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1.Introduction 
Cloud computing technology exploits virtualization 

with the help of the internet and remote servers to 

provide hassle free services to its users. With the help 

of virtualization, the resources of a physical server 

are divided into multiple Virtual Machines (VMs), 

where each VM seems like an independent entity 

having its own capacity for performing computations 

and processing the data. The demand for cloud 

computing services has risen exponentially in the last 

decade because of its ability to easily host 

applications anytime and anywhere. This exponential 

growth leads to an enormous increase in energy 

consumption. Also, the pandemic situation occurred 

due to coronavirus has emphasized the online work 

environment for almost all organizations and 

institutions. This has taken the energy consumed by 

data centers to the next level. This raised energy 

consumption is a source of increased     emissions 

contributing to global warming.  

 

 

 
*Author for correspondence 

The motivation behind the current research study is 

the linearly increasing energy consumption of the 

Cloud Data Centers (CDCs). A report by Cisco 

Systems [1] claims that due to the introduction of 5G, 

the mobile traffic will be seven times more in 2022 

than in 2017. 

 

Koot and Wijnhoven [2] predict the energy 

consumption by data centers to increase from 292 

TWh in 2016 to 353 TWh in 2030. However, 

according to Hintemann and Hinterholzer, the 

amount of energy consumed by data centers in 2016 

is forecasted to get doubled by 2030 [3].  According 

to the literature [4], data centres work at an average 

Central Processing Unit (CPU) utilization of 20% and 

an idle server consumes 70 % of its power ratio.  

Also, majority of the servers work at 10-50% [5] of 

their capacities and the remaining resources are 

wasted. The under-utilized servers lead to the 

wastage of power making the system inefficient 

whereas, the over-utilized servers lead to the 

degradation of the system performance. To guarantee 

Quality of Servic (QoS) while reducing the consumed 

energy aimed to avoid Service Level Agreement 
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violation (SLAVs) is a challenging task for the Cloud 

Service providers (CSPs). The vast energy 

consumption is not due to high computing resources 

but the inefficient use of the available resources. The 

energy efficiency factor is greatly impacted by the 

server utilization. The more the server utilization, 

higher is the energy efficiency and decreases with a 

decrease in the utilization [6]. Therefore, there exists 

a trade-off between utilization efficiency and the 

performance. Many studies have been put forward to 

deal with the issue of resource management.  

 

Dynamic VM consolidation is one effective way of 

improving resource utilization and optimizing energy 

efficiency while reducing SLAVs. The method of 

dynamic VM consolidation helps in minimizing the 

energy requirements of a data centre [7]. In dynamic 

consolidation the VMs migrate from overloaded and 

underloaded hosts to normally loaded hosts while 

ensuring that the migration does not violate the set 

threshold values. The goal of the CSPs is to leverage 

consolidation scheme so that the under-utilized can 

be turned off after migration and by distributing the 

load of the overloaded ones. Many researchers set a 

static threshold value and keep the server utilization 

to maximum level. However, such static thresholds 

may lead to inefficient resource utilization in light 

workload and may lead to SLAV with heavy 

workloads. Such a situation may not be appropriate 

for varying workloads. The dynamic nature of the 

workloads makes resource management a challenging 

task and can be dealt with dynamic thresholds. The 

objective of the research is to enhance the 

performance of the cloud environment by minimizing 

the amount of consumed energy. Main contributions 

of the paper are: 

 To propose an adaptive Pn estimator-based host 

overload detection policy predicting future 

threshold that considers past CPU utilization. 

 Performance evaluation of the proposed scheme 

against various baseline Dynamic Virtual Machine 

Consolidation (DVMC) schemes using PlanetLab 

workload. 

 Performance evaluation of the proposed scheme 

against Sn  based Host Overload Detection 

(SnBODA) [8] using PlanetLab workload. 

 

The rest of the paper is organized as follows:  Section 

2 gives a detail of literature carried out for host 

overload detection. The proposed host overload 

detection scheme, Pn estimator based Adaptive 

Threshold policy    _      has been explained in 

Section 3. The experimental setup and the simulation 

results are shown in Section 4. Section 5 presents the 

discussions and limitations of the proposed work. 

Section 6 concludes the paper. 

 

2.Literature review 
In literature, many researchers have focussed on VM 

consolidation process to improve the energy 

efficiency of the cloud system. Figure 1 shows the 

process of consolidation involving overloaded host 

detection, wherein the time for consolidation to start 

is selected, VM selection and VM placement. The 

very first step is the detection of overloaded or the 

underload hosts. Once such hosts are identified, the 

next step is the selection of the VMs for migration 

from these hosts. And lastly, the final step constitutes 

of the placement of these migrated VMs to other 

hosts. 

 

 
Figure 1 Process of consolidation 

 

The threshold of the host is set according to the 

utilization of the resources and the overload of the 

host is checked against this threshold. The upper and 

the lower thresholds help in deciding upon which 

hosts are underloaded and how many are overloaded. 

The techniques suggested by various researchers for 

host detection can be broadly divided into two 

categories: static threshold and dynamic threshold. In 

case of static threshold, a fixed value is set for both 

upper limit and lower limit. Whereas, in dynamic 

threshold past utilizations are taken into account and 

a threshold value is set dynamically. 

 

According to Zhu et al. [9], the system is considered 

to be overloaded if the utilization exceeds the set 

value of 85%.  

 

Gmach et al. [10] has also followed the scheme 

proposed by Zhu et al. [9]. Beloglazov et al. [11] has 

also proposed a static threshold technique based upon 

double threshold. The upper threshold for finding the 

overloaded hosts and the lower threshold to look for 

the under loaded ones. The resource under 

consideration for evaluating the utilization is the 

CPU. Carrying forward the work of [11], the authors 

[12] have suggested a technique considering both 

CPU and disk utilization for setting of the threshold.  
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Fard et al. [13] has focussed on the temperature ratio 

for fixing the upper limit of utilization. 

 

 

The researchers Xiao et al. [7] has put forward a 

double threshold scheme where the upper threshold is 

set at 80% whereas the lower has been set at 40%. 

Though static thresholds contribute to better energy 

efficiency, but are not suitable for dynamic and 

varying workloads. Various dynamic threshold-based 

load detection techniques have been proposed by 

numerous researchers.  

 

Buyya et al.[14] have formulated a scheme which 

takes into consideration the median of deviations 

from the median of the past CPU utilization. The 

technique was termed as Median Absolute Deviation 

(MAD). Otherwise good, but MAD does not well for 

non-Gaussian distributions. Based upon the values of 

the mean and the standard deviation of the resource 

utilization. 

 

Monil and Rahman [15] proposed an energy 

efficient load detection scheme. Various authors [16, 

17] have deployed probabilistic approaches for the 

load computation and threshold calculation. Many 

authors proposed regression-based techniques, some 

used the concept of machine learning and Markov 

chains [18–20] while few proposed fuzzy learning-

based techniques [21, 22]. 

 

Farahnakian et al. [23] proposed a scheme Linear 

Regression Based CPU Usage Prediction (LiRCUP) 

based on Linear Regression (LR) and used the 

regression technique to predict the short term future 

requirements. To predict the future load in the 

system, the authors [24] have proposed a scheme by 

integrating LR and back propagation. The proposed 

algorithm is self-adaptive in nature and experimental 

results prove its superiority over back propagation 

and LR.  

 

With the aim of minimizing the median value, the 

authors Yadav and Zhang  [25] concentrated on the 

value of the squared residuals.  

 

Host Overloading Prediction Based on Logistic 

Regression (HOPBLR) proposed by Jararweh et al. 

[26] combines the properties of logistic regression 

and MAD to compute the upper threshold.  

 

Whereas Mapetu et al. [27] suggested a technique, 

Pearson Host Overload Detection, that associates 

Pearson Correlation with logistic regression.  The 

authors have presented a load detection algorithm 

based on MAD using Markov model. To achieve the 

desired goal and perform the statistical analysis, first 

order Markov chains have been used by the authors.  

In an attempt to provide a dynamic threshold value, 

Bala and Padha [8] have modified MAD and 

suggested a location-free estimator that computes the 

median of absolute deviations. However, the scheme 

doesn’t perform well in terms of QoS and leads to 

higher SLAVs. 

 

Xie et al. [28] has proposed a LR-based predictive 

scheme that considers multiple resources for the 

computation of the upper threshold. The problem 

with the issues depending on LR is that LR looks 

only at the mean of the dependent variable. However, 

the threshold needs to consider the extreme values as 

well. 

 

Zhou et al. [29] used the ascending and descending 

trends of forecasting techniques to set an upper 

threshold value. Though dynamic in nature but the 

threshold varied only between 85%-90%. Many 

researchers have worked on minimizing the energy 

consumed by a data center, but energy efficiency 

remains an open challenge to be addressed. Overload 

situations in the computing environment cause high 

energy consumption.  

 

In an attempt to deal with the dynamic workload, 

Sharma and Saini [30] has suggested a median based 

adaptive threshold scheme. Though the scheme 

achieved reduction in the violations of SLA but the 

issue of energy consumption by the data center 

remained unattended.  

 

Farahnakian et al. [31] proposed a self-adaptive 

scheme for host overload detection. However, the 

disadvantage of the scheme lies in the use of 

reinforcement learning. The use of reinforcement 

learning makes the proposed scheme complex as it 

requires large amount of data and computation. Too 

much reinforcement learning can lead to the overload 

states which can diminish the results.   

 

For host overload detection, Minarolli et al. [16] tried 

to incorporate the long term prediction methods. 

However, having a large value of time interval for the 

prediction may lead to skipping some overload states 

that do not last long. Thus, increasing the number of 

prediction time intervals does not increase the 

stability and performance of the approach.  
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Significant loss of energy has been observed with 

varying workloads in the work presented by 

Dambreville et al. [32]. Overload and underload 

prediction estimates lead to compromising the energy 

consumption.  

 

Li et al.[12] tried to reduce the number of VM 

migrations but could not help reduce energy 

consumption. The possible reason can be the use of 

Bayesian networks that are highly sensitive to the 

probabilities priory chosen.  

 

Saadi and El [33] proposed an overload detection 

scheme based upon the ratio of performance to 

power.  The scheme exhibited high-performance rate 

in terms of energy efficiency and QoS but the ratio is 

calculated at 90% CPU utilization, which is static in 

nature. Based upon the study of the host overload 

detection schemes, the latter can be categorised as 

shown in Figure 2. The overload detection schemes 

have been classified as static or dynamic depending 

upon the type of threshold used. The dynamic 

threshold based host overload detection schemes are 

further divided as schemes based on regression, 

machine learning, statistical method based and fuzzy 

logic based. 

 

On the contrary to prior work in the literature, the 

proposed scheme considers the dynamic and 

asymmetric behaviour of the data center workload 

while deciding on the value of the upper threshold. 

One of the ways to deal with the fluctuating host load 

is to provide an adaptive threshold policy that can 

efficiently handle the spikes in utilization. The 

current research proposes a scheme based on    

estimator. The scale estimator makes use of pairwise 

means to add dynamicity to the nature of the 

threshold. The advantage of the estimator lies in its 

high efficiency of 86% with Gaussian distribution. 

The workload traces in a CDC are highly 

asymmetric, and the estimator works very well with 

such distributions. Depending upon the dispersion of 

the past utilization, a new threshold is set to deal with 

the dynamic workload. 

 

 

 
Figure 2 Classification of host overload detection techniques 

 

3.Pn estimator based adaptive threshold 

policy (  _    ) 
The   _     is based on the analysis of data for 

CPU utilization, collected in near past.  Workload 

handled by a data center are dynamic in nature and 

follow an asymmetric dispersed pattern. These 

dispersions can be studied for past n time frames to 

adjust the upper threshold of the host for near future. 

Dispersion of CPU utilizations in the past has been 

used to set the upper threshold. If the deviation of 

CPU utilization comes less, then set threshold is low 

and vice versa. Most of the researchers have utilized 

the concept of traditional estimators for finding the 

deviations. However, those classical estimators are 

not robust to outliers. To have a dynamic upper 

threshold, the research study implements an estimator 

   , based upon the pairwise means. The motivation 

behind using    estimator is that it does not require a 

location estimate and is highly efficient with wide 

range of distributions [34].  

Host Overload Detection 

Static Threshold     Dynamic threshold 

Statistical method 
based 

Regression based 

Linear Regression 

Multiple Regression 

k-NN Regression 

Machine learning 
based 

Fuzzy learning 
based 



International Journal of Advanced Technology and Engineering Exploration, Vol 8(83)                                                                                                             

1319          

 

3.1   _     framework 

Figure 3 presents the proposed    estimator-based 

framework,   _    . To check whether a host is 

overloaded or not,   _       comes into play. The 

past CPU utilization of the host is analysed using the 

scale estimator. The value of the future upper 

threshold has been set with the help of the scale 

estimator. Thus, the upper threshold remains dynamic 

in nature, depending upon the utilization of CPU in 

the past time frames. A host exceeding its upper 

threshold is considered an overloaded one, and the 

migration process is initiated upon its detection. The 

reason behind the migration is to avoid degradation 

of system performance owing to the load imbalance. 

Few VMs are migrated to another suitable host, and 

the load is managed. 

 

 

 

 

 

 

 

 

 

 

Figure 3   _     framework 
 
3.1.1Description of each component used in the 

  _     Framework 

a) Host Load: This is the first component of the 

diagram and specifies the load of the host which is 

dynamic in nature. The execution of the proposed 

scheme begins by considering the dynamic host 

load. 

b) Past CPU utilization: This component is 

responsible for retrieving the CPU utilization for 

past     time frames. 

c)    Scale estimator: This component is used to 

statistically analyze the past CPU utilization. As 

proposed by Tarr et al. [34] in 2012, the    

estimator is analogous to Inter Quartile Range 

(IQR) and in its most basic form is calculated as 

the interquartile range of the pairwise means.  

 

According to Tarr et al. [34],     is defined as follows 

(Equation 1-3).  

         *  
  (

   

 
)     

  (
   

 
)+   (1) 

                                   

       
 

      
 ∑    { (      )   }     (2) 

                              

  
          {           }  (3) 

 

      is the empirical distribution of the pairwise 

means given                  a set of 

independent values with  { (      )       

 }   a set of  ( 
 
) pairwise means, such that 

                  ⁄ .  

According to Tarr and Muller,      , works 

extremely well for a wide range of distributions. And, 

therefore, Equation 1 can be reduced to Equation 4. 

           [  
            

        ]  (4) 

 

d) Upper threshold: The input to this component is 

the value evaluated by    scale estimator. The value 

so obtained is used for computing the upper threshold 

using Equation 5. 

                     (5) 

Where s is the safety parameter and the value is set to 

1.5 for experimental purposes. Thus, upper threshold 

is calculated for each host dynamically depending 

upon its past utilizations. 

 

e) Overloaded host: This component takes as input 

the computed upper threshold         calculated in 

Equation 5 and checks the host load with the input 

value of upper threshold. If the host load exceeds the 

threshold value, it is considered as an overloaded 

host. 
3.1.2  _      estimator workflow for host overload 

detection 

Let                     be the set of CPU 

utilization of a host   taken over past   frames.    

estimator has been used to add dynamicity to the 

upper threshold value. Algorithm 1-4 has been used 

for evaluating the value of the robust estimator   , 

which in turn helps in finding the upper threshold. 

This flow of execution is shown in Figure 4. The 

process begins with the generation of a set of 

pairwise means from past CPU utilization. Next, the 

empirical and inverse empirical distribution functions 

are computed. This helps in calculating the value of 

the scale estimator that provides with the value of the 

upper threshold. 
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Algorithm 1.                      
Algorithm 1 is used for computing the pairwise 

means. The input to the algorithm is the set of the 

past CPU utilizations                   taken 

over past n frames. The means,(     )  ⁄ , are 

calculated using these utilization values such that for 

each mean         generating a set of  ( 
 
) 

pairwise means. 

INPUT:   [ ]   An array of   elements consisting data 

of a hosts CPU utilization in past   time frames 

{ 

Initialize           
for          

for         
if        then 

        _     [ ]  
  [ ]   [ ]    ; 

z   z     ; 

end if 

end 

end 

         _     [ ]
              _     [ ]  

} 

return          _     [ ]  
} 

 

 
Figure 4   _     framework flow 

Algorithm 2.           _     
The Algorithm 2 is used for calculating the empirical 

distribution function. The input to          _     

is the set of pairwise means obtained so far using 

Algorithm 1. This set of pairwise means contains ( 
 
)  

elements each of the form  (      ), such that 

       . Algorithm 2 evaluates the empirical 

distribution function,      , for the set of pairwise 

means.  

 

INPUT: Set of pairwise means 

{ 

Initialize               

for       ( 
 
)   

for (    ( 
 
) ) 

if          _     [ ]  
         _     [ ]   then 

        ; 

end if 

end 

                _ [ ]    ( 
 
)
  

       ; 

            
end 

return   _ [ ]; 
} 

 

Algorithm 3.           _            
This algorithm helps in computing the inverse 

empirical distribution. In order to evaluate the 

estimator, the inverse of the distribution function 

needs to be calculated. The inverse depends upon the 

comparison of the       and (3) helps in finding the 

inverse function. Inverse of the distribution function 

equals the minimum value of   such that         
  . 

 

INPUT:   _ [ ] and          _     [ ] 
{ 

Initialize       _            _     [  ]   
 

for       ( 
 
)   

if     _ [  ]      then 

  

              If    _            _     [  ]   
          _             _     [  ]  

     end if 

end if 

end 

return    _   
} 

 

Algorithm 4.                            
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For setting the upper threshold, means is calculated 

followed by the evaluation of the empirical 

distribution function of means and its inverse. The 

inverse is evaluated for first and third quartile. Once 

the inverse has been found out, this helps in 

computing the value of the    estimator. (4) has been 

used for evaluating the value of the estimator.  

{ 

Call                    ; 

Call          _    ; 

  _                _                 
  _                _               ; 
  _        _         _      ;  

               _  ; 

return        

} 

 

4.Experimentation and results 

This section details about the setup used for the 

experimentation of the proposed scheme and the 

results obtained on comparing the proposed scheme 

with the existing algorithms. 

 

4.1Simulation test bench 

The performance of the proposed   _     has been 

analysed using CloudSim toolkit [35]. The simulator 

has been developed at Clouds Laboratory in 

Melbourne University. The algorithm is implemented 

using Java programming language and is run on a 

windows based PC with Inter Core(TM) i5-8250U 

CPU @1.60 GHz and 8 GB of RAM. The hosts and 

VMs used for the simulation purpose are 

heterogeneous in nature. Two types of hosts have 

been used with the characteristics as shown in Table 

1 while VMs used are divided into four categories 

depending upon their characteristics as shown in 

Table 2. Planetlab workload has been used to 

evaluate the performance of the proposed scheme in 

contrast to SnBODA [8] and baseline algorithms [36, 

37]. The Planetlab workload used for the study 

involves the data collected for 10 days as on 3 March 

2011, 6 March 2011, 9 March 2011, 22 March 2011, 

3 April 2011, 9 April 2011, 11 April 2011, 12 April 

2011 and 20 April 2011. The dataset included is a 

part of CoMon [38] project which is a monitoring 

infrastructure for PlanetLab. The data encompasses 

CPU utilizations of various VMs of hosts located on 

more than 500 locations across the world, taken at 

regular 5-minute interval. The characteristics of these 

workloads are shown in Table 3.   
 

 

Table 1 Host characteristics 

 

Table 2 VM characteristics 

 

Table 3 Workload characteristics 

Workload types Date No. of VMs No. of Hosts 

Real (PlanetLab) 03-03-2011 1052 800 

06-03-2011 898 800 

09-03-2011 1061 800 

22-03-2011 1516 800 

25-03-2011 1078 800 

03-04-2011 1463 800 

09-04-2011 1358 800 

11-04-2011 1233 800 

12-04-2011 1054 800 

20-04-2011 1033 800 

 

Server type Frequency of Core 

(MIPs) 

Number of 

cores 

Memory 

(GB) 

Bandwidth 

(Gb/s) 

Storage 

(GB) 

HPProLiantML110G4 1860 2 4 1 1000 

HPProLiantML110G4 2660 2 4 1 1000 

VM type Frequency of core 

(MIPs) 

Number of 

cores 

Memory (MB) Bandwidth (Mb/s) Storage (MB) 

Type #1 2500 1 870 100 2.5 

Type #2 2000 1 1740 100 2.5 

Type #3 1000 1 1740 100 2.5 

Type #4 500 1 613 100 2.5 
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4.2Performance metrics 
It is the duty of every service provider to provide 

good quality of service to its users which is defined 

in terms of SLAs. CSPs work to achieve Minimum 

violation of SLAs and maximum quality levels. The 

major metrics for evaluating the performance of the 

consolidation schemes are: Energy Consumption, 

Energy performance metric, SLA time per active 

host, SLA performance degradation due to migration 

and SLAV. 

 

Energy consumption (KWh)  
In a data center, energy consumption depends upon 

the utilization of the underlying resources like CPU, 

memory, disk and also, on the functional capacities 

of the cooling elements. The energy consumption and 

the resource utilization share a linear relationship. 

More is the utilization of resources; more is the load 

on the server and higher is the energy consumption. 

Better resource utilization leads to improved energy 

efficiency. Being multi-core in nature, it becomes 

difficult to speculate the consumed energy levels of 

the virtualized environment. Therefore, the study 

uses the benchmark framework as specified by 

SPECPower [39] for energy consumption at different 

levels of utilization. 

SLA time per active host (SLATAH) 

SLATAH is the average of the ratio of time for which 

the hosts experience full utilization (   
) to the total 

active duration of the host (   
 . 

        
 

 
∑

   

   

 
      (6) 

Where N is the total number of hosts in active mode. 

 

SLA performance degradation due to migration 

(SLAPDM): During the process of VM migration, 

CPU, memory and bandwidth are involved for the 

migration of a VM from one host to another. This 

migration may cause some degradation in the 

system’s performance which is expressed in terms of 

    i.e., performance degradation due to migration.  

     
 

 
∑

   

   

 
      (7) 

Where    
 denotes total degradation due to migration 

and    
 represent the total resource request with   

being the total number of VMs involved in the 

migration process. 

 SLA violation (SLAV): SLAV specifies the time 

for which the desired QoS is not provided by the 

CSP. It is expressed in terms of the product between 

SLATAH and PDM. 

                     (8) 

 Energy and SLAV (ESV): ESV is the product of 

EC and SLAV. This metric is used to express the 

energy efficiency of the system. There exists a trade-

off between the two. An efficient algorithm tries to 

maintain a balance these two metrics. 

                 (9) 

 Energy, SLAV and VM migrations (ESM): It is a 

combined metric of ESV and the number of VM 

migrations. The objective is to minimal SLAVs with 

minimized energy consumption and least migrations. 

                                    
     (10) 

4.3Comparison of   _     with the existing 

DVMC schemes 

The simulation runs compare energy aware host 

overload detection policies in combination with VM 

selection policies. The research study includes 

comparison of five host overload detection schemes, 

i.e., MAD, IQR, LR, Static Threshold (THR) and 

SnBODA in combination with four VM selection 

policies that include Minimum Migration Time 

(MMT), Maximum Correlation (MC), Minimum 

Utilization (MU) and Random Selection (RS). The 

placement policy used is Power Aware Best Fit 

Decreasing (PABFD). Figure 5 presents the 

taxonomy of the existing DVMC Schemes along with 

the proposed PN host overload detection scheme. 

 

Table 4 represents different DVMC plans used in 

simulations. Each scheme has an entry corresponding 

to Host Overload Detection Policy, Migration VM 

selection Policy, and Migration VM Selection Policy. 

These entries denote the policies used for detecting 

an overloaded host, the selection of VMs from the 

overloaded host, and the placement of the migrated 

VMs, corresponding to each DVMC scheme. For 

example, R21 in Table 4 denotes PNMMT that 

utilizes the proposed   _     as the overloaded 

host detection policy, MMT as the VM selection 

policy and PABFD as the VM placement policy. 
4.3.1Comparison using PlanetLab workload 

The performance of   _     has been compared 

with the baseline schemes in this section. For making 

the evaluation applicable, the real workload traces 

have been used. The section involves ten experiments 

for each DVMC scheme using ten-day PlanetLab real 

workload between March 2011 and April 2011. The 

results of the simulation are shown in Table 5 and 

Table 6.  Each DVMC scheme has been compared 

against the value of energy consumption, number of 

VM migrations, SLAPDM, SLATAH, ESV, ESM 

and the number of host shutdown. Each row entry of 

the Table 5 corresponds to median of values obtained 

in those ten experiments while each row entry of the 
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Table 6 corresponds to average of values obtained in 

those ten experiments. 

Figure 5 and Table 6 represent different 

combinations of schemes used for comparison.  For 

example, PNMMT has been compared with 

MADMMT, IQRMMT, LRMMT and THRMMT, 

shown by R1, R5, R9 and R13 respectively. 

Similarly, R22 presents the PNMC scheme that has 

been compared with the corresponding MADMC, 

IQRMC, LRMC and THRMC given in R2, R6, R10, 

R14 respectively. Likewise, PNMU (23) has been 

compared with MADMU (R3), IQRMU (R7), LRMU 

(R11) and THRMU (R15). In the same manner, the 

performance of PNRS (R24) has been compared with 

MADRS (R4), IQRRS (R8), LRRS (R12) and 

THRRS (R16). A complete list of abbreviations is 

shown in Appendix I. 

 

 

 

 

 
Figure 5 VM consolidation taxonomy 

 

Table 4 Dynamic VM consolidation (DVMC) schemes 

S. No. DVMC scheme 

 

Host overload detection 

policy 

Migration VM 

selection policy 

Migration VM placement 

policy 

R1 MADMMT MAD MMT PABFD 

R2 MADMC MAD MC PABFD 

R3 MADMU MAD MU PABFD 

R4 MADRS MAD RS PABFD 

R5 IQRMMT IQR MMT PABFD 

R6 IQRMC IQR MC PABFD 

R7 IQRMU IQR MU PABFD 

R8 IQRRS IQR RS PABFD 

R9 LRMMT LR MMT PABFD 

R10 LRMC LR MC PABFD 

R11 LRMU LR MU PABFD 

R12 LRRS LR RS PABFD 

R13 THRMMT THR MMT PABFD 

R14 THRMC THR MC PABFD 

R15 THRMU THR MU PABFD 

R16 THRRS THR RS PABFD 

R17 SNMMT SnBODA MMT PABFD 

R18 SNMC SnBODA MC PABFD 

R19 SNMU SnBODA MU PABFD 
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S. No. DVMC scheme 

 

Host overload detection 

policy 

Migration VM 

selection policy 

Migration VM placement 

policy 

R20 SNRS SnBODA RS PABFD 

R21 PNMMT Pn_ATHP MMT PABFD 

R22 PNMC Pn_ATHP MC PABFD 

R23 PNMU Pn_ATHP MU PABFD 

R24 PNRS Pn_ATHP RS PABFD 

 

Table 5 Median values of simulation runs 

 

S. No. 

DVMC 

Scheme 

Energy 

consumption 

(KWh) 

Number of 

VM 

Migrations 

SLAPDM SLATAH 

(10^-2) 

SLAV 

(10^-5) 

ESV 

(10^-3) 

ESM No. of 

Hosts 

Shutdown 

1 MADMMT 179.20 25449.5 0.07 5.04 3.27 5.96 157.67 5586.5 

2 IQRMMT 183.34 25724.5 0.06 5.00 3.00 6.01 153.59 5652.5 

3 PNMMT 177.99 25170.5 0.06 4.97 2.98 5.67 150.07 5540 

4 LRMMT 158.27 27418 0.08 6.13 4.81 8.01 212.86 4985.5 

5 THRMMT 184.84 25851 0.07 5.02 3.46 6.23 168.26 5682.5 

6 MADMC 169.92 22729.5 0.10 7.05 7.02 12.01 273.70 5210.5 

7 IQRMC 172.71 22495.5 0.10 6.92 6.88 11.94 268.68 5285.5 

8 PNMC 169.39 22975 0.10 7.00 6.98 11.65 270.24 5227 

9 LRMC 145.28 22880.5 0.10 7.36 7.33 11.03 256.87 3984.5 

10 THRMC 175.93 23407.5 0.10 6.91 6.87 12.18 283.25 5328.5 

11 MADMU 193.60 28768 0.07 7.58 5.26 9.78 289.96 6130.5 

12 IQRMU 197.75 28963.5 0.06 7.48 4.55 9.75 276.26 6249.5 

13 PNMU 192.61 28242 0.06 7.52 4.54 9.29 262.46 6042.5 

14 LRMU 168.92 28718.5 0.07 8.50 5.95 10.97 288.94 5351 

15 THRMU 199.99 29500.5 0.07 7.47 5.16 10.04 293.78 6299.5 

16 MADRS 171.01 23046 0.10 7.12 7.09 12.12 284.92 5248.5 

17 IQRRS 174.57 23012.5 0.10 7.02 6.63 12.12 279.27 5339 

18 PNRS 169.16 22594.5 0.09 7.07 6.38 11.84 268.64 5191 

19 LRRS 145.43 22978 0.10 7.47 7.47 11.62 267.86 3990 

20 THRRS 176.91 23621 0.10 6.94 6.90 12.10 288.63 5345 

 

Table 6 Average values of simulation runs 

 

S. No 

DVMC 

Scheme 

Energy 

consumption 

(KWH) 

Number of 

VM 

migrations 

SLAPDM SLATAH 

(10^-2) 

SLAV 

(10^-5) 

ESV 

(10^-3) 

ESM No. of 

hosts 

shutdown 

1 MADMMT 183.49 26305.1 0.07 5.05 3.29 5.96 158.79 5665.10 

2 IQRMMT 187.53 26496.9 0.07 5.02 3.28 6.04 161.68 5749.40 

3 PNMMT 181.91 25907.1 0.06 5.00 3.21 5.75 150.63 5622.60 

4 LRMMT 161.87 28174.7 0.08 6.21 4.99 8.01 230.34 5056.40 

5 THRMMT 188.50 26601.9 0.07 5.04 3.44 6.36 170.46 5742.90 

6 MADMC 173.79 23419.6 0.10 7.04 7.11 12.29 293.90 5266.60 

7 IQRMC 177.73 23410.4 0.10 6.93 6.79 11.93 283.34 5330.00 

8 PNMC 172.05 23182.6 0.10 6.98 6.99 11.88 279.04 5234.60 

9 LRMC 148.51 23931.2 0.10 7.47 7.66 11.27 276.05 4116.60 

10 THRMC 179.38 23961.8 0.10 6.91 6.92 12.28 299.10 5373.00 

11 MADMU 198.07 29615.6 0.07 7.56 5.14 10.04 300.58 6230.80 

12 IQRMU 202.35 30018.5 0.07 7.48 4.86 9.73 296.27 6335.30 

13 PNMU 196.18 29188.4 0.06 7.51 4.81 9.35 276.60 6188.50 

14 LRMU 173.06 29419.2 0.07 8.65 6.26 10.74 322.67 5426.70 

15 THRMU 204.09 30384.5 0.07 7.48 5.09 10.24 314.98 6395.30 

16 MADRS 174.86 23697.3 0.10 7.09 7.16 12.38 297.05 5300.50 
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S. No 

DVMC 

Scheme 

Energy 

consumption 

(KWH) 

Number of 

VM 

migrations 

SLAPDM SLATAH 

(10^-2) 

SLAV 

(10^-5) 

ESV 

(10^-3) 

ESM No. of 

hosts 

shutdown 

17 IQRRS 178.46 23671.6 0.10 6.99 6.78 11.98 287.61 5348.50 

18 PNRS 172.97 23338.5 0.10 7.04 6.76 11.59 274.87 5254.10 

19 LRRS 148.07 23760.6 0.10 7.63 7.90 11.61 281.88 4077.60 

20 THRRS 180.31 24023.9 0.10 6.95 6.81 12.17 297.40 5387.50 

 

 Analysis of results 

The following observations have been deduced from 

the Table 6 of observations. 

Case (i) Reduced Migrations with reduced energy 

consumption (PNMMT vs IQRMMT) 

The number of migrations in the case of PNMMT is 

lesser than that of IQRMMT. The reason behind 

fewer migrations is the better performance of the    

scale estimator for estimating the deviations 

compared to other scale measures. Better 

performance yields better threshold values. This 

helps reduce the number of migrations because the 

migration process is initiated once the overload 

situation has occurred. This further minimizes energy 

consumption. Reduced number of migrations and 

energy consumption helps achieve better ESM 

values. As shown in Table 6 (the highlighted rows), 

the ESM for PNMMT is 150.63 whereas for 

IQRMMT, the value is 161.68. In the same manner, 

PNMMT shows improvement over MADMMT and 

THRMMT. 

 

Case (ii) Reduced Migrations with more energy 

consumption (PNMMT vs LRMMT) 

On comparing the results of PNMMT with LRMMT, 

it has been observed that though the number of 

migrations has reduced with PNMMT, the energy 

consumption of PNMMT has not reduced and is still 

more than LRMMT. But, the overall performance of 

PNMMT in terms of ESM remains better than 

LRMMT. For PNMMT, ESM is 150.63, and for 

LRMMT, the value of ESM is 230.34. The reason 

behind this improved performance is the trade-off 

existing between the energy consumption and the 

SLAV. There is an increase in SLAV. In the case of 

LRMMT, the SLAV are much more than PNMMT. 

This led to an overall improvement in the 

performance of PNMMT. 

 

The performance metrics for different DVMC 

schemes are shown in the form of a boxplot in Figure 

6 to Figure 13. Figure 6 shows the graphical 

representation of energy consumption for all the 

compared DVMC schemes. The X-axis shows the 

different DVMC schemes whereas the Y-axis shows 

the amount of energy consumed in KWh. 

Considering MMT as VM selection policy, PNMMT 

shows an improvement of 0.86%, 2.99%, and 3.49% 

with MAD, IQR, and THR. Similarly, with MC, there 

is an improvement of 1 %, 3.19%, and 4.08 % against 

MAD, IQR, and THR. Taking MU as selection 

policy, PNMMT performs 0.95%, 3.04%, and 3.87% 

better than MAD, IQR, and THR. Taking all the 

dynamic host overload detection policies, the average 

energy consumption of PNMC is 14.97% of IQRMU. 

 

Figure 7 shows the graphical representation of the 

number of VM migrations taking place after the 

detection of host overload for all the compared 

DVMC schemes. DVMC schemes are shown across 

the X-axis while the number of VM migration are 

shown in the Y-axis. Number of migrations show 

improvements with maximum of 8.04% when 

compared with LRMMT, 3.25% when compared 

with THRMC, 3.93% when compared with THRMU 

and 2.85% when compared with THRS. 

 

The SLAV depend upon SLAPDM and SLATAH. 

Figure 8 and Figure 9 graphically represent the result 

obtained for SLAPDM and SLATAH, respectively. 

The results for SLAV are shown in the form of a 

boxplot in Figure 10. The X-axis show the DVMC 

scheme while SLAV incurred for each scheme are 

depicted by the Y-axis. According to results obtained, 

the SLAV show maximum improvement over LR 

host detection scheme. With MMT as the VM 

selection scheme, there is an improvement of 38.04% 

and with MC improvement of 4.77% is seen. An 

improvement of 23.69% is observed with MU 

selection policy while with RS, the proposed scheme 

shows an improvement of 14.59%. 

 

ESV is a combined metric that shows the 

performance of a scheme in terms of both energy 

consumption and SLAV. Figure 11 shows the results 

achieved for the proposed scheme against different 

schemes concerning ESV. The X-axis shows the 

DVMC scheme and the Y-axis shows the 

corresponding ESV obtained. Maximum 

improvement is shown when PNMMT is compared 

with LRMMT. There is an average improvement of 

29.21%. 
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ESM is a combined metric of energy, SLAV and 

migrations. The results show that PNMMT shows the 

maximum improvement of 41.83% compared to 

LRMMT. However, the estimator    does not work 

well with LRRS and LRMC schemes. For MMT, 

there is an improvement of 5.06% with MAD, 2.34% 

with IQR and 12.12% with THR. Similarly, for MC, 

there is an improvement of 1.27% with MAD and 

4.81% with THR. Taking MU as the selection policy, 

PNMU performs 10.48% better than MADMU, 

5.26% better than IQRMU, 10.09% better than 

LRMU and 11.93% better than THRMU. Whereas, 

PNRS shows an improvement of 6.06%, 3.95% and 

7.43% when compared with MADRS, IQRRS and 

THRRS, respectively. The results for ESM obtained 

in all the DVMC schemes is shown in Figure 12. 

Values of achieved ESM are represented by the Y-

axis for corresponding DVMC schemes on the X-

axis. 

Number of host shutdowns shows an improvement 

over MAD, IQR, LR and THR. Maximum 

improvement is observed against THR. With MMT 

as the VM selection policy, there is an improvement 

of 2.5% against THR. PNMC shows an improvement 

of 1.9% for host shutdowns when compared with 

THRMC. While the figure is 2.88% when PNRS is 

compared with THRRS. Whereas PNMU exhibits a 

maximum improvement of 4.07% on being compared 

with THRMU.

  

 
Figure 6 Energy consumption vs DVMC scheme 

 

 
Figure 7 Number of migrations vs DVMC scheme 
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Figure 8 SLAPDM vs DVMC scheme 

 

 
Figure 9 SLATAH vs DVMC scheme 

 

 
Figure 10 SLAV vs DVMC scheme  
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Figure 11 ESV vs DVMC scheme 

 

 
Figure 12 ESM vs DVMC scheme 

 

 
Figure 13 Number of hosts shutdown vs DVMC scheme 
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4.3.2Comparison with SnBODA with varying Selection 

Schemes and single PlanetLab workload 

This section presents the comparison of   _       

with SnBODA, proposed by Bala and Padha [8], and 

traditional schemes including MAD and IQR. Table 7 

show the performance of MAD, IQR, SN, and PN 

along with MMT, MU, MC and RS against different 

performance metrics. The simulation results 

correspond to PlanetLab workload for 22 March 2011 

with varying host overload detection and VM 

selection policies. 

Comparing   _      against SnBODA for different 

selection policies various results have been obtained. 

The comparison of metrics between   _      and 

SnBODA with various selection schemes is shown in 

Figure 14 to Figure 20. The X-axis shows the 

different selection policies that have been used for 

comparison whereas the Y-axis shows the 

corresponding value of the performance metric. 

 

Figure 14 shows the graphical representation of the 

results obtained for energy consumption when 

  _      is compared against SnBODA. For energy 

consumption, PNMMT shows an improvement of 

0.54% and 2.77% with respect to MAD and IQR. 

PNMU being 0.78 % and 3.25% better than 

MADMU and IQRMU respectively. An 

improvement of 0.52% and 2.23 % is observed with 

respect to MADMC and IQRMC. However, 

compared to SnBODA,   _      shows an average 

increase of 3.51% consumed energy. 

 

For migrations, PNMMT shows an improvement of 

8.81% over SNMMT, PNMU at 5.5% over SNMU, 

PNMC with 11.34% improvement against SNMC 

while migrations are 9.05% less with PNRS as 

compared to SNRS. The graphical representation of 

number of migrations for    _      and SnBODA is 

shown in Figure 15. 

 

  _      shows an average improvement of 20.26% 

in SLAV, 6.78% in SLATAH and 17.79% in ESV 

when compared with SnBODA.  Figure 16, Figure 17 

and Figure 18 show the SLAPDM, SLATAH and 

SLAV achieved in case of   _     and SnBODA in 

graphical form.  

 
The improvement in terms of ESV is shown in 

Figure 19. PNMMT shows an improvement of 

27.5%, PNMU shows an improvement of 14.91%, 

PNMC shows an improvement of 15.71%, whereas a 

minimum improvement of 13.7% is seen when PNRS 

is compared with SNRS in terms of ESV. 

 

PNMMT shows an ESM improvement of 5.79%, 

8.99% and 51.20% over MADMMT, IQRMMT and 

SNMMT. With MU as the selection scheme, PNMU 

performs 2.82%, 8.62% and 25.56% better than 

MAD, IQR and SN. Similarly, the percentage 

improvement of PN is 2.05, 8.62 and 34.56 for MU 

selection policy against MAD, IQR and SN 

respectively. The results for ESM are shown in 

Figure 20. 
4.3.3Comparison with SnBODA with varying Planetlab 

workloads and single VM selection Scheme 

This section compares   _      with SnBODA for 

four days of PlanetLab workload, with MMT as the 

VM selection policy and PABFD as the VM 

placement policy. Table 8 shows the performance 

metrics obtained of MAD, IQR, PN and SN as host 

selection policies. 

 

 

 

Table 7 Comparative results of DVMC schemes 
S. 

No. 

DVMC Scheme Energy consumption Number of VM 

migrations 

SLAPDM SLATAH (10^-2) SLAV 

(10^-5) 

ESV 

(10^-3) 

ESM 

1 MADMMT 197.33 28628 0.06 5.04 3.00 6.00 170.83 

2 MADMU 214.02 32035 0.06 7.62 4.60 9.80 313.46 

3 MADMC 187.87 25337 0.09 7.04 6.30 11.90 301.60 

4 MADRS 188.26 25711 0.09 7.15 6.40 12.10 311.48 

5 IQRMMT 201.86 28948 0.06 5.02 3.00 6.10 176.00 

6 IQRMU 219.49 33084 0.06 7.6 4.60 10.00 331.13 

7 IQRMC 191.16 25566 0.09 7 6.30 12.00 307.89 

8 IQRRS 193.11 25732 0.09 7.07 6.40 12.30 316.18 

9 SNMMT 190.66 30600 0.08 5.58 4.20 8.00 244.16 

10 SNMU 206.77 33518 0.07 7.89 5.50 11.40 382.77 

11 SNMC 180.11 28345 0.1 7.49 7.80 14.00 397.68 

12 SNRS 180.17 28023 0.1 7.53 7.70 13.80 387.79 

13 PNMMT 196.25 27903 0.06 4.94 3.00 5.80 161.48 

14 PNMU 212.35 31672 0.06 7.59 4.60 9.70 304.84 

15 PNMC 186.88 25128 0.09 7.03 6.30 11.80 295.52 

16 PNRS 188.55 25485 0.09 7.1 6.40 12.00 305.42 
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Figure 14 Energy consumption VS host overload 

detection scheme 

 

 
Figure 15 Number of VM migrations VS host 

overload detection scheme 

 

 
Figure 16 SLAPDM vs host overload detection 

scheme 

 

 
Figure 17 SLATAH vs host overload scheme 

 

 
Figure 18 SLAV vs host overload detection scheme 

 

 
Figure 19 ESV vs host overload detection scheme 
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Figure 20 ESM vs host overload detection scheme 

 

Figure 21 to Figure 27 shows the graphical 

representation of PNMMT and SNMMT for different 

performance metrics. The X-axis shows the different 

PlanetLab workloads for which the corresponding 

values of Y-axis represents the values of performance 

metrics that have been obtained. 

 

The comparison of SNMMT and PNMMT based on 

energy consumption is shown in Figure 21. Out of all 

DVMC schemes, SNMMT consumes minimum 

energy on average and is 3.65% less than 

MADMMT, 5.78% less than IQRMMT and 2.56% 

less than PNMMT.  

 

 

Table 8 Comparative results of DVMC schemes for PlanetLab workload using MMT selection policy 
Date DVMC 

scheme 

Energy 

consumption 

Number of VM 

migrations 

SLAPD

M 

SLATAH 

10^-2) 

SLAV 

(10^-5) 

ESV 

(10^-3) 

ESM 

03-03-2011 
(20110303) 

 

MADMMT 184.88 26292 0.07 5.03 3.52 6.5 171.15 

IQRMMT 188.86 26476 0.06 4.96 2.98 5.6 148.81 

SNMMT 179.58 31495 0.1 5.94 5.74 10.3 324.39 

PNMMT 183.77 25895 0.06 4.9 2.94 5.4 139.91 

22-03-2011 

(20110322) 

 

MADMMT 197.33 28628 0.06 5.04 3.02 6 170.83 

IQRMMT 201.86 28948 0.06 5.02 3.01 6.1 176.00 

SNMMT 190.66 30600 0.08 5.58 4.19 8 244.16 

PNMMT 196.25 27903 0.06 4.94 2.96 5.8 162.31 

03-04-2011 
(20110403) 

 

MADMMT 250.48 35240 0.06 4.91 2.95 7.4 260.04 

IQRMMT 256.75 35245 0.06 4.84 2.9 7.5 262.79 

SNMMT 242.66 40591 0.09 5.75 5.07 12.3 498.96 

PNMMT 249.79 33863 0.06 4.76 2.86 7.1 241.58 

 

20-04-2011 

(20110420) 
 

MADMMT 151.59 22236 0.07 5.29 3.7 5.6 124.82 

IQRMMT 155.61 22903 0.08 5.42 4.34 6.7 154.53 

SNMMT 143.73 21788 0.08 5.54 4.53 6.5 141.74 

PNMMT 150.76 22326 0.07 5.3 3.71 5.6 124.87 

 

 
Figure 21 Energy consumption vs host overload 

detection scheme 

 

Figure 22 shows the graphical representation of 

compared schemes on the basis of number of VM 

migrations. Considering the average number of 

migrations, PNMMT shows the least number and is 

2.14%, 3.15%, and 11.63% better than MADMMT, 

IQRMMT and SNMMT. Figure 23 shows the 

SLAPDM observed in four days for SNMMT and 

PNMMT and Figure 24 shows the graphical 

representation of SLATAH when PNMMT and 

SNMMT are executed for four days PlanetLab 

workload. The SLAV incurred in the case of both 

SNMMT and PNMMT are graphically represented in 

Figure 25. PNMMT shows an average improvement 

of 34.95 % over SNMMT. Maximum improvement 

of 48.78% is observed on 03/03/2011. Figure 26 
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shows the graphical representation of ESV for four 

days’ workload of both SNMMT and PNMMT. 

There is an average improvement of 32.79% when 

PNMMT is compared with SNMMT. Maximum 

improvement of 47.57% is observed on 03/03/2011 

whereas a minimum of 13.84% is seen on 

20/04/2011. 

 

ESM, a combined energy, SLAV and migration 

metric, shows an average improvement of 8.70% of 

PNMMT over MADMMT, 10.98% over IQRMMT 

and 80.93% against SNMMT. The results for ESM 

are shown graphically in Figure 27. 

 

 
Figure 22 Number of VM migrations vs host 

overload detection scheme 

 

 
Figure 23 SLAPDM vs host overload detection 

scheme 

 
Figure 24 SLATAH vs host overload detection 

scheme 

 

 
Figure 25 SLAV vs host overload detection scheme 

 

 
Figure 26 ESV vs host overload detection scheme 
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Figure 27 ESM vs host overload detection scheme 

 

5.Discussion 
The static threshold does not hold well in the case of 

highly dynamic workloads. While handling dynamic 

workloads, it has been observed from the utilization 

history that the utilization shows high deviations. 

This increases the chances of the fluctuating server 

utilization to reach 100% and causes more migration 

overhead. Dynamic threshold deals with the issue of 

frequent migrations and helps reduce the number of 

VM migrations. The energy consumption of a data 

center and the SLAVs incurred are greatly affected 

by the number of live migrations while consolidating 

the VMs. Thus, a reduced number of VM migrations 

helps in minimizing the overall load of the data 

center. As seen from the observations in Table 5 and 

Table 6, our proposed scheme shows the minimum 

number of VM migrations on average for all the ten 

days’ workload compared with the benchmark 

algorithms. This has also helped reduce energy 

consumption and improve the overall performance in 

terms of the ESM metric. 

 

5.1Limitations 

In the cloud environment, the consolidation schemes 

exploit the thresholds for the detection of overloaded 

and underloaded host machines that helps in vacating 

the VMs to maintain a balance between the energy 

consumption and the utilization of the server. The 

proposed scheme adaptively adjusts the upper 

threshold considering the past CPU utilization of the 

host with the help of a scale estimator  . However, in 

the workload consolidation process of the CDC, 

detection of the underloaded hosts is also a critical 

phase. In the proposed scheme, the value of the lower 

threshold for the detection of the underloaded hosts 

has not been taken into consideration. Thus, the 

lower threshold remains static and does not vary with 

the dynamic workload.  

6.Conclusion and future work 
To guarantee QoS while reducing the consumed 

energy aimed at avoiding SLAVs is a challenging 

task for the Cloud Service providers. The vast energy 

consumption is just not due to high computing 

resources but due to the inefficient use of the 

available resources. To enhance the performance of 

the cloud environment, efficient resource 

provisioning techniques are required to minimize the 

energy consumption and to avoid SLAVs. The aim of 

the research is to minimize energy consumption by 

considering dynamic threshold policy for host 

overload detection. The proposed scheme,   _    , 

adaptively adjusts the upper threshold by considering 

the past CPU utilization of the host with the help of a 

scale estimator   . The proposed scheme shows 

better performance when compared with the baseline 

algorithms MAD, IQR, LR, THR and SnBODA. 

Simulation results show the reduction in SLAVs. In 

addition, the energy consumption has also been 

reduced by minimizing the number of virtual 

machine migrations. As a future research direction, 

the proposed work can be carried forward with 

different types of workloads, considering more 

parameters like RAM, bandwidth, GPU to calculate 

the upper threshold and to implement the   _     in 

real cloud environment like OpenStack. 
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Appendix I 
S. No. Abbreviation Description 

1 CDC Cloud Data Center 

2 CPU Central Processing Unit 

3 CSP Cloud Service Provider 

4 DVMC Dynamic Virtual Machine 

Consolidation 

5 ESM Energy, SLAV and number of 

Migrations 

6 ESV Energy and SLAV 

7 GB  Giga Bytes 

8 IQR Inter Quartile Range 

9 IQRMC Inter Quartile Range Minimum 

Correlation 

10 IQRMMT Inter Quartile Range Minimum 

Migration Time 

11 IQRMU  Inter Quartile Range Maximum 

Utilization 

12 IQRRS Inter Quartile Range Random Selection 

13 LiRCUP Linear Regression based CPU Usage 

Prediction 

14 LR Linear Regression 

15 LRMC  Linear Regression Minimum 

Correlation 

16 LRMMT Linear Regression Minimum Migration 

Time 

17 LRMU Linear Regression Maximum 

Utilization 

18 LRRS  Linear Regression Random Selection 

19 MAD Median Absolute Deviation 

20 MADMMT  Median Absolute Deviation Minimum 

Migration Time 

21 MADMC  Median Absolute Deviation Minimum 

Correlation 

22 MADMU Median Absolute Deviation Maximum 

Utilization 

23 MADRS  Median Absolute Deviation Random 

Selection 

24 MC Maximum Correlation 

25 MMT Minimum Migration Time 

26 MU Minimum Utilization 

27 PABFD Power Aware Best Fit Decreasing 

28 PC Personal Computer 

29 PNMC Pn Estimator based Adaptive Threshold 

Policy Minimum Correlation 

30 PNMMT Pn Estimator based Adaptive Threshold 

Policy Minimum Migration Time 

31 PNMU Pn Estimator based Adaptive Threshold 

Maximum Utilization 

32 PNRS  Pn Estimator based Adaptive Threshold 

Policy Random Selection 

33 Pn Pn Estimator based Adaptive Threshold 

Policy 

34   _        Estimator based Adaptive Threshold 

Policy 

35 QoS Quality of Service 

36 RAM Random Access Memory 

37 RS Random Selection 

38 SLA Service Level Agreement 

39 SLATAH SLA Time per Active Host 

40 SLAPDM SLA Performance Degradation due to 

Migration 

41 SLAV Service Level Agreement Violation 

42 Sn Sn based overload detection algorithm 

43 SnBODA     based Host Overload Detection 

44 THR Static Threshold 

45 THRMC  Static Threshold Minimum Correlation 

46 THRMMT  Static Threshold Minimmum Migration 

Time 

47 THRMU Static Threshold Maximum Utilization 

48 THRRS Static Threshold Random Selection 

49 VM Virtual Machine 

 

 

 


