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1.Introduction 
Seismic activity along the Greek vicinity comprises 

the net product emerging from the critical movement 

of the tectonic plates beneath the eastern 

Mediterranean Sea.  
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The latter for the most part is placed on the Eurasian 

plate, with the Cretan part of it situated in close 

proximity to the border of the Eurasian tectonic plate 

with the African tectonic plate [1]. This two-plate 

convergence gives rise to the southern Hellenic 

seismic arc, a wide area casting highly unpredictable 

large seismic activity, that has been a research focal 

point for multiple reasons, including fundamental 

seismic research, hydrocarbons exploration and 

natural hazards safety due to vast tourism inflow [2, 

Abstract  
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3]. Long-term prediction of earthquakes aims at 

estimating their occurrence times years or even 

decades in advance [4], focusing upon recurrence 

times [5, 6] and various long term earthquake 

precursors reported in the literature; including, 

among others, specific changes of known patterns of 

seismicity manifesting amidst the large earthquakes’ 

preparation stages [7, 8]. Reports of successful cases 

of long-term earthquake predictions [9, 10] have so 

far been sporadic and in most cases non-repetitive. A 

number of attempts have been made to support 

potential long-term earthquake precursors with 

models of the underlying mechanism [11–13] and in-

lab confined experiments [14, 15], but these types of 

attempts present the downfall that they can vary 

considerably for various different areas [8, 16]. Some 

methods [17, 18] focused on exploiting the artificial-

neural-networks’ ability to operate as a global-

approximators aiming towards the simulation the 

behavior of the seismic mechanism. Initial 

applications show neural networks being employed, 

alone or in hybrid systems, for mapping input 

datasets to output datasets, such as detected potential 

precursors manifesting as long-term seismic pattern 

changes with the time periods recorded amidst 

consecutive strong earthquakes in a particular area 

[19–21]. 

 

The proposed method focuses in a potentially distinct 

seismic region identified as such by [22] covering the 

southern seismic front of the Hellenic arc and is 

characterized by nearly steady inflow of strain-

energy, attributed to the steady rate of motion of the 

sub-sinking tectonic-plate of Africa beneath Eurasia, 

measured at three millimeters on a yearly basis [21]. 

The steady input flow of energy enables to invoke 

deep learning neural networks using monthly mean 

seismicity rates (MMSR) in order to monitor and 

simulate the strain accumulation and release energy 

process. It is reported [6, 7] that low seismic activity 

yields in a significant increase in the energy build-up 

stored in a particular seismogenic area. On the 

contrary, energy release to the surface, manifesting as 

actual earthquakes, acts as a decongesting 

mechanism. Should there be prolonged intervals of 

minimal recorded seismicity, eventually that shall 

lead towards the sudden release of vast amounts of, 

the stored in underground faults, strain energy to the 

surface, which is depicted as large earthquakes.  

 

Encompassing deep learning neural networks allows 

for the use of extensive architectures, big training 

data sets and multiple recursive inputs, all enabled by 

heterogeneous parallel processing algorithms. The 

inputs to the deep learning model comprise of rates of 

mean seismicity that are used to introduce to the 

latter information regarding strain-energy’s capacity 

accumulated in that particular seismic region. The 

time-periods amidst consecutive strong earthquakes 

form the model’s required-output. After successful 

training, the network has the ability to estimate the 

duration-period amidst the last and next forthcoming 

large earthquake by constantly assessing the mean 

rates of the recorded seismicity observed at the 

possibly seismically distinct southern front of the 

Hellenic arc. 

 

The results depicted by the deep learning model 

enhance the observation reported by [22] that this 

particular area of the southern seismic front of the 

Hellenic arc behaves as a possible distinct seismic 

region. Should that prove to be the case, then 

extending this work to investigate for the possible 

presence of further neighboring distinct seismic 

regions could provide a significant means for 

understanding the seismic clustering phenomenon 

[23], i.e., whether or not it is possible for a strong 

earthquake that has occurred in a certain area to 

trigger the manifestation of a new main strong 

seismic event in the surrounding region. 

 

2.Materials and methods 
2.1Data pre-processing for homogeneity and 

completeness 

The Greek Institute of Geodynamics [24] monitors a 

large part of this region and provides highly accurate 

seismic data through its forty-five telemetric, digital 

seismic stations, equipped with broadband 3D 

component seismometers. The big data extracted are 

carefully revised, archived and are being made 

available on the institute’s website in multiple 

chronologically arranged catalogues, in the form of 

plain text, where each group of data is simply 

separated by spacing. For the research-needs of this 

attempt in analyzing seismological big data, the full 

catalogue has been automatically imported and big 

data were being extracted, organized and used in such 

a manner in order to transform them to a suitable 

format that satisfied the assignment goals. The big 

data set contains various types of information 

comprised of more than 290,900 entries, starting 

from year 1964 and going on as far as 2021, having 

recorded tremors of magnitude sizes between 0.1 and 

7.2 in Richter scale, seismic depths between 0 and 

244 in kilometers and precise timestamp in seconds, 

minutes, hours, day and month the earthquake 

occurred, as well as the geographic location in 

latitude (north) and longitude (east), for every 
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recorded earthquake. This information is made 

readily available for each earthquake in the form of a 

ten-element vector holding the date (year, month, 

day), the time (hour, minute, second), the location 

(latitude, longitude and depth), along with the 

magnitude, in that particular order. 

 

To achieve reliable training of deep learning neural 

networks, it is important to ensure homogeneity as 

well as completeness of the biggest seismic to 

prevent feeding the deep learning neural network 

with information that is either misleading or false 

[25]. The data-level of completeness was evaluated 

by measuring monthly seismicity variations over 

three decades starting from late 80s and onwards 

where the line of regression demonstrated a notable 

gradient measured at 0.36, that falsely indicates an 

increase in seismic activity throughout the Greek 

vicinity [21]. Reducing the seismic dataset to 

measurements of MS > 3.9 indicates that the number 

of earthquakes with magnitudes equaling or 

exceeding MS 4.0 appear to be nearly stationary on a 

yearly basis, whereas their gradient shows a mere 

slope measured at 0.008. It is likely that the increase 

of seismic recording stations and the constant 

expansion of the seismological network by Greek 

Institute of Geodynamics enables the recording of 

additional remote and weaker seismic events that 

result in the notable rise of weak seismic events’ rate.   

 

Further adding to artificially induced effects comes 

from the installation of modern recorders of 

seismicity replacing older stations. These are yielding 

shifts in the magnitudes of the recorded events 

because of differences among the recorders’ 

characteristics viable for determining the magnitude 

of each recorded earthquake. Also, fewer artificial 

effects emerge from the reports of approximate 

magnitudes in cases where precise measurements of 

magnitude were not possible [26, 27]. This is made 

apparent in Figure 1 that displays the distribution of 

earthquake magnitudes recorded per year. It clearly 

demonstrated a significant increase in recordings of 

weaker seismic events with time following the 

expansion of the seismic recording network and the 

use of better technologically advanced equipment. 

Based upon the aforementioned observation that 

artificially imported changes affect mostly weaker 

seismic recordings [26], a lower threshold was set at 

MS 4.0, which was identified using z-statistics [10, 

21], to remove a substantial portion of the most 

affected seismic events from the data to be processed.  

 

 

 
Figure 1 Increased, in number and sensitivity, earthquake recording stations lead to an artificial rise of recorded a 

number of seismic events attributed solely to the ability to depict significantly weaker earthquakes 

 

Observing the spatial distribution of seismic data 

allows for early deductions as to where the most 

intense seismic activity manifests and enables side-

by-side observations with additional geographical 

data like known locations of underground faults. The 

data by themselves, provide enough information in 

order to be plotted and examined in three-

dimensional axis [28, 29] using Cartesian 

coordinates. Additionally, projected 3D data can be 

simultaneously colour-coded to incorporate 

magnitude as a fourth attribute and be displayed with 

respect to occurrence times [29], enabling the user to 
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observe over certain time periods the seismic activity 

of a particular seismic area. Such observations are 

valuable in identifying the initiation of certain 

underground faults’ activity in the region of interest. 

For that purpose, efforts have been made to 

spatiotemporally cluster [30] seismic data into 

potential distinct seismic regions [22] and associate 

those with known underground faults. 

 

It is difficult to identify the in-depth vertical extent of 

underground faults, but should a significant number 

of recorded earthquakes been associated with a 

particular underground fault, then the hypocentres of 

those earthquakes give a good indication of the in-

depth location of the seismically active part of that 

particular underground fault. Still the longer the 

depth where the fault is situated the lesser the seismic 

information that makes it to the surface. This is 

depicted in Figure 2, which presents recorded 

earthquake magnitudes with respect to hypocentres’ 

depth location. Figure 2 shows an outer limit 

narrowing for both smaller and larger seismic events 

forming a right-arrow shape. It is possible that this 

effect is caused because the earth’s medium. It acts as 

a dampening mechanism weakens seismic-wave 

intensity as they propagate to the surface. As a result, 

larger seismic events are not recorded as strong by 

surface recording stations, whilst weaker seismic 

events are getting a lot harder to depict once they 

reach the Earth’s surface. This dampening effect is 

further enhanced in areas covered by deep sea due to 

the change from ground to extensive water-medium. 

 

Following the above observations, having noted, data 

limitations and having compensated for artificial 

infliction of false information in the recorded data. It 

was possible to emerge with a complete and 

homogeneous seismic data set characteristic of the 

area of interest. This data set was then deployed as 

the source for potential pattern’s extraction by deep 

learning parallel processing neural networks as 

described in the next subsection. 

 

 

 
Figure 2 Earthquake magnitude in relation to hypocentral depth 

 

2.2Deep learning neural network architecture and 

training 

Deep learning parallel processing neural networks 

provide a formidable tool in pattern recognition and 

features’ extraction procedures. The open-source 

scientific distribution of Anaconda provides a wide 

variety of tools required to develop and train deep 

learning artificial neural networks of various 

architectures and parallel processing training 

algorithms. The overall goal of the network is to 

detect whether there is a correlation amongst rates of 

mean seismicity and duration periods between 

consecutive large main seismic events, within the 

possibly seismically distinct southern front of the 

Hellenic arc [22, 30]. Figure 3 shows the distribution 

of strong MS>=5.0 main seismic events located 

throughout the Greek vicinity. 
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Figure 3 Distribution of main earthquakes of MS>=5.0 recorded in Greece. The brighter the colour of the dot, the 

greater the magnitude of the plotted earthquake 

 

Artificial neural networks [10, 20] revolve around 

perceptron’s or neurons, i.e., nodes that receive 

several inputs, each multiplied by a weight of 

significance and added to an overall sum, which is 

then passed through an activation function that 

produces an output. It is the activation function that 

decides if a certain node shall activate or not. The 

inputs of the system consist of external information 

fed to the system. Each input connects to an input-

layer neuron and these neurons in turn connect to 

neurons organized in intermediate layers till reaching 

the final layer of output neurons. A group of 

structured interconnected neurons is called a neural 

network. The capabilities of a neural network 

alternate depending significantly on the extent of its 

structure, i.e. the number of neurons per hidden-layer 

as well as the hidden-layers’ number. If the system 

utilizes no hidden layers, it is only capable to 

represent linearly separable deductions. Any function 

can be approximated by a neural network with one 

hidden layer which does contain a continuous 

mapping from one finite space to another finite space. 

A neural network with two hidden layers is a system 

that can represent “an arbitrary decision boundary to 

arbitrary accuracy with rational activation functions” 

[31] able to approximate any smooth mapping to any 

accuracy. With over two layers, the system is able to 

learn complex representations [32, 33]. 

 

Each artificial neural network [20] contains features 

and labels. Features are the data fed into the network 

used for training purposes. Labels are the values the 

network is trained upon. These features and labelled 

values can be of many different types, but the most 

common types used with artificial neural networks 

are categorical and numerical data. Categorical data 

represent a decision between other available choices, 

like the gender of a species, the month of the year or 

the handwritten digit a system recognizes. It 

categorizes it between zero and nine, whilst the 

problems that have to do with categorical data are 

called classification problems and usually consist of 

more than two neurons in the output layer, meaning 

that the neural network structure has to predict 

between some cases and operate a classification 

based on the input data. If the problem is to predict a 

numerical value, it is called regression problem. The 

most common example of a regression problem is 

one where the user predicts the value of an estate 

based on the number of its rooms and the square feet 

of the plot. 

 

This research work addresses a regression problem 

work that aims to dynamically predict the interim 

duration periods amidst consecutive strong main 

seismic events, manifesting within a possible distinct 

seismic zone, given recursively monthly information 

regarding rates of mean seismicity. Magnitudes that 

have significant differences in size can be 

misinterpreted by neural networks, as each neuron 

uses the sum of these values multiplied by their 

individual weights and then passes the sum to an 
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activation function, hence those values must be 

normalized before training. 

 

This assignment utilizes the standard score Z-Score 

method which is expressed by the function (Equation 

1).  

Ζi=(Χi–μ)/σ    (1) 

 

Where Zi is the processed value, Xi is the real value, μ 

stands for the average value and σ for the standard 

deviation. Every column of data has its own set of μ 

and σ, which are used to reverse this procedure 

following completion of the deep-learning neural 

network’s operation. Z-Score standardization has 

been selected over normalization because it is not 

confined by a bounding range, thus ensuring that 

even long seismic time-intervals amongst large 

earthquakes will remain unaffected and won’t be cast 

as outliers [34, 35]. 

 

Once data are transformed to similar values the 

training process is initiated. Training utilizes the 

TensorFlow and Keras libraries. TensorFlow is a 

symbolic math library that can also be used for 

applications in machine learning including deep 

learning neural networks. It was developed by 

Google Brain, initially for internal Google use only, 

and it was then released under the Apache 2.0 license 

in 2015 [36, 37]. Keras is a Python-based open-

source library that supports deep learning neural 

networks. It is capable of running on top of 

TensorFlow and it is designed to enable quick 

experimentation with deep learning neural networks 

by focusing in being modular, extensible and user 

friendly. It was developed as a part of the project 

“Open ended Neuro Electronic Intelligent Robot 

Operating System (ONEIROS) [38, 39]. Python has 

distributions of these libraries that the user can 

encompass in order to produce neural network 

implementations, of which the Anaconda distribution 

is used in this work. 

 

Data are being imported either directly from the web-

catalogues or from external data files. Depending on 

the structure and arrangement of the imported data, 

certain re-arrangements might be needed in order to 

fit the system requirements, which are being 

conducted using a data-handling library. The data 

handling library used in this research work was 

Pandas. Pandas can handle text data, separated by 

spaces, new lines, comma separated values, etc., in 

datasheet files and convert them into data frames, a 

type of object in Python. The imported data have 

been organised in columns, each of which 

corresponding to a different quantity, thus being 

made readily available for the training process.  

 

Keras documentation, offers a valuable source of 

information for the user to decide the type of model 

to be designed and to select a suitable activation 

function and optimizer for the particular task in hand. 

This research work employees a sequential model 

type deep learning neural network with two sets of 

recursive inputs in the input layer, six hidden layers 

with one hundred neurons each and a single output 

layer displayed in Figure 4.  

 

 

 
Figure 4 Deep-learning neural network working mechanism architecture 
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Every neuron of the system is activated by the 

rectified linear unit [40], which chooses the 

maximum between the sum of the weighed imported 

values and zero. A single crisp output is provided in 

the output layer as is the case in every regression 

problem [41–43]. The neural network modifies its 

weights during the training process, using a 

supervised learning by exploiting the difference 

obtained by negating from the neural network’s 

actual crisp output the expected required output 

already provided by the training dataset. The 

compilation procedure, i.e. training and testing 

processes, requires some parameters to be configured 

by the user, such as the loss method and the optimizer 

to be used. The loss method is a string parameter that 

represents a scalar value that the network attempts to 

minimize during the training of the deep learning 

neural network model and signifies how close are the 

predicted values to the true values. Keras provides 

many loss methods like mean squared error, mean 

absolute error, categorical cross entropy and many 

more, described in the Keras losses documentation 

[38]. The optimizer is a parameter that defines 

learning sizes such as learning rate, momentum, 

decay of learning rate and more, depending on the 

optimizer used. There are many different and ready to 

use optimizers that Keras supports, such as Stochastic 

gradient descent, Adam, Adamax and more, but the 

user is free to self-manage the optimizers parameters 

should that be deemed preferable. For this particular 

research work network’s best performance was 

obtained by incorporating as loss-parameter the 

mean-squared-error along with an optimizer of type 

Adam. 

 

Training is initiated by applying the Fit method upon 

the model. The Fit method’s arguments are the input 

data or features, i.e. the data the network is trained 

upon, a batch size, an epoch size and a validation 

dataset. The validation dataset is a slice of the overall 

dataset, approximately about thirty percent of the 

overall dataset, kept unknown during the training 

process to the deep learning neural network. Instead, 

it is used after training to validate how well the 

model handles unknown data, a process necessary to 

prevent overtraining the neural network that causes 

data-overfitting [44–47]. Information gain does not 

work well for attributes with large number of distinct 

values [48] because of overfitting as is the case with 

the task at hand. To address this problem, a dropout 

rate of 0.5 [49] was incorporated to randomly set 

input units to zero at that specific frequency rate, at 

each step during training. The remaining inputs that 

are not being set to zero are scaled up by 1/(1 - rate) 

so as for the sum over all inputs to remain 

unchanged. Dropout only applies during training and 

as such no values are being dropped during inference. 

The training results are stored in a type-history 

variable that keeps a history record of the models’ 

attributes like training loss, successive epochs’ metric 

values, values for validation loss and validation 

metrics. The normalized output of the trained model 

is saved to an external file for later use holding 

custom user data, in the form of a spreadsheet file. It 

is important to maintain the means and standard 

deviation of the output values, so as the Z-Score 

method can be used to extract the real values depicted 

by the network from the normalized results. 

 

3.Results 
MMSR is the independent variables that were used as 

inputs to the deep learning neural network model. It 

enables the latter to monitor the mechanism of energy 

storage and release processes of the potentially 

seismically distinct southern front of the seismic 

Hellenic arc. The range is between 35.20° to 37.50° 

in latitude and 20.50° to 27.50° in longitude as has 

been indicated by [22, 50]. The inputs cover current, 

and previous, thereby introducing recursive 

information, rates of mean seismicity for main 

seismic events and for those of foreshocks and 

aftershocks. These are calculated from the respective 

cumulative activity curves using the regression line 

fitting, so as the model can potentially deduce 

patterns, not just by the released by all earthquake’s 

overall energy but also from the energy released 

solely by the main earthquakes. 

 

The aforementioned information along with 

measurements of the duration period amongst 

consecutive large earthquakes, measuring magnitudes 

exceeding a certain user-defined value of MS ≥ 6.0 

[51, 52], as the required output, form the training 

dataset applied to the deep-learning neural network 

via a parallel processing training algorithm, as was 

discussed in section 2. The duration intervals in-

between the last and the immediate upcoming strong 

earthquake are the dependent variable forming the 

deep learning neural network’s required output. 

These time-intervals used for training were obtained 

by converting the occurrence datetime of successive 

large earthquakes into a unique number using UNIX 

timestamp and then derive their difference. 

 

The loss progress function of the number of training 

epochs using training and validation data is being 

displayed in Figure 5. Although training was 

conducted over five thousand training epochs the loss 
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function indicates a variation between training and 

validation error at around two hundred training 

epochs. This is attributed to overtraining the deep 

learning neural causing it to memorize rather than 

understand the behaviour of the processed time-

series, which affects its operation when presented 

with unseen during training data. 

 

 

 
Figure 5 Deep learning neural network training (brighter line) and validation (darker line) loss progress 

minimization over the number of training epochs 

 

By encompassing validation data during the training 

process and cataloguing the specific parameters of 

the deep learning neural network model for every 

training epoch enables to user to derive the optimum 

number of epochs at which the current parameters of 

the model yield the best possible performance when 

presented with unknown data from the same seismic 

region. The crisp output of the model provides a 

number that corresponds to the difference in time 

amongst the last occurred and the next expected 

strong earthquake. This number when added to the 

respective number corresponding to the date and time 

of the last strong earthquake pinpoints the estimated 

datetime of the potential occurrence of the immediate 

upcoming strong earthquake in the seismically active 

region under investigation as shown in Table 1. 

 

 

Table 1 List of all main seismic events, kept unknown to the deep-learning neural network, with magnitudes of MS 

≥ 5.5 within the potentially seismically distinct southern front of the Hellenic arc from 2009 till 2021, along with the 

depicted estimations of the date of occurrence 

Year Month  Day  Hour  Min Sec Lat Long Depth Mag 
Estimated Date - 

Comments 

2021 JUN 21 22 14 15 36.38 27.07 15 5.7 06/07/2021 

(The seismic energy 

released by two 
significant EQs rather 

than a larger single EQ) 

2021 

 

 
 

AUG 

 

 
 

01 

 

 
 

04 

 

 
 

31 

 

 
 

26 

 

 
 

36.38 

 

 
 

27.08 

 

 
 

16 

 

 
 

5.4 

 

 
 

2019 NOV 27 7 23 42.7 35.69 23.26 71 6.1 02/02/2020 

 
2018 OCT 30 15 12 2.0 37.46 20.45 6 5.5 

18/6/2018 

(the MS 5.5 EQ was 
either triggered by or is 

an aftershock of the MS 

6.6 EQ) 

2018 OCT 25 22 54 49.6 37.34 20.51 10 6.6 

2017 JUL 20 22 31 11.7 36.96 27.43 10 6.2 30/04/2017 

2015 APR 16 18 7 44.9 35.23 26.82 37 6.1 27/12/2014 

(25/5/2015 when 
retrained with data until 

AUG-2014) 

2014 AUG 29 3 45 5.6 36.67 23.67 97 5.7 

2014 APR 4 20 8 7.4 37.20 23.73 113 5.5 

2013 OCT 12 13 11 53.0 35.50 23.28 65 6.2 06/11/2013 

2011 APR 1 13 29 10.5 35.64 26.56 63 6.2 21/03/2011 
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4.Discussion 
The time periods from October 1964 to July 2008, 

April 20011, October 2013, May 2014, April 2015, 

July 2017, October 2018, November 2019, 

respectively, have been encompassed to form 

consecutive training datasets within the potentially 

distinct seismic region reported by [22], ranging 

between 35.2
°
-37.5

°
 N and 20.5

°
-27.5

°
 E. During the 

time-interval between 2009 and 2019 six earthquakes 

with magnitudes MS ≥ 6.0 have occurred measuring 

a meantime of reoccurrence of just over 1.5 years. 

For ease of reference in the observations to follow, 

Table 1 presents all the main seismic events, 

unknown to the deep learning neural network, of MS 

≥ 5.5 in the possibly distinct seismic region of 

interest from 2009 till 2019. The obtained results 

demonstrate specificity at 0.833, negative predictive 

value at 0.833 and positive predictive value at 0.857 

[53], based upon the estimated and actual occurrence 

times of large seismic events. 

 

The first training dataset (1964-2008) provides the 

deep learning neural network with information 

regarding rates of mean seismicity along with 

duration periods amongst subsequent strong 

earthquakes till the 20th of February, 2008 MS 6.0 

earthquake. Once the training procedure concluded, 

the network received recursive input information 

regarding solely rates of mean seismicity 

corresponding to interim duration periods in between 

past main seismic events of magnitude MS ≥ 6.0. At 

that point the network tries to derive the duration 

period to the immediate upcoming large earthquake, 

unknown to it as it falls outside of the training data 

set used. The network’s output was initially measured 

at 53218242. Adding that to the last large 

earthquake’s datetime of occurrence, i.e. February 

20th, 2008, corresponded to the calendar date at 

October 22nd, 2009. Though this result appears to 

stray substantially with respect to the actual daytime 

of the immediate consecutive MS≥6.0 large 

earthquake (April 1st, 2011 displaying a magnitude 

of MS 6.2) within the aforementioned potentially 

distinct seismic region. A more careful examination 

of the seismic activity in the area shows that the 

accumulated stress energy of the expected earthquake 

was actually released by two significantly large 

seismic events with magnitudes recorded in MS 5.5 

and MS 5.6 on the 16th of February 2009 and 3rd of 

November 2009, respectively. 

 

Following that observation, the deep learning neural 

network was retrained with information regarding 

rates of mean seismicity along with duration periods 

amongst subsequent strong earthquakes till the 

November 3rd, 2009, to compensate for the released 

seismic energy. Once the training procedure 

concluded, the network received recursive input 

information regarding solely rates of mean seismicity 

corresponding to interim duration periods in between 

past main seismic events of magnitude MS ≥ 6.0. At 

that point the network tries to derive the duration 

period to the immediate upcoming large earthquake, 

unknown to it as it falls outside of the training data 

set used. The network’s output was initially measured 

at 42076874. Adding that to the last large 

earthquake’s datetime of occurrence, i.e. November 

3rd, 2009, corresponded to the calendar date at 

March 21st, 2011, a mere eleven days earlier than the 

actual recorded MS 6.2 earthquake on April 1st, 

2011. 

 

The deep learning neural network was then retrained 

with information regarding rates of mean seismicity 

along with duration periods amongst subsequent 

strong earthquakes till the April 1st, 2011, to 

compensate for the released seismic energy. Once the 

training procedure concluded, the network received 

recursive input information regarding solely rates of 

mean seismicity corresponding to interim duration 

periods in between past main seismic events of 

magnitude MS ≥ 6.0. At that point the network tries 

to derive the duration period to the immediate 

upcoming large earthquake, unknown to it as it falls 

outside of the training data set used. The network’s 

output was initially measured at 82107871. Adding 

that to the last large earthquake’s datetime of 

occurrence, i.e., April 1st, 2011, corresponded to the 

calendar date at November 6th, 2013, approximately 

three weeks later than the actual recorded earthquake 

of MS 6.2 on October 12th, 2013. 

 

Next, the deep learning neural network was retrained 

with information regarding rates of mean seismicity 

along with duration periods amongst subsequent 

strong earthquakes till the October 12th, 2013, to 

2009 NOV 3 5 25 9.3 37.39 20.35 39 5.6 
22/10/2009 
(The seismic energy 

released by two 

significant EQs rather 
than a larger single EQ) 

2009 FEB 16 23 16 38.5 37.13 20.78 15 5.5 

2008 FEB 14 10 9 23.4 36.50 21.78 41 6.2 N/A - used for training 
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compensate for the released seismic energy. Once the 

training procedure concluded, the network received 

recursive input information regarding solely rates of 

mean seismicity corresponding to interim duration 

periods in between past main seismic events of 

magnitude MS ≥ 6.0. At that point the network tries 

to derive the duration period to the immediate 

upcoming large earthquake, unknown to it as it falls 

outside of the training data set used. The network’s 

output was initially measured at 38114447. Adding 

that to the last large earthquake’s datetime of 

occurrence, i.e. October 12th, 2013, corresponded to 

the calendar date at December 27th, 2014. The actual 

large earthquake occurred just short of four months 

later, on the April 16th, 2015. The nearly four-month 

latency in occurrence might be due to the narrowing 

of the cumulative stress energy by two smaller 

earthquakes of magnitudes of MS 5.5 and MS 5.7 

that occurred in the vicinity of the potentially distinct 

seismic region on April 4th, 2014 and August 29th, 

2014, respectively. 

 

Following that observation, the deep learning neural 

network was retrained with information regarding 

rates of mean seismicity along with duration periods 

amongst subsequent strong earthquakes till the 

August 29th, 2014, to compensate for the released 

seismic energy. Once the training procedure 

concluded, the network received recursive input 

information regarding solely rates of mean seismicity 

corresponding to interim duration periods in between 

past main seismic events of magnitude MS ≥ 6.0. At 

that point the network tries to derive the duration 

period to the immediate upcoming large earthquake, 

unknown to it as it falls outside of the training data 

set used. The network’s output was initially measured 

at 23199572. Adding that to the last large 

earthquake’s datetime of occurrence, i.e., August 

29th, 2014, corresponded to the calendar date at May 

25th, 2015, approximately a month and a half later 

than the actual recorded earthquake of MS 6.1 on 

April 16th, 2015. 

 

The deep learning neural network was then retrained 

with information regarding rates of mean seismicity 

along with duration periods amongst subsequent 

strong earthquakes till the April 16th, 2015, to 

compensate for the released seismic energy. Once the 

training procedure concluded, the network received 

recursive input information regarding solely rates of 

mean seismicity corresponding to interim duration 

periods in between past main seismic events of 

magnitude MS ≥ 6.0. At that point the network tries 

to derive the duration period to the immediate 

upcoming large earthquake, unknown to it as it falls 

outside of the training data set used. The network’s 

output was initially measured at 64350234. Adding 

that to the last large earthquake’s datetime of 

occurrence, i.e. April 16th, 2015, corresponded to the 

calendar date at April 30th, 2017, approximately 

three and half months earlier than the actual recorded 

earthquake of MS 6.2 on July 20th, 2017. 

 

Moving on, the deep learning neural network was 

then retrained with information regarding rates of 

mean seismicity along with duration periods amongst 

subsequent strong earthquakes till the July 20th, 

2017, to compensate for the released seismic energy. 

Once the training procedure concluded, the network 

received recursive input information regarding solely 

rates of mean seismicity corresponding to interim 

duration periods in between past main seismic events 

of magnitude MS ≥ 6.0. At that point the network 

tries to derive the duration period to the immediate 

upcoming large earthquake, unknown to it as it falls 

outside of the training data set used. The network’s 

output was initially measured at 26055940. Adding 

that to the last large earthquake’s datetime of 

occurrence, i.e. July 20th, 2017, corresponded to the 

calendar date at June 18th, 2018, close to four months 

earlier than the actual recorded earthquake of MS 6.6 

on October 25th, 2018. This earthquake was 

accompanied by yet another large earthquake of MS 

5.5 on October 30th, 2018, in the nearby vicinity that 

might either be an aftershock of the MS 6.6 

earthquake or another main earthquake triggered by 

the latter. 

 

Second last, the deep learning neural network was 

then retrained with information regarding rates of 

mean seismicity along with duration periods amongst 

subsequent strong earthquakes till the October 30th, 

2018, to compensate for the released seismic energy. 

Once the training procedure concluded, the network 

received recursive input information regarding solely 

rates of mean seismicity corresponding to interim 

duration periods in between past main seismic events 

of magnitude MS ≥ 6.0. At that point the network 

tries to derive the duration period to the immediate 

upcoming large earthquake, unknown to it as it falls 

outside of the training data set used. The network’s 

output was initially measured at 40176089. Adding 

that to the last large earthquake’s datetime of 

occurrence, i.e. October 30th, 2018, corresponded to 

the calendar date at February 2nd, 2020, just over two 

months later than the actual recorded earthquake of 

MS 6.1 on November 27th, 2019. 
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Lastly, the deep learning neural network was then 

retrained with information regarding rates of mean 

seismicity along with duration periods amongst 

subsequent strong earthquakes till the November 

27th, 2019, to compensate for the released seismic 

energy. Once the training procedure concluded, the 

network received recursive input information 

regarding solely rates of mean seismicity 

corresponding to interim duration periods in between 

past main seismic events of magnitude MS ≥ 6.0. At 

that point the network tries to derive the duration 

period to the immediate upcoming large earthquake, 

unknown to it as it falls outside of the training data 

set used. The network’s output was initially measured 

at 50712147. Adding that to the last large 

earthquake’s datetime of occurrence, i.e. November 

27th, 2019, corresponded to the calendar date at July 

6th, 2021. Careful examination of the seismic activity 

in the area shows that the accumulated stress energy 

of the expected earthquake was actually released by 

two significantly large earthquakes, of magnitudes 

MS 5.7 and MS 5.4 on June 15th, 2021 and August 

8th, 2021, respectively, with the latter having been 

recorded as an aftershock of the former; and the 

expected date of occurrence falls within that time 

interval. 

 

Overall, the deep learning neural network appears to 

have depicted the behavior of the possible underlying 

distinct seismic region. In effect, the deep learning 

neural network estimates the time interval between 

successive large earthquakes within the temporal 

sphere of influence [54, 55] of the next forthcoming 

large main earthquake. Also, in the cases where the 

stored seismic energy was released by a number of 

medium-large sized earthquakes, instead of a single 

strong earthquake, the deep learning neural network’s 

estimated time of occurrence did fall in all cases 

within the time-window amidst the actual 

manifestation of those earthquakes. A complete list 

of abbreviations is shown in Appendix I. 

 

5.Conclusion and future work 
This method, though, is not an attempt towards 

earthquake prediction. Instead, it aims to estimate 

when a specific potentially distinct seismic area has 

gained enough strain energy that could result in a 

large earthquake. In spite the fact that energy 

accumulation appears to be fairly constant mainly 

due to the steady motion of the African plate moving 

beneath the Eurasian plate by approximately 3mm 

per year, the user needs to carefully monitor 

significant releases of energy from seismic events 

close to the threshold magnitude selected as the 

minimum reference magnitude in order to enable us 

to estimate time intervals between large earthquakes. 

As reported earlier, in those cases of energy release 

by lesser yet significant seismic events, the deep 

learning neural networks needs to be retrained to 

encompass that information and adapt accordingly 

thereby revising the estimated time period to next 

subsequent large earthquake. The results presented 

appear to closely approximate the time interval 

between the last and the next upcoming consecutive 

large earthquake deviating only in the range of a few 

months and in some cases even less; residing within 

the foreshock-aftershock time period of each main 

seismic event. These results enhance the observation 

reported by [22] that this particular area of the 

southern Hellenic seismic arc behaves as a distinct 

seismic region. 

 

Future research by the authors shall focus upon 

minimizing the architecture of the deep learning 

neural network, narrowing it down to the neurons that 

appear to make a significant contribution to the actual 

output of the network. It also validates the effect this 

has to the results with respect to the expected outputs. 

Also, this research work shall be extended to cover 

other potentially distinct seismic regions in the Greek 

vicinity, such as those in the Ionian Sea and the 

Cyclades, areas of significant interest in terms of 

tourism and hydrocarbon exploration. Should any of 

these areas also be casted as potential distinct seismic 

regions then it might be possible to deploy deep 

learning to investigate for the presence of seismic 

clustering phenomenon [23], i.e., whether a sizeable 

earthquake in one area can trigger another main 

earthquake in the surrounding vicinity. 
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Appendix I 
S. No. Abbreviation Description 

1 oE Degrees East 

2 o N Degrees North 

3 3D Three-Dimensional  

4 CompuTech Institutionalized Laboratory of 

Computer Technology, Informatics 

& Electronic Devices 

5 EQ Earthquake 

6 GI-NOA Geological Institute of the National 

Observatory of Athens 

7 Lat Lattitude 

8 Long Longitude 

9 Mag Magnitude 

10 Min Minute 

11 MMSR Monthly Mean Seismicity Rates 

12 MS Rayleigh-based Earthquake 

Magnitude  

13 N/A Not Applicable 

14 ONEIROS Open-ended Neuro Electronic 

Intelligent Robot Operating System 

15 Sec Second 
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