.

[13] Shah B, Pareek J, Kanziya D. A novel approach to

optimize subqueries for open source databases. In smart

trends in systems, security and sustainability 2018 (pp.

331-346). Springer, Singapore.

[14] https://en.wikipedia.org/wiki/Learning_managemen

t_system. Accessed 20 March 2021.

[15] Vachharajani V, Pareek J. Framework to approximate

label matching for automatic assessment of use-case

diagram. International Journal of Distance Education

Technologies. 2019; 17(3):75-95.

Dr. Bhumika Shah is Ph.D in

Computer Science. She is working as

Assistant Professor at Department of

Computer Science, Gujarat University.

She has more than 19 years of

experience in Academics and Corporate.

Her research interests are Database

Systems, Multilingual systems, Virtual

Laboratories, Application Frameworks, Open Source

Systems, Artificial Intelligence, Gamification Big Data, and

Cloud computing. She is a senior member at ACM and a life

member of CSI.

Email: drbhumikashah@gmail.com

Dr. Jyoti Pareek is Ph. D. in Computer

Science. She is working as Professor in

Computer Science at Department of

Computer Science, Gujarat University.

She has more than 30 years of research

and teaching experience. She has to her

credit a Book and several published

research papers. She has been the

reviewer of the research papers and member of technical

program committee at many International Conferences. Her

area of interest are Machine Learning, Natural Language

Processing, Information Retrival, Technology for

Education, Object Oriented Paradigms. She is member of

Board of studies and other statutory bodies at various

Universities. She has delivered lectures as resourse person in

various seminars and workshops. She is member of ACM,

senior Member of IEEE and Life member of Computer

Society of India.

Email: drjyotipareek@yahoo.com

Appendix

Flow charts for execution of create table query

Figure 15 Flow diagram for “Create” – Part 1

Auth Photo

AuthoPhoto

https://www.trustradius.com/open-source-database
https://en.wikipedia.org/wiki/Hash_table
https://www.vlab.co.in/
https://en.wikipedia.org/wiki/Learning_management_system
https://en.wikipedia.org/wiki/Learning_management_system

International Journal of Advanced Computer Research, Vol 11(55)

81

Figure 16 Flow diagram for “Create” – Part 2

Figure 17 Flow diagram for “Create” – Part 3

Figure 18 Flow diagram for “Create” – Part 4

Figure 19 Flow diagram for “Create” – Part 5

Bhumika Shah and Jyoti Pareek

82

Figure 20 Flow diagram for “Create” – Part 6

