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1.Introduction 
Due to the rising traffic congestions, information 

about the traffic conditions can be used by traffic 

management centres in many ways, including to 

synchronize traffic lights, to assist drivers in the 

route’s selection, and to assist governments in 

intercity connections and new roads planning. Traffic 

management not only provides benefits to the road 

users, but also to the municipals and central 

governments, and the environment. Drivers could 

benefit with less time spent in travelling in urban and 

rural road, while governments can acquire those data 

for analysis and used those data to improve urban 

road management. From the perspective on caring for 

the environment, this effort could reduce the 

emission of pollutants.  
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Conventional techniques for estimating traffic flow, 

such as deploying the inductive loops, sonar or 

microwave detectors to obtain traffic flow 

information, have their disadvantages such as high 

installation cost, traffic disruption during installation 

or maintenance, and the failure to detect slow or 

static vehicles [1].   

 

The recent sensor and communication technology 

advancement allow traffic management centres as 

well as municipals to monitor closely the conditions 

of the urban and rural roads, through developing 

systems for monitoring the traffic flow, and 

collecting data on the traffic flow characteristics [2]. 

 

In recent year, vision-based systems and image-based 

sensors have been heavily deployed to collect on-the-

road data. These traffic videos are expected to 

provide on-the-road traffic condition including 

monitoring abnormalities such as accidents by taking 
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Accurate traffic data collection is crucial to the relevant authorities in ensuring the planning, design, and management of 

the road network can be done appropriately. Traditionally, traffic data collection was done manually by having human 

observers at the site to count the vehicle as it passes the observation point. This approach is cost-effective; however, the 

accuracy can’t be verified and may cause danger to the observers. Another common approach is utilizing sensors that 

need to be installed underneath the road surface to collect traffic data. The accuracy of the data reading from the sensor 

is highly dependent on the sensor installation, calibration, and reliability which usually deteriorated over time. For these 

reasons, vision-based approaches have become more popular in traffic flow estimation tasks. Nevertheless, conventional 

image processing techniques which utilize background subtraction-based approach may face problems in complex 

highway environment where the number of the vehicle is high, a large gap in vehicle sizes of different classes and high 

occlusion rate. Thus, in this paper, a real-time vehicle counting in a complex scene for traffic flow estimation using a 

multi-level convolutional neural network is proposed. By exploiting the capabilities of deep-learning models in 

delineating and classifying objects in an image, it is shown that the system can achieve average counting accuracy of 

97.53% and a weighted average of counting with classification accuracy of 91.5% validated on 585 minutes of highway 

videos collected from four different cameras; viewing at different vehicle's angles. The system is also capable of running 

in real-time.  
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advantages of the device installed on-site. In 

comparison, vision-based systems, is easy to install 

and can be easily upgraded, as the system could be 

redesigned and its functionalities improved. These 

days, these vision-based systems are deployed to 

count and classify vehicles, measure the speed of 

vehicles, and identify of traffic incidents [3]. 

 

Recently, many vision-based techniques are being 

deployed in intelligent transportation systems to 

provide traffic information which could derived 

important clue for many intelligent traffic monitoring 

systems, such as traffic index and traffic density. This 

information could then be used to control, optimize 

and manage traffic [4]. In 2018, Maqbool et al. [5] 

proposed a simple and effective pipeline to count 

vehicles, using, at first, a background subtraction 

technique to detect moving vehicles, and then a blob 

tracker to track multiple vehicles to avoid duplicated 

counting for vehicles. In 2016, Liu et al. [6] 

improved this simple pipeline to be able to work in 

the compressed domain for videos obtained in 

highway. In 2016, Xia et al. [7] used the expectation-

maximization (EM) algorithm to improve the 

segmentation quality of moving vehicles. In Prakash 

et al. [8] used pattern matching to identify traffic 

density for efficient traffic light management.   

 

These earlier researches, in the context of intelligent 

transportation, were deployed to detect, track and 

count vehicles in videos. In earlier papers, vehicles 

are detected 1) using the model-based methods which 

uses prior knowledge [9, 10], 2) using the deformable 

templates for matching targets against known vehicle 

models in input videos [11], and 3) using simpler 

features such as corners and edges [12]. As for 

vehicle tracking, approaches such as mean-shift [13], 

Kalman filtering [14], and particle filtering [15] were 

deployed.  

 

The success of deploying CNN-based techniques to 

detect objects such as using Faster RCNN [16], SSD 

[17] and YOLO [18], has provide many researcher 

reasons to deploy these methods to re-look in these 

methods could be deployed not only to estimate 

traffic flow [19], but also to other ITS related 

applications such as road marker and potholes 

detection [20]. The urban traffic monitoring systems 

uniqueness, where vehicles may appear to be 1) 

blurred due to vehicle speed, and 2) small due to 

occluded vehicles, requires careful consideration 

when deploying CNN-based techniques to estimate 

traffic. For that reasons, we have set the objective of 

this paper is to develop a multi-level convolutional 

neural network (mCNN) framework to estimate 

traffic in complex urban settings, i.e. able to handle 

various illumination conditions and complication 

mounting scenario. Herewith, the uniqueness of 

urban environment in acquisition and processing due 

to the instrumentation set-up could showcase the 

proposed mCNN framework for real-time 

deployment. This framework includes five major 

modules: 1) pre-processing; 2) object detection; 3) 

tracking; 4) object classification, and 4) 

quantification. To handle irrelevant image details, the 

image is first cropped. The first deep CNN network is 

then utilized to segment and pre-classified. Later, 

these pre-classified regions are tracked along the 

cropped area. Then, the second-deep CNN network is 

deployed to refine the classification before a 

quantification module is deployed to deliver the 

counting results. To test the proposed framework, the 

quantitative results on realistic videos obtained from 

different acquisition set-up well demonstrate the 

performance of the proposed method. The main 

contributions of this study can be summarized into 

the following: 

• An end-to-end systematic solution for vehicle 

counting in complex urban setting using CNN-

based techniques. 

• A novel mCNN framework which could process 

acquired videos in real-time for vehicles from 

different views such as frontal or rear. 

• A robust mCNN framework which could estimate 

traffic, i.e. count and track vehicles, in real-time.  

 

The rest of the paper is organized as follows. Section 

2 will discuss recent researches related to vehicle 

counting and classification. Section 3 will then 

introduce the details of the proposed multi-level 

convolutional neural network framework. Followed 

in Section 4, implementation details are described 

with extensive experimental results on the complex 

urban setting acquired and the discussion on the 

results will be provided in Section 5. Finally, we 

conclude the paper with some future work in Section 

6. 

 

2.Literature review  
In this section, a number of recent vehicles counting 

algorithms will be discussed. In Tian et al. [21] 

presented a general architecture of a traffic analytics 

for ITS services in four hierarchical layers. The first 

layer is corresponding to the acquisition layer where 

visual sensors are used to capture images of traffic 

scenes. Dynamic and static attributes of the vehicles 

are then extracted from these images in the second 

layer by going through detection, tracking and 
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recognition processes. Detection is the process to 

locate vehicles in the image. The tracking will then 

track these detected vehicles to further extract their 

trajectories information to ensure that each of the 

vehicles contributes only once to the final counter in 

vehicle behaviour understanding layer. Based on this 

architecture, we have summarized a number of 

counting algorithms as shown in Table 1. 

 

 

Table 1 Summary of researches in vehicle counting 

Research 

paper  

Dynamic and static vehicle attributes extraction Behavior 

understanding 

(counting) 
Detection  Tracking Recognition (classification) 

Abdelwahab 

[22] 

Gaussian Mixture Model 

(GMM) background 

subtraction, erosion & dilation 

–narrow ROI 

Overlap area between 

blob in current and 

previous frame 

 

- ROI 

Memon et al. 

[23] 

GMM background subtraction  Contour Comparison (CC), 

Bag of Features (BoF) and 

Support Vector Machine 

(SVM) method 

Line 

 

 

Oltean et  al. 

[24] 

YOLOv3-tiny (car, truck and 

bus)  

Motion Estimation  - ROI 

Lin and Sun 

[25] 

YOLO (car, bus, and truck) Shortest distance  - ROI  

Santos et al. 

[26] 

YOLOv3  DeepSort  -  

Ciampi et  al. 

[27] 

Mask R-CNN (car and truck) Refresh interval  - ROI  

Al-Ariny et al. 

[28] 

Mask R-CNN (car, motorcycle, 

bus or truck)     

KLT tracker  - ROI 

Le et al. [29] Mask R-CNN (car, motorcycle, 

bus or truck) 

- - ROI  

 

Generally, algorithms for vehicle counting can be 

categorized into classical and deep-learning approach 

based on the detection method applied. Classical 

approach particularly background subtraction-based 

vehicle detection is still prevalent in real application 

as it is very fast and accurate under certain controlled 

environment. In [22], Abdelwahab applied Gaussian 

mixture model (GMM) background subtraction to 

detect vehicle and further applied a series of 

morphological operations of erosion and dilation to 

reduce the blob occlusion. The detection was applied 

within a narrow region of interest (ROI) to further 

improve the processing time. The tracking was done 

based on the overlapping analysis between vehicle 

pixels area in current and previous frames, where 

they are considered as the same vehicle if the overlap 

was more than certain threshold value. Similarly, in 

[23], Memon proposed GMM for vehicle detection 

and further classified vehicles into different classes 

using CC and combination of BoF and SVM. 

Counting was done by using imaginary line crossing 

method. Both algorithms worked well for minimal 

occlusion rate as in frontal or top down camera view, 

however in perspective view where the occlusion rate 

is much higher, there will be issues in detection part 

specially to detect individual vehicles within the 

occluded motion area. For that reason, in much recent 

researches, deep learning approach is more 

preferable.  

 

Deep-learning approach has shown superior 

performance not only in image classification tasks 

but also in detection. Most of the counting system 

proposed in the literature applying pre-trained models 

which have been extensively trained using large 

datasets such as ImageNet and COCO. Detection 

based on deep-learning models requires higher 

processing power as compared to the classical 

approach. Mostly, the processing time is much slower 

and does not fulfil the real-time requirement. Thus in 

[24], to achieve real-time, YOLOv3-tiny is proposed. 

However, there is a trade-off between performance 

and detection accuracy. Although YOLOv3-tiny is 

fast it is not as accurate as compared to other deep-

learning detection models such as YOLOv3 and mask 

R-CNN with a more complex network. In [25], 

YOLOv3 was used for detecting 3 different vehicle 

classes: car, bus, and truck. Motorcycle was excluded 

from the counting. In [26], YOLOv3 hyperparameter 

which is the detection confidence level was tested. It 
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showed that in some datasets, different 

hyperparameter value gives a different counting 

precision level. In [27-29], mask R-CNN was 

implemented. 27. Ciampi et al. [27] only considered 

cars and trucks for counting, while Al-Ariny et al. 

[28] and Eduardo [29] considered 4 classes including 

motorcycle and bus. Despite higher processing time 

compared to YOLO, mask R-CNN was preferred as it 

gives segmentation mask as one of the detection 

outputs. The mask will be further used to differentiate 

vehicles within the occluded area. In [28], corner 

points detected in the image is compared to the 

segmented mask to identify which points belong to 

each vehicle. These points were then tracked using 

KLT tracker. In [29] it was reported that cars can be 

counted with good precision but not the other vehicle 

classes such as a motorcycle. This issue may be the 

result of no tracking was implemented, thus the same 

vehicles may be counted more than once. They also 

implemented time interval image capture in which 

some frames were skipped from processing. The 

approach may reduce the overall processing time but 

as the counting area in the image was small, by 

skipping the frames some vehicles may be miss 

detected eventually cause miss count. In [24-25] 

simple tracking methods were proposed to suit the 

counting application which involves only a small 

processing area in the image. In [24] tracking was 

done using motion estimation where the predicted 

position in the current frame was obtained based on 

previous positions and dynamic average movement. 

Measurement of lowest distance was then used to 

associate active tracker with detected vehicles. 

Similarly, in [25], the shortest distance between the 

coordinates of the vehicle in current and previous 

frames is used to associate detection and trackers. A 

simpler tracking approach makes the overall 

algorithm faster. The counting precision is good in 

less occluded condition. Thus, the positioning of the 

camera during video capturing is important, to ensure 

that the occlusion level between vehicles in the image 

is kept at a minimum level. In [26], even with a more 

complex tracker such as DeepSort, it was also shown 

that overall counting precision was lower in the 

testing videos with many occlusion scenarios.  In this 

work, deep-learning approach is applied in the 

detection and classification parts to count and classify 

six different vehicle classes. Combined with a simple 

tracking algorithm, the overall counting system is 

able to run in real-time. 

 

3.Methods  
This paper proposes a framework based on CNN, as 

depicted in Figure 1, to detect and count vehicles in 

complex urban settings. It comprises of five major 

components, including pre-processing, object 

detection, tracking, object classification, and 

quantification. The goal of the pre-processing 

component is to eliminate irrelevant image details. 

The object detection module segments a set of 

interesting regions, and these regions will be pre-

classified. Later, these objects are tracked along 

consecutive video frames and classified into different 

classes before the counting for cars, vans, trucks, 

large trucks, buses, or motorcycles is done in 

quantification component. 

 

 

 
Figure 1 Multi-level CNN (mCNN) Framework 

 

3.1Pre-processing 

Due to the instrumentation setup, the presence of 

some irrelevant details at the edge of the acquired 

image sequence can be observed. Thus, a cropping 

operation is applied (Figure 2) to remove these 

unwanted details. 

 

 
Figure 1 Sample cropping images for processing (gray area) 
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3.2 Detection 

In this step, a CNN model is applied for detection, 

i.e. to extract only relevant detected object. These 

objects consist of four relevant type of vehicle (car, 

truck, bus, bike or person) with minimum confidence 

value of 0.6. Two different CNN models are 

deployed in this detection step, to test the system 

accuracy and performance. Both models are selected 

as they can provide superior detection speed as 

compared to other models such as R-CNN [30] and 

fast R-CNN [31] with good detection accuracy. 

 

The first model is the SSD Multibox [17]. SSD 

Multibox which uses a single deep neural network is 

selected as it could achieve a good balance between 

the speed performance and accuracy performance, by 

discarding the fully connected-layers in VGG-16 and 

replacing with a set of auxiliary convolutional layers, 

i.e. SSD uses those auxiliary convolutional layers to 

extract features at multiple scales. These extracted 

feature maps will be input into a convolutional kernel 

to predict the bounding box and classification 

probability. The score of the class probability and the 

offsets (being the 4 coordinates of a bounding box) is 

computed. Those scores which exceed the threshold 

point would be used as the final box to locate the 

object. Pre-trained SSD model is obtained from [17], 

which has been trained using COCO dataset [32]. 

Input image size of the model is 300x300.  

 

The second model is the YOLOv3 [33], which uses a 

single neural network for both classification and 

localising the object using bounding boxes. The 

network has 24 convolutional layers plus 2 fully 

connected layers. The weights of the first 20 layers in 

the pretrained convolutional layers are taken from 

darknet53 which has been trained using Imagenet 

classification dataset [2, 3]. Then YOLO model is 

constructed by adding 4 convolutional layers and two 

fully connected layers and further trained using 

COCO dataset. YOLO only predict one type of class 

in each grid. Hence, it would be struggling in 

detecting a small object or very close object. Pre-

trained YOLO model is obtained from [34], which 

also has been trained using COCO dataset. Input 

image size of the model is 416x416. 

 

3.3Tracker 

In this step, a tracking algorithm is proposed to track 

the detected vehicles in successive frames. Tracker is 

required to make sure that no vehicle is counted more 

than once. The bounding box information of detected 

vehicles from vehicle detection step will be used to 

initialize the tracker for the first time. In successive 

frames, detected vehicles information will be used to 

update the trackers states. In the event of missing 

observation from detection step, the tracker should be 

able to predict the position of the vehicle in the 

image. Thus, a detection model with good detection 

accuracy will decrease the burden in tracker step and 

eventually contribute to a higher system accuracy. 

 

The tracker uses Kalman filter with single model 

(constant velocity) to estimate the vehicle states in 

each frame. Constant velocity model is used based on 

the assumption that vehicles within the small road 

region is moving at constant speed. State vector used 

is the combination of centroid point, the velocity in x 

and y directions respectively (vx and vy), and the 

width and height of the vehicle box (w and h). In the 

event of missing observation, Kalman filter is 

responsible to predict the possible location of the 

vehicle respectively. 

 

Track association is completed using the global 

nearest neighbour based on centroid distance and 

histogram-based appearance similarity. Tracker 

trajectories will be associated with the detected 

vehicles based on the lowest centroid and similarity 

distances. 

    

It is important to terminate and remove the tracker at 

the end, as the tracker will consume some processing 

time and contribute to the overall system 

performance. Tracker is terminated based on the 

following few conditions; (1) tracked object is out of 

region-of-interest; (2) predicted tracked object box is 

near or beyond image boundary; (3) tracked object 

already counted and exist for more than few seconds 

after being counted; (4) vehicle disappears (miss 

detected) for a number of consecutive frames. 

 

Figure 3 shows sample images with tracker output 

information. The green boxes are the output from 

vehicle detection; while blue and red are the output 

from tracker and quantification respectively. Tracker 

label for each tracked vehicle is written on the top 

right of the bounding box. Vehicle trajectories (up to 

previous 15 frames) are drawn to show the 

consistency of the tracker output. Note that even 

during occlusion, i.e. situation whereby few vehicles 

are close to each other, the tracker could still be able 

to track vehicles correctly to some extend (e.g. frame 

# 1255). 
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Figure 3 Sample tracking output; green boxes show the detected vehicles, while blue and red boxes indicate tracked 

and counted vehicles respectively. Vehicle will be counted as they pass the line-of-detection (indicated by horizontal 

black line). The black lines indicate the tracker trajectories in 15 most recent frames, while the number displayed on 

top of the box is the tracker label 

 

3.4Classification 

For classification process, we employed Inception v1 

model which was released in 2014 by Google Inc. It 

is also known as GoogleNet. This network has won 

the ILSVRC (ImageNet Large Scale Visual 

Recognition Competition) in 2014 outperformed 

other deep learning networks including ZFNet[35], 

AlexNet[36] and VGGNet[37]. Inception network 

architecture has 22 layers and it also has inception 

blocks in which convolution with different kernel 

sizes is done in parallel and the feature map output is 

concatenated before pass to the next layer. As there 

exist large gap in vehicle sizes of different classes 

(e.g. motorcycle vs. lorry with 3 or more axles), thus, 

having different kernel sizes as in inception block 

might be an advantage to us. Our inception model is 

constructed by utilizing the pretrained network 

weights from [38] which has been trained on 

ImageNet datasets, followed by a new linear 

classifier layer which consists of a linear and a 

softmax layer with six output correspond to the six 

vehicle classes as shown in Figure 4. The linear 

classifier is then trained using our own datasets, 

while the other network weights are freezed. The 

input image is the RGB images with 224×224 

dimension. The data size used during the training is 

38352 (90% for the training) and 4262 (10% for 

validation) respectively. 

 

The challenges in classification include: (1) interclass 

correlation is high between class 1 and class 2, and 

(2) intra class correlation is low for class 3 and class 

4, especially for vehicle of different viewpoints 

(frontal and rear). 

 

 

 
Figure 4 Vehicle classes 

 

3.5Quantification 

To perform counting, a virtual line is used to trigger 

the counter to update. As the vehicle crosses the line 

in the intended direction, the corresponding vehicle 

class counter will be increased. Sample snapshot with 

overlaid virtual counting line and the direction is 

shown in Figure 5. In every frame, each of the 

vehicle centroid will be examined. If the y-coordinate 

of the centroid is more than the y-coordinate of the 

virtual line (assuming the origin of the image is on 

the top-left of the image) and the vehicle is not yet 

counted, then the corresponding class counter will be 

increased by one. Counted vehicle will be flagged as 

“already counted” to avoid double counting on the 

same vehicle. 

 

For each tracked vehicle, the history of vehicle class 

prediction will be kept for a small window frame. 

The final decision on final vehicle class to update the 

counting will be regulated based on the frequency of 

the predicted class of the tracked vehicle.     
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Figure 5 Sample virtual counting line and the 

direction 

 

4.Results   
4.1Experimental Setup 

Data collection was done using RGB colour video 

camera, operating with frame rate of 25fps and 

spatial resolution (standard) of 704×576, storing 24-

bit/pixel, mounted on either a lamp post (P) or a 

pedestrian flyover (F). The camera set-up for the 

experiments is illustrated in Figure 6. Proposed 

camera height is more than 5 meters from the ground 

with proposed camera angle is between 45 to 60 

degree from the vertical position. This is to ensure 

that tall vehicles such as bus and long truck are fully 

visible in the video, as well as to reduce occlusion 

level between nearby vehicles. Sample images of 

video sequences acquired from different highways 

are included in Figure 7. Collected data is then 

annotated manually by experts in image processing. 

Summary of these videos properties is specified in 

Table 2. 

 

After the set-up, we noticed good video sequences 

were obtained with sufficient spatial resolution for 

the algorithm to work with but with several 

challenges: (i) distortion of some video sections by a 

“shadow effect” caused by the sun –set and –rise 

scenario, (ii) image noises appearing at the images 

corners due to acquisition set-up and highway 

structures, (iii) severe occlusion of vehicles 

especially during peak hours, (iv) motion blur on fast 

moving vehicle as shown in Figure 8. 

 

On the other hand, initial observation on different 

vehicle orientation captured from different settings 

are as follows: 1) for frontal (View 2 and View 4), 

less occlusion can be observed, but some vehicles 

from different classes appear almost the same, for 

example small multi-purpose van (MPV) in class 1 

looks the same as big MPVs from class 2, 2) for side 

view (View 1 and View 3), it is easier to differentiate 

different vehicles especially the trucks with 2 or more 

axles, however occlusion rate between nearby 

vehicles is much higher and become severe during 

peak hours. 

 

 

 
Figure 6 Data collection setup 

 

 
Figure 7 Camera views 
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Table 2 Summary of collected data 

Views Number of lanes Vehicle orientation Number of clips 

(15min/clip) 

Average number of vehicles 

per clip 

1 4 Side (~15°) 12 1134 

2 4 Frontal 12 1165 

3 5 Side (~45°) 7 2295 

4 5 Frontal 8 1593 

 

 
Figure 8 Some challenges observed in the datasets; (a) shadow effects caused by the sun –set –rise and severe 

occlusion, (b) motion blur on fast moving vehicle 

 

4.2Performance metrics and Results 

Proposed system is evaluated in terms of (a) vehicle 

detection rate and accuracy for different detection 

models; (b) counting accuracy; (c) counting with 

classification accuracy; and (d) processing time. 

4.2.1Detection rate and accuracy 

Detection rate and accuracy are calculated by 

comparing the overlapping region between detected 

boxes and the ground truth (GT). For this evaluation, 

an intercept over union (IoU) of 50% is considered. If 

a vehicle with the IoU between its detected box and 

the ground truth is more than 50%, a true positive 

(TP) is considered. If the IoU is less than 50%, it is 

considered as a false negative (FN) case. While false 

positive (FP) is considered if the system detects non-

vehicle object as vehicle. In the event where one 

vehicle is detected with more than one boxes, the first 

box is considered as one TP, while the rest are 

considered as FP. 

The detection accuracy (Detacc) and detection rate 

(DR) are then calculated as follows: 

 

                
  

        
                          (1) 

 

                   
  

     
                       (2) 

 

For evaluating detection accuracy and detection rate, 

three 20-seconds video clips (~500 image frames) are 

selected from three camera views. As highlighted in 

Table 3, these videos are carefully chosen to 

emphasize different problems occurring in complex 

traffic scene, such as (1) high variance of object size 

(e.g. motorcycle vs lorry with more than 2 axles) (2) 

high occlusion between nearby objects (e.g. during 

peak hour); and (3) different vehicle orientations (e.g. 

frontal vs side view). For side view, the angle given 

is the angle between vehicle’s major axis and the 

vertical line. The threshold for minimum confidence 

value is set to 0.3 for both detection models. These 

datasets have been manually labelled whereby the 

vehicle type and bounding box location of each 

vehicles appears at least 80% of the body within the 

detection area is recorded as the ground truth. Table 4 

shows the detection accuracy and detection rate of 

the proposed detection models on the 3 selected 

video clips. While Table 5 shows the processing time 

for both detection models running on Intel® Core™ 

i5-8400 CPU@2.80GHz processor with Nvidia 

GeForce RTX 2070 graphic card. 

  

Table 3 Testing video properties 

Dataset 

(40sec videos) 

Total vehicles Min and max object size 

(%) 

Occlusion level Orientation 

Video 1 1522 0.37, 17.86 Medium Side (~15°) 

Video 2 1454 0.23, 18.45 Low Frontal 

Video 3 5015 0.09, 12.45 High Side (~45°) 

 

Table 4 Detection rate and accuracy result on selected 40 seconds videos 
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Dataset 

(40sec videos) 

Models TP FP FN DETACC (IOU = 

50) 

DR(%) 

Video 1 SSD 996 11 456 68.12 68.64 

YOLO 1161 0 296 79.64 79.64 

Video 2 SSD 668 10 865 43.29 43.57 

YOLO 1139 7 383 74.49 74.84 

Video 3 SSD 3266 24 1750 64.80 65.11 

YOLO 4801 68 214 94.45 95.73 

 

Table 5 Average inference time for SSD and YOLO 

Detection model Average inference time (ms) Average inference time (fps) 

SSD 9.82 101.83 

YOLO 17.88 55.92 

 

4.2.2Counting accuracy 

Accuracy of the traffic counting is evaluated by using 

equation 3 and 4. First, the error between counting 

output and the GT for each video clip is calculated as 

in equation 3 and 4. Counting is evaluated per video 

clip instead of per each frame. As an example, if a 

video A has total vehicles of 100 for the duration of 

15mins, and the system reports total vehicle of 85, 

thus the percentage of error is 15%, and this shall 

contributes to the accuracy of 85%.  

                
     |         |                ⁄           (3) 

 
                   
                                                         (4) 

  

Figure 9 shows the box plot of the accuracy from all 

four views. 

 

 

 
Figure 9 Box plot of counting results from four camera views 

 
4.2.3Counting with classification accuracy 

For traffic counting with classification, the overall 

accuracy is calculated using equation (5), where it is 

the weighted average of the traffic counting accuracy 

for each class calculated using equations (4). The 

weight is determined based on the ratio of GT 

number of each vehicle class to total vehicle in the 

video clip as in equation (6). 
                                       

      ∑          
 
                                  (5) 

                        

    
    

∑     
 
   

                                     (6) 

 

Figure 10 to Figure 13 depict the accuracy of each 

class (bar chart) and the weighted average accuracy 

(line chart) for each camera view respectively. 
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Figure 10 Weighted average accuracy for View 1 

 

 
Figure 11 Weighted average accuracy for View 2 

 

 
Figure 12 Weighted average accuracy for View 3 



Zulaikha Kadim et al. 

348 

 

 

 
Figure 13 Weighted average accuracy for View 4 

 

4.3Overall processing time 

The algorithm is written using C++, with TensorRT 

[39] framework is used as the inference engine. All 

model was converted to TensorRT optimized models 

for deployment. Table 6 shows the average 

processing time of each process. Overall, the system 

achieves real-time processing with average of 26.98 

frame per second (fps), which is higher than the 

frame rate of video capturing process at 25fps. 

Detection step requires longer processing time 

compared to other processes. 

 

 

Table 6 Average processing time (per frame) 

Detection (ms) Tracker (ms) Classification (ms) Quantification (ms) Overall processing 

Time (ms) Fps 

17.8 9.70 9.49 0.00094 37.06  26.98 

 

5.Discussion 

5.1Detection rate and accuracy 

Referring to Table 4, YOLO model consistently 

achieved the highest accuracy and highest detection 

rate in all videos. YOLO achieves the highest 

accuracy for Video 3 despite of occlusion level in the 

video, may due to the orientation of the vehicle 

which is about 45° from the vertical line. The vehicle 

appearance is much more distinguishable from this 

view as compared to frontal view. This is proved by 

the lowest accuracy achieved by both models in 

Video 2.  

    

These samples show that YOLO works great in 

detecting small and occluded vehicles. 

 

In terms of processing time, both models can perform 

in real-time with SSD runs faster compared to YOLO 

with average inference time of 9.82 ms/frames, while 

YOLO runs at an average of 17.88 ms/frames as 

listed in Table 5. This is explainable as YOLO 

network has more layers and number of parameters 

as compared to SSD. Due to its superior performance 

in terms of detection accuracy and detection rate and 

its ability to run in real time, YOLO is chosen as the 

model for our overall system. 

 

Figure 14 further demonstrates the detection outputs 

of both models running on sample images taken from 

Video 3. Green and blue boxes are the detected 

vehicles inside and outside of detection area 

respectively. While the red boxes are the miss 

detected vehicles. From the figure, YOLO is able to 

detect small objects such as motorcycle and occluded 

objects better than SSD.   
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Figure 14 Sample vehicle detection result using different detection models. Detected vehicles within the detection 

area, detected vehicles outside of detection area and miss detected vehicles are shown in green, blue and red boxes 

respectively 

 

5.2Counting accuracy 

Based on the results in Figure 9, overall, the system 

has achieved good accuracy results for all video clips, 

with minimum accuracy of 92.89% is recorded from 

view 3 for clip between time 1300 to 1315. View 2 

achieves the highest mean accuracy, followed by 

view 1 and view 4, while view 3 records the lowest 

overall mean accuracy.  

 

Although detection accuracy of samples from view 3 

is higher compared to the other views, but the 

occlusion level is also higher. The occlusion may not 

impact much on the detection process, however, the 

tracker may have problem in associating tracker 

trajectories with the detected vehicles when they are 

closed and occluded to each other. That gives impact 

to the overall counting accuracy. Nevertheless, it is 

also observed that overall counting accuracy is high 

despite of low detection rate, and this shows that the 

tracker is able to maintain same vehicle identity 

during missing observation from detection step.  

 

5.3Counting with classification accuracy 

Each of the counting results is further evaluated 

according to their vehicle classification output. All 

camera views except view 3 record weighted average 

accuracy above 90% for all video clips. However, 

view 3 records lower weighted average accuracy in 

general, with the lowest is logged at 70.48% for the 

clip between 1600-1615 hours. By looking at Figure , 

lower overall accuracy is contributed by the low-class 

accuracy in C2, C4 and C6.      
 

5.4Limitation of the proposed method 

Results discussed earlier prove that the proposed 

method is able to count number of vehicles and 

classify them to six different classes on complex 

traffic scenes at good accuracy level. However, the 

system has yet to be tested in more challenging 

weather and night environment where the lighting 

condition is low and the image may be distorted with 

the light beam from the vehicles. 

 

6.Conclusion and future work 
A practical framework is proposed in this paper to 

deploy a real-time vehicle counting system, using (1) 

an end-to-end systematic traffic flow estimation 

system in urban setting; (2) a multi-level CNN that 

could handle vehicles from different camera views; 

and (3) various datasets to evaluate proposed vehicle 

counting algorithm in terms of accuracy and 

performance. Experimental results show that the 

mCNN could track and count vehicles under various 

conditions, achieving average counting accuracy and 

average weighted counting with classification 

accuracy of 97.53% and 91.5% respectively for all 39 

video clips of duration 15-mins each.  

 

From the detection evaluation, it is shown that YOLO 

outperformed SSD in all sample videos with the 

highest accuracy is recorded for vehicles from side 

view (about 45degree angle between vehicle’s major 

axis and vertical line) as the vehicle appearance is 

more distinguishable from this view. However, 

occlusion level is also higher in this view. The 

occlusion level impacts the tracker’s performance, 
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which cause the overall counting accuracy of this 

view is lower than the others.   

 

In addition to accuracy, real time processing is also a 

crucial factor in the system deployment and it is 

proved that our mCNN implementation executes in 

real-time as the average processes is faster than 25 

fps of camera capturing rate with average overall 

processing of our system is 37.06ms per image, 

which equivalent to 26.98fps. 
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