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1.Introduction 
In 2020, 850 cases have been reported worldwide of 

natural damage due to geophysical, meteorological, 

hydrological and climatological factors (three times 

more than in 1980) [1]. The first studies of seismic 

hazard were performed in the late XIX century in 

England [2].  
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According to statistics, strong earthquakes occur on 

average more than 100 times a year. The regions of 

the Earth where the risk of earthquakes is highest are 

the areas where oceanic or continental plates occur, 

and the areas located on both sides of such plates 

(Figure 1). 

 

The level of seismological danger was measured and 

estimated at the maximum accelerations of ground 

motion (m/s2), which can be exceeded with a 

probability of 10% over the next 50 years. 

Research Article 

Abstract  
The strategy of earthquake-proof construction and seismic risk reduction requires constant improvement of methods of 

calculation and compilation of increasingly informative normative forecast maps of seismic hazards. Despite the wide 

range of available methods for fixing deformations of the earth's crust, a reliable seismic forecast is still not possible 

because local changes in parameters do not always lead to earthquakes, and environmental heterogeneity does not allow 

to single out any bright shift that can make one think about future earthquakes. The introduction of modern 

mathematical methods and the development of the newest computer technologies based on artificial intelligence (AI) give 

a chance to predict the occurrence of natural disasters, in particular, earthquakes. This study aims to build a 

mathematical apparatus for earthquake prediction, which is based on the use of neural networks (NNs) to process large 

amounts of information. Artificial neural networks (ANNs) can be used to approximate any complex functional 

connections. The article presents the results of developing a neural network model (NNM) for forecasting occurrence 

numbers and sizes of medium-strong earthquakes (Mw >=4 on the Richter scale). To build a forecast NN, data on 

earthquakes recorded in Greece for the period 2000-2020 (about 2,500 events) were used. The NN receives input from 

three independent variables: geographical coordinates of the earthquake's latitude, geographical coordinates of the 

earthquake's longitude, and the earthquake's depth. The construction of a NN to predict strong earthquakes was 

implemented in the development environment RStudio programming language R. Neuralnet package was used to build 

the required NN, which contains a very flexible function for training feed-forward neural networks (FFNNs) and allows 

you to simulate many internal hidden layers and hidden network neurons. We have also used the nnet package, which is a 

universal tool for building predictive models in NN programming. The result is a NN of the multilayer perceptron type, 

which includes 2 hidden layers consisting of 5 and 3 neurons, respectively, which generate input data at the output of the 

network. The NN perceived model of seismicity not only describes the process of occurrence (generation) of earthquakes 

in Greece, but can also be used to estimate magnitudes of forthcoming seismic events.   
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Figure 1 Map of seismic hazard of different regions 

of our planet (compiled by the author according to 

[3]) 

 

In Figure 1 areas of low seismic hazard, which 

occupy more than 70% of the land, are painted in 

blue and blue tones. Pink and red colors illustrate the 

presence of a high degree of danger, which is about 

8% of the earth's surface. An updated ground-motion 

model (GMM) for earthquakes with a magnitude of 

6-9 Mw was presented in the work of scientists 

D.Goldberg, D.Melgar, G.Hayes, B.Crowell, and 

V.Sahakian using observations of the Global 

Navigation Satellite System (GNSS) peak ground 

displacement (PGD). GMM earthquake models 

provide information on several scientific and 

engineering parameters, including source 

characterization, seismic hazard evaluations, loss 

estimates, and seismic design standards. A typical 

GMM model is characterized by simplified metrics 

that describe the source of the earthquake 

(magnitude), the observation distance and location 

conditions [4]. 

 

The first examples of successful earthquake 

forecasting date back to the 1970s [5]. The most 

active problem was in the United States, Japan and 

China. The Americans and Japanese relied on large-

scale networks to collect geophysical information and 

improve data processing in high seismic areas, and 

China on a large, hard-working and executive 

population. 

 

In the following years, earthquakes were reported to 

be predicted in China [5], but much more often the 

element struck unexpectedly. At the same time, 

unconfirmed forecasts caused panic among the 

population and led to large economic losses, so in the 

future, it was even decided to limit the practice of 

evacuation measures [6]. 

 

In the USA and Japan, scientists did not limit 

themselves to recording the ground motion. They 

measured the level, temperature, and chemical 

composition of water in wells, the speed of ground 

motion, recorded anomalies of the gravitational and 

geomagnetic fields, and monitored atmospheric, 

ionospheric, and geoelectrical phenomena. At the 

same time, the Union of Soviet Socialist Republics 

(USSR) did not have enough opportunities to deploy 

regional observation networks, instead a number of 

high-class local test sites for complex geophysical 

observations were created [7]. 

 

Research into the processes that characterize a 

possible earthquake and new ways of recognizing 

anomalies, including the use of artificial intelligence 

(AI) techniques, were expected to bring success, but 

hopes were dashed. 

 

The huge increase in the amount of geophysical 

information has not led to a qualitative improvement 

in the efficiency of the forecast. Geophysicists have 

been able to observe a large number of different 

physical anomalies, presumably related to processes 

that indicate the possibility of an earthquake (e.g., 

rapid movements of the earth's surface before the 

Haicheng earthquake), but the vast majority of them 

have not been observed in other earthquakes or at 

other sites. Despite all efforts, it has not been possible 

to obtain an effective and cost-effective earthquake 

prediction, in which the losses from the predicted 

disaster, which were prevented, would exceed the 

losses from false alarms [6, 7]. 

 

Over the past few years, space-based observation 

methods based on AI technologies, namely neural 

networks (NNs), have been widely used in 

earthquake prediction researches. New satellite 

technologies allow to monitor and analyze 

deformations of the Earth's surface, changes in soil 

temperature during deep fluid emissions, changes in 

the ionosphere associated with strong earthquakes. In 

earthquake forecasting, NASA, for example, relies on 

the use of the high-precision global positioning 

system global positioning system (GPS), as well as 

satellite radars that appeared a little later, with 

synthetic aperture Interferometric Synthetic Aperture 

Radar (InSAR). GPS allows to track the position of 
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points of the earth's surface, where stationary 

receivers are installed, and to estimate the speed of 

their movement with an accuracy of millimeters. 

InSAR technology is used to monitor the earth's 

surface displacements for the established time 

intervals between successive surveys of the studied 

area. Combining GPS and InSAR data provides 

incredible accuracy in monitoring the movements of 

the earth's surface. Another task is to track the signal 

from these data, which allows predicting the location 

and strength of a future earthquake [8, 9]. 

 

Among modern European observation systems, the 

French program based on the Detection of Electro-

Magnetic Emissions Transmitted from Earthquake 

Regions (DEMETER) satellite launched in 2004 was 

also of particular interest. It provided for both remote 

and ground observations to verify and link space 

data. This program was aimed at predicting 

earthquakes based on data on changes in the state of 

the ionosphere using artificial neural networks 

(ANNs) [10]. The rapid spread of AI is significant to 

some extent affects society, and changes the way we 

work, live and interact. Therefore, the most important 

consideration during the development of AI must be 

provided its usefulness to humanity, and for this it 

must be at the same time "Human-friendly" and 

"Earth-friendly". Today AI technologies are 

successfully developing in two directions [11]: 

 Semiotic: the creation of systems that mimic such 

processes as speech, thinking, and expression of 

emotions; 

 Biological:  the creation of NNs that are built on 

the biological principle. 

The potential for the use of AI is very wide because it 

is already used in many areas: medicine, finance, 

industry, trade, and, of course, human life. Because 

AI is the driving force of the fourth industrial 

revolution, its use capacity could help achieve 

sustainable results favorable to humanity and the 

planet, on which we live (Figure 2). 

 

 
Figure 2 Cardinal factors of AI for the good of the Earth (approximate time scale) (compiled by the author 

according to [12]) 

 

Late advances in technologies such as parallel 

processing for handling and visualizing diverse big 

data associated to natural disasters, as well as 

advances in artificial intelligence, such as as deep 

learning, provide valuable tools in the study of 

complex natural phenomena with non-linear 

processes [13–15]. In predicting natural disasters, 

such as earthquakes, it is important to detect the 

various hidden relationships between the variables 

studied during the research. NNs as global 

approximators are capable of depicting 

underlying/hidden relationships between often 

unknown system variables. Providing that successful 

training of the NN has been accomplished, it is then 

possible to apply to the trained NN seismic data sets 

from neighbouring areas and investigate whether the 

neighboring areas also uphold similar 

underlying/hidden relationships [16].  

In this paper, the task of earthquake magnitude 

prediction is set. To solve it, the application of a 

feed-forward multilayer neural network proved to be 

effective. This type of NN does not require an 

extended dataset, since the earthquake prediction 

problem is not solved as a pattern recognition 

problem, in which the use of a back propagation 

neural network (BPNN) is better suited. 

 
This paper begins with a brief review of the most 

commonly used earthquake prediction methods based 

on ANN technologies. Next, it discusses the most 
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commonly used type of static feed-forward neural 

networks (FFNNs) for predicting the occurrence of 

future earthquakes and explains their general 

operation. Then it continues with the description of 

the method of predicting the frequency of occurrence 

of strong earthquakes in Greece and the evaluation of 

the effectiveness of its use. Next, the general model 

of the NN for predicting strong earthquakes in 

Greece, namely the earthquake magnitude, is 

described, and a strategy for solving geophysical 

problems based on the constructed model is 

formulated. Finally, the built model is evaluated 

based on the calculated values of the total error and 

the general conclusions of research on the 

effectiveness of this method in predicting future 

earthquakes are formed. 
 

2.Literature review  
In the problem of earthquake prediction, ANNs are 

used for both prediction and pattern recognition. 

Such NNs as ANNs with back propagation learning 

algorithm [17–19], radial basic function NN (RBF) 

[20, 21], nonlinear autoregressive network with 

exogenous inputs (NARX) [22, 23], recurrent neural 

network (RNN) [24–26], convolutional neural 

network (CNN) [27–30], probabilistic neural network 

(PNN) [31], deep feed-forward fully connected 

neural network (DNN) [30], multi-layer perceptron 

(MLP) [32, 33], self-organizing map (SOM) [34] 

were used for earthquake prediction. These NNs, 

depending on the input data, have two most common 

applications: for predicting the magnitude of the 

possible earthquake [32, 33] and the location and 

time interval of the earthquake [29–35]. 

 

Statistical methods based on the abovementioned 

NNs are used for long-term forecasting of strong 

earthquakes. However, they are difficult to apply for 

short-term forecasting of either strong or weak 

earthquakes. Weak earthquakes (Mw<3) are rarely a 

matter of interest due to the waves from such 

earthquakes being enormously difficult to detect and 

track. However, the use of approaches that have 

proven themselves well in conditions of high 

similarity between the nearest seismic signals leads to 

a large number of false detections. Multilayer CNNs 

can be the most accurate in detecting weak 

earthquakes. For this purpose, a NN was applied to 

the detection of synthetic microseismic events using 

records from a well with a relatively low noise level 

[36]. 

 

Many works are devoted to the task of predicting the 

time interval of earthquakes [37, 38]. The interval 

between earthquakes is characterized by the seismic 

activity of each area. Kao Din Chong in his work 

describes an algorithm for constructing a medium-

term forecast of strong earthquakes (M>6) based on 

seismic data related to the time of earthquake 

occurrence. The author focuses on the development 

of the principle of selecting the forecast time interval 

for medium-term earthquake prediction using a 

BPNN [39]. The main difficulty of this method can 

be considered the type of NN chosen by the author, 

which requires the consideration of a large number of 

earthquakes. Therefore, the forecasts that can be 

obtained from a relatively limited catalog of 

earthquakes in the selected area cannot be considered 

sufficiently accurate. 

 

In the field of scientific research of earthquakes and 

their forecasting, an important task is to study 

aftershocks [35, 37–41]. With the help of NN Phoebe 

M. R. DeVries, Fernanda Viégas, Martin Wattenberg 

& Brendan J. Meade it is possible to investigate the 

earthquake foci and to predict aftershocks. The new 

approach will allow predicting repeated seismic 

shocks that may occur in the period up to a year after 

the main seismic shock. The NN was trained on 199 

earthquakes over the past decades and 130,000 

aftershocks. The coverage was 50 km vertically and 

100 km horizontally from the epicenter of each 

earthquake [42]. The researchers note that the NN is 

still far from a perfect aftershock prediction, but it is 

characterized by extraordinary potential. New risks 

and challenges associated with earthquake 

forecasting generate increasingly complex 

methodologies for their modeling and prediction. 

Modeling algorithms combine specific NN types with 

different types of NN training. The NN type 

underlying these algorithms varies depends on the 

task at hand. The most appropriate NN for early 

earthquake prediction in the process of estimating the 

probable parameters of the earthquake epicenter 

location and magnitude is a multilayer FFNN. The 

main problem common to such type of NN is the 

adjustment of weights from input to hidden neurons. 

In this case, the back-propagation learning algorithm 

is used. The essence of the algorithm is that the errors 

associated with the weight coefficients of the hidden 

layers are determined by back-propagating the errors 

of the output layer neurons [43]. A cyclicity of 

training takes place until the error value of the 

weighting coefficients is minimized. Among the most 

typical challenges to the prediction of earthquakes in 

modern conditions, there are: 
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 the existence of unknown factors that may affect 

the accuracy of the built earthquake prediction 

model;  

 the difficulty of measuring or tracking known 

factors that are precursors of a possible 

earthquake (the smell of gas in an area that is not 

characterized by this phenomenon, abnormal 

behavior of insects and other animals, sparks 

between closely spaced power lines, blue 

lighting of the inner surface of buildings); 

 differentiation of factors that characterize the 

approach of an earthquake: deformation of the 

earth's crust, anomalies of geomagnetic fields 

and heat flow, sharp changes in the properties of 

rocks (electrical, seismic, etc.), geochemical 

anomalies, violations of the water regime, 

atmospheric phenomena; 

 quite often the connection between these factors 

and earthquake occurrence is non-linear. 

 Scientists face these challenges when solving 

such tasks of earthquake forecasting as: 

 identifying the relationship between earthquake 

affecting coefficient and the nature of the place 

of occurrence using DNN [44]; 

 observation of electromagnetic waves 

characterizing the level of seismicity with using 

MLP [45]; 

 short-term forecasting based on chaotic analysis 

of time series containing data from recent 

earthquakes in a specific region using RNN [46]; 

 forecasting the magnitude using PNN [47] and 

the time and location of a strong earthquake 

based on modeling RNN [48], using a vector of 

eight mathematically calculated parameters 

called indicators of seismicity; 

 non-linear forecasting for modeling dissection 

from earthquake time series using a multilayered 

FFNN model based on the back-propagation 

algorithm [49]; 

- finding the relationship between radon and 

earthquake based on three-layer Levenberg-

Marquardt feed-forward learning algorithm [50]; 

- analysis of spatio-temporal electric field data 

measured by various stations as a precursor to an 

earthquake in relation to regional seismicity 

using SOM based NN [51] etc.  

 

3.Materials and methods  
3.1Artificial intelligence technologies and other 

state-of-the-art methods for earthquake 

prediction 

Various approaches are used to predict earthquakes, 

including methods and algorithms based on expert 

systems [13]. Among the most effective methods of 

machine learning in the earthquake, prediction is 

ANNs, the method of reference vectors, the method 

of k-nearest neighbors, the naive Bayesian classifier 

and the "random forest" algorithm proposed by L. 

Breiman and A. Cutler [52]. 

 

Several promising methods employ various AI 

technologies aiming toward earthquake prediction yet 

forecasting earthquakes remains an unsolved problem 

and open front in seismology. 

 

Determinist methods of seismic hazard analysis 

based on geological data were described by E. 

Krinitzsky, who determined that when forecasting 

earthquakes, the main thing is to determine the 

nearest active fault and calculate the maximum 

possible earthquake. Then the maximum possible 

intensity of seismic shocks on the Earth's surface is 

calculated based on the theory of seismic waves, 

taking into account their attenuation as they move 

away from the epicenter of the earthquake and the 

impact on local soils, which are usually presented in 

the form of a horizontally layered medium [53]. 

 

The risk of earthquakes increases in urban areas due 

to high population density and extensive 

infrastructure. However, these factors also complicate 

earthquake forecasting. The logistical difficulties of 

deploying detecting devices, as well as the seismic 

noise that the city is constantly creating, complicate 

an already difficult task. Traditional earthquake 

detecting methods that look for seismic wave-related 

events above a certain noise level may simply miss 

less powerful signals. Also, although the detection 

threshold for small earthquakes can be lowered by 

relying, for example, on the local similarity of 

signals, seismic noise attenuation itself can 

significantly increase the sensitivity to detect the 

desired seismic signals. Among the researches of 

scientists who have been actively engaged in the 

investigation of the consequences of error detection 

and earthquake location, one can also distinguish the 

works of Husen and Hardebeck, Stabile et al., 

Zaliapin and Ben-Zion [54–56]. 

 

Traditional noise reduction methods are based on 

simple spectral filtering of signals and are therefore 

ineffective if the earthquake signal is overlapped by 

noise in the same frequency range. The problem can 

be solved by noise attenuation in the frequency-time 

domain, which will help to detect a seismic signal 

against the background of noise. Traditional detection 

methods look for energy pulses with amplitudes that 
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exceed the detection threshold and cannot distinguish 

an earthquake from other signals, such as waveforms 

generated, such as traffic. However, this requires a 

complex analysis of a large array of data in search of 

the necessary relationships between signals, which is 

almost an ideal task for machine learning methods 

[16, 57]. 

 

Earthquake detection and wave phase selection are 

quite time-consuming procedures performed by 

analysts when processing seismic records. Phase 

selection consists of estimating the time of arrival of 

the primary (P) and secondary (S) waves at the 

seismic monitoring station. The authors Sergi Mus 

Leon, Beatriz Otero Calvino, Leonardo Alvarado 

Vivas et al. developed (FFNNs) and CNN to explore 

numerous architecture configurations to find 

appropriate hyperparameter patterns for efficient P 

wave earthquake detection [58]. The algorithm 

developed by the authors requires some post-

processing of the network output based on an 

adequate level of triggering, which is not a final 

solution to solve the issue of accurate prediction of 

earthquake occurrence.  

 

Another approach to earthquake forecasting estimates 

is based upon potential relationships between the 

depth of the earthquake, i.e., hypocentre, and the 

surface location were the main earthquake manifests 

(epicentre), to predict the earthquake’s magnitude 

[59]. Such a problem can be solved by employing 

static analysis. One of the tools of static analysis is 

programs that use networks of artificial neurons. To 

obtain a qualitative result of NN modeling, it is 

necessary to consider a sufficient number of 

examples and corresponding solutions for training 

NNs, ie establishing and memorizing patterns that 

link them together [59]. Such examples are the data 

of strong earthquakes (Mw>=4 on the Richter scale), 

recorded in Greece from 2000-2020 [60, 61]. For this 

type of forecasting, MLP, also called feed-forward 

multilayer NN, is used in more than 50% of cases for 

earthquake prediction based on structured earthquake 

catalogues [62]. Based on the number of studies 

using this type of NN architecture in earthquakes 

predictions with more accurate results, it was chosen 

for further research in this paper. 

 

3.2Hellenic Arc seismotectonic situation and 

seismic data for neural network analysis 

Greece is located in the area between the African and 

Eurasian plates, which is very vulnerable to seismic 

activity and has historically often been affected by 

the subterranean elements. The Hellenic Seismic Arc 

begins from Corfu, descends to Kefalonia, 

Zakynthos, the coast of the Peloponnese, furthers 

below Crete and ends at Rhodes, where it descends 

even lower (Figure 3). There are nineteen (19) active 

tectonic faults located in the Greek vicinity [60, 61]. 

Every day, the Geodynamic Institute of the National 

Observatory of Athens, which monitors Greek 

seismicity and coordinates a national seismological 

network of more than 300 seismological stations 

across the country, normally records 20 to 30 

imperceptible earthquakes. These earthquakes have a 

magnitude below Mw. 3.0 on the Richter scale. 

 

 
Figure 3 Approximate map of earthquakes in Greece 

in the period 1900-2020 (compiled by the author 

according to [16, 17]) 

 

The article presents the results of the development of 

a neural network model (NNM) for estimating 

occurrence numbers and estimated magnitudes of 

medium-strong earthquakes (Mw>=4 on the Richter 

scale). This threshold has been introduced to 

compensate for the artificially inflicted increment in 

the recorded small-sized earthquake that is due to the 

increase in the overall number and sensitivity of 

modern seismic recording stations [63–66]. The 

following data from the training sample for the 

period 2000-2015 (n = 2002 events) and the test 

sample for the period 2016-2020 (n = 437 events) are 

used to construct the forecast NN, importing to it 

information regarding earthquakes’ geographical 

coordinates of latitude and longitude, depth and 

magnitude.  

 

ANNs are used to approximate any complex 

functional connections. Using NN modeling, the type 

of relationship between input variables and output 
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variables is not indicated, in contrast to generalized 

linear models, as confirmed by the McCullagh and 

Nelder study, where this is mandatory, for example, 

as a linear combination [67]. 

 

3.3Сustomization of feed-forward neural network 

for earthquake prediction 

Feed-forward networks in predicting short- and long-

term earthquakes are primarily characterized by their 

static nature, which allows the weights of the NN to 

remain fixed after their determination and not change 

over time [63]. Feed-forward means that this type of 

NN can predict long-term and short-term 

earthquakes, but they cannot receive back 

propagation from multi-layer outputs and the BPNN, 

which is mostly in different local conditions during 

the training phase [52]. Thus, this type of network 

does not repeat iterations until the final solution is 

obtained, but directly converts input signals into 

output data regardless of the previous input data [68]. 

However, the probability of obtaining the desired 

result increases when the network is tested with 

perfectly represented input signals. The network 

adjusts the weights over many iterative cycles, 

honing its output to the most accurate value [52]. 

 

There are no established rules for determining the 

exact number of neurons in the hidden layer. 

Classically, the best configuration is determined from 

the input data by trial and error, starting with a small 

number of nodes [68]. However, Huang and Huang 

(1991) show that the upper bound on the number of 

neurons needed to accurately reproduce the desired 

results of the training samples is m training samples. 

Thus, the number of neurons in the hidden layer 

should never exceed the number of training samples. 

Furthermore, to keep the training problem bounded, 

the number of training samples should always be 

greater than the number of internal weights. In 

practice, m ≈ 10ntot (total number) is considered a 

good choice. Hence, the number of neurons must be 

limited; otherwise, the training set will simply be 

memorized by the network [69]. 

 

A two-layer FFNN was constructed for forecasting 

training. This was possible because of the large 

dataset comprised of data on earthquakes for a period 

of twenty (20) years instead of a comparable BPNN 

that would require fewer data [13, 70].  This NN 

architecture gave the best result in comparison to 

various other multilayer NNs tested using unknown 

testing data; meeting expectations as it is one of the 

most commonly used NN architectures in earthquake 

predictions along with neuro-fuzzy models [71–73]. 

Geographical coordinates of latitude and longitude of 

the earthquake, and depth of the earthquake are 

inputs values, and the output value is the magnitude 

on the Richter scale. 

 

Before forecasting initiates, the available data are 

subjected to preliminary optimization for the correct 

operation of the NN including the removal of factor 

values, normalization of numerical data, and 

verification of available data for the appropriate 

format.  

 

When defining a NN training algorithm, it seems that 

the best solution to determine when to stop training is 

the case when a local minimum is reached or when 

the convergence rate has become very small, i.e., the 

improvement from iteration to iteration is zero or 

minimal. However, Geman et al. show that this leads 

to overfitting, i.e., to memorization of the training set. 

Hence, the resulting weight distribution will be 

optimal for the training samples, but will lead to poor 

performance in general [74]. A similar phenomenon 

occurs in tomography problems where it is known as 

overfitting [75]. 

 

A classic solution to this dilemma is to use a 

partitioned set of examples. One part is used for 

training; the other part is used as a reference set to 

quantify the overall performance. Training is stopped 

when the discrepancy of the reference set reaches a 

minimum. This method is known as delay cross-

validation [68]. 

 

Although this method generally gives good results, it 

results in a shorter training set, which can be a 

problem if only a limited number of examples are 

available. Since this method requires dividing the 

number of existing examples, the final number of 

training samples used is further reduced. The dataset 

we use in this paper consists of a sufficient number of 

observations, which allowed us to apply this 

particular training algorithm and obtain the desired 

result [68]. 

 

The final data set is divided into training and test sets 

in the ratio of 83% to 17% [70]. The control set shall 

be created from the training set automatically during 

the training of the model and is 10% of the training 

data set. The sampling is based on R values, which 

define the ratio between the real and the expected 

results. The closer the R value is to 1, the more 

accurate the results are [76]. To avoid the problem of 

split datasets, there are some other methods: 

generalized cross-validation methods, residual 
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analysis and theoretical measures that investigate 

both the results obtained and the complexity of the 

network. 

 

In the process of functioning, the NN generates the 

output Y for a given input X via the function Y = 

G(X). With the known network architecture, the type 

of function G is determined by the values of synaptic 

weights (coefficients) and offsets (threshold signals) 

of the network [77]. 

 

The simplest multi-layer perceptron consists of an 

input layer with n covariates and an output layer with 

one output neuron. It can be described by the 

following Equation 1: 

 ( )   (   ∑     )   (    
  )  

         (1) 

 

where w0 is the threshold value; w=(w1 ,..., wn ) is the 

vector consisting of all synaptic weights without 

taking into account the threshold value; x=(x1 , ..., xn) 

is the vector of all input parameters [77].  

 

In this case, all calculated weights are equivalent to 

the parameters of the general linear regression model 

(GLM) [77]. 

 

However, K.Hornik, M.Stichcombe, and H.White 

refuted the idea that one hidden layer is sufficient to 

model any partially continuous function [77]. Multi-

layer perceptron, consisting of J hidden neurons, is 

calculated by the following Equation 2: 

 ( )   (   ∑    (     ∑      ))  
 

   

 

   

 

  (   ∑     (      
  ))  

    (2) 

 

where w0 is the threshold value; w0j is the threshold 

value of jth hidden neuron; wj is the synaptic weight, 

which corresponds to the synapse, which begins with 

the jth hidden neuron to the original neuron; 

wj=(w1,..., wnj) is the vector consisting of all synaptic 

weights that correspond to the synapses leading to the 

jth hidden neuron; x=(x1,..., xn) is the vector of all 

input covariates [77]. 

 

Assume that the solution is the function Y=F(X), 

given by pairs of data (X1 , B1 ), (X2 , B2 ),...,(XN ,YN ), 

for which Yk = F(Xk ) (k = 1, 2,...,N) [27]. The 

purpose of NN training is the synthesis of the 

function G, which will be close to F with the 

corresponding error of approximation to the data of 

the training sample E. The training of the NN 

becomes a multidimensional optimization of a large 

dimension. 

The total error E as the difference of the square 

between the predicted and observed results is 

calculated as Equation 3: 
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where l = 1,…,L is the number of input-output pairs; 

h = 1,…, H - number of outputs; olh and ylh - predicted 

and observed outputs, respectively [77].  

 

The mean absolute percentage error (MAPE) is the 

arithmetic mean of the absolute errors |  |       
   , which is calculated as follows Equation 4: 
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Equation 1 was used in creating a NN with one 

hidden layer for forecasting the periodicity of strong 

earthquakes based on the monthly data of 

earthquakes that have occurred in a period of twenty 

(20) years in Greece. Equations 2 and 3 were used to 

create and estimate the performance of a two-layer 

FFNN for forecasting the maximum magnitude of 

earthquakes monthly. Equation 4 calculates a 

measure of the prediction accuracy of forecasting 

methods of earthquakes to identify the better model. 

 

4.Results  
4.1Predicting the frequency of strong earthquakes 

Building a NN to predict medium-strong earthquakes 

is implemented in the development environment 

RStudio programming language R, which is ideal for 

statistical data processing. Neuralnet package was 

used to build the required NN, which contains a very 

flexible function training FFNNs and allows you to 

model many internal hidden layers and hidden 

network neurons. We also used nnet package, which 

is a fairly simple universal tool for building 

predictive models in NN programming. 

 

To analyze the level of seismicity in Greece, research 

on the frequency of strong earthquakes (M>=4) was 

conducted using the nnet package. The results of this 

research are displayed using a linear graph. For this 

purpose, data were used that characterize the monthly 

number of strong earthquakes that occurred in Greece 

in the period 2000-2020 (n = 252 events) (Figure 4). 

Using the nnet library for this analysis should take 

into account its feature - it allows you to build NNs 

with only one hidden layer. 

 

The following algorithm was used to obtain the result 

of predicting the frequency of strong earthquakes 

(Figure 5), The final graph of the linear dependence 

for input data was obtained using the algorithm above 

in the RStudio development environment (Figure 6):
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Figure 4 Periodicity of strong earthquakes in Greece for the period 2000-2020 (n = 252 events) 

 

 
Figure 5 Algorithm for predicting the frequency of strong earthquakes [Appendix I] 
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Figure 6 The final graph of linear dependence: black shows the original series, red - fit, blue - forecast for n = 252 

events for the period 2000-2020 

 

A data set consisting of 240 random events of strong 

earthquakes (Mw>=4 on the Richter scale) in the 

period 2000-2020 was used to train the NN. The test 

data set included 12 events, which is approximately 

5% of the total sample. The forecast is made for 1 

observation ahead. 

 

4.2 Neural network modeling 

The neuralnet function used to train the NN makes it 

possible to determine the required number of hidden 

layers and hidden neurons according to the desired 

complexity of the NNM. The complexity of the 

calculated function increases with the addition of 

hidden layers of hidden neurons. The default value is 

one hidden layer with one hidden neuron. The output 

of the NN directly depends on the activation function 

f (Equation 5): 

 ( )  
 

     
     (5) 

 

where u means the weighted sum of the outputs of all 

hidden layers [77]. 

 

Unlike FFNNs, for BPNNs it is advisable to use 

nonlinear sigmoid functions as an activation function 

a hyperbolic tangent, or a logistic function [71]. 

 

The logistic function, for example, is suitable for 

binary variables because it reflects the output of each 

neuron in the interval [0, 1]. 

 

The NN activation function for our data set is: NN = 

neuralnet (MAGNITUDE ~ LONG + LAT + 

DEPTH, trainNN, hidden = c (5.3), err.fct = "sse", 

linear.output = F) according to Equations 5. The NN 

receives data of three independent variables, i.e., 

geographical latitude coordinates, longitude 

geographic coordinates, and earthquake depth, which 

pass through two hidden layers of the network, 

consisting of five and three hidden neurons, 

respectively [70,71,77] Input data propagate through 

the above NN architecture producing a crisp output 

of the network. The NN was obtained to predict 

strong earthquakes (Mw>=4 on the Richter scale) in 

Greece using the following algorithm in the RStudio 

development environment (Figure 7).  

 

The following statements are relevant using the 

algorithm in Appendix II. 

 the grain “50” as a random number controller is not 

the stable number; we can change this value and 

see how the NN behaves; 

 normalizing the training (83% of all data) and test 

(17% of all data) data, take into account that the 

data must be in the interval [0;1] (“2” in the 

function “apply” indicates columns used for 

analysis; when “1” indicates rows that is not 

appropriate in our case 

 prescribing the appropriate NN activation function, 

set magnitude as dependent variable and longitude, 

latitude and depth as covariates, and set also a 

differentiable function “err.fct” that is used for the 

calculation of the error and “linear.output=false”, 

so that input network value are within [0;1]. 
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Figure 7 Algorithm of NN modeling in the problem of forecasting strong earthquakes [Appendix II] 

 

To build the final forecast, more than 50 NNs were 

tested with various parameters: the number of hidden 

layers, the size of the training sample, the NN 

regularization parameter. The random search method 

was used in the RStudio development environment 

for the automatic calculation of these parameters 

[Appendix II]. The main feature of this method is that 

it does not specify the optimum search program in 

advance. However, automatic calculation also has a 

drawback - the speed of learning the model decreases 

[71]. Additional training were conducted based on 

the steps described above. Then MAPE was 

calculated to test the training accuracy of the NNM 

depending on the parameters that were calculated by 

the random search method. Based on this, a table was 

created with the results of the study for 15 selected 

NNMs with the most relevant results (Table 1). 

 

The final forecast was built based on the algorithm 

above and the characteristics of the selected trained 

network that obtained the best MAPE results - 

MAPE=12.07 (Figure 8). 

 

In the NN learning process, 6582 steps were 

performed until all absolute partial derivatives of the 

error function became close to 0.01 (default 

threshold). The relative error of the network 

calculated by Equation 3 is E = 16.82, which 

indicates fairly successful learning of the NN and the 

possibility of obtaining highly reliable results 

compared to other NN models [71]. From the graph 

and table above, it follows that the quality of the 

trained model depends primarily on the number of 

learning cycles and the number of hidden layers. 

Based on the results, we can say that the impact on 

the quality of the model also has the size of selected 

data for its training. The corresponding synaptic 

weights of connections between neurons of the 

constructed 2-layer NN are presented in Figure 9. 

 

 

Table 1 Dependence of training quality on input parameters 

Number of 

hidden layers 

Number of 

training steps 

Absolute partial 

derivatives of the error 

Training data set 

(% of all data) 

МАPE Total error (E) 

2 162 10 80% 56.2 89.7 

2 2890 10 85% 34.0 78.4 

2 6582 0.01 83% 12.07 16.82 

3 1154 0.1 85% 27.2 38.0 

3 3876 0.001 80% 19.89 23.4 
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Number of 

hidden layers 

Number of 

training steps 

Absolute partial 

derivatives of the error 

Training data set 

(% of all data) 

МАPE Total error (E) 

3 18 10 90% 94.7 99.8 

5 25 100 80% 97.0 99.9 

5 456 10 85% 91.0 94.5 

12 356 100 80% 93.8 96.1 

12 2401 0.1 85% 44.0 52.1 

15 1090 0.001 80% 47.9 55.0 

15 880 0.0001 85% 34.9 45.8 

25 256 10 80% 77.8 89.2 

25 480 10 85% 75.0 81.9 

50 915 10 80% 80.3 85.0 

 

 
Figure 8 NN for predicting strong earthquakes (Mw>=4 on the Richter scale) in Greece 

 

Synaptic weights characterize the strength of the 

connection between neurons and can be used to 

detect the effect of each covariate on the dependent 

variable - the magnitude of the earthquake. 

 

For instance, from Figure 6 any neuron from the first 

constant is connected to each of the five hidden 

neurons of the first hidden layer with the following 

inputs: -12.79, 5.69, -0.63, -2.1, -0.58, which are 

described by the first line of Figure 9. The second 

line describes outputs from the first independent 

variable - longitude, as inputs to each of the five 

hidden neurons of the first hidden layer, etc. Negative 

synaptic weights mean an inversely proportional 

relationship between covariates and the dependent 

variable. 

 

 
Figure 9 Synaptic weights of connections between 

neurons of the constructed 2-layer NN 
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5.Discussion  
Assessing the impact of each of the 3 independent 

variables on the dependent variable - the magnitude 

of the earthquake, visualize the data, building the 

following graphs of dependencies (Figure 10) 

[Appendix II]. Generalized weights are given for all 

independent variables within one range. The 

distribution of generalized weights allows us to 

conclude that all independent variables have a 

nonlinear effect because their variance generalized 

weight is generally more than one, which is why we 

believe that each independent variable has a 

significant impact on the initial result. 

 

The last step in the NN analysis is to plot the 

predicted values and determine the standard error of 

the model (Figure 11) [Appendix II]. 

 

With the help of the constructed graph (Figure 11), 

we can estimate the accuracy of the constructed 

forecast and trace the correspondence of the 

constructed forecast values to the actual data of the 

sample, especially in the range Mw = 4.0-4.5. The 

root mean square error of the model is measured at 

3.44, which indicates a fairly good quality of the 

predicted model [71], ie a good level of data 

integration, as there is a small difference between 

predicted and observed values compared to the error 

of the training model (E = 16.82). The difference 

between actual and forecast values is reasonable 

(Table 2). 

 

 

 
Figure 10 Graphs of generalized weights for the independent variable of depth (a), the independent variable of 

latitude (b), and the independent variable of longitude (c) 
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Figure 11 Graph of prediction of strong earthquakes (Mw>=4 on the Richter scale) in Greece, built on the basis of 

the developed NN, for the study of which used data from the training sample for the period 2000-2015 (n = 2002 

events) and n = 437 events for the period 2016-2020 were presented as a test data set 

Table 2 Actual values and obtained prediction data with MLP neural network 

Magnitude 2000-2004 2005-2009 2010-2014 2015-2020 

Mw (actual) 5,5 5,0 4,6 4,2 

Mw (forecast) 5,8 5,4 5,1 4,3 

 

The calculations of Table 2 are obtained from the 

ratio of real data to the percentage that characterizes 

the probability of obtaining reliable forecasted data 

[Appendix II]. 

 

As a result, an optimal neural network MLP (or feed-

forward multilayer NN) was obtained with four 

layers: input (3 neurons), the first hidden layer (5 

neurons), the second hidden layer (3 neurons) and 

output (1 neuron) for forecasting earthquakes in 

Greece with the value R = 0,72. A complete list of 

abbreviations is shown in Appendix III. 

 

6.Conclusion  
Fundamental studies of seismicity and seismic hazard 

forecasting are continuous, as observation systems 

are improved, qualitatively new information is 

received, and new mathematical and computational 

models of seismicity and design of seismic structures 

are developed. The strategy of seismic construction 

and seismic risk reduction requires constant 

improvement of methods of calculation and 

compilation of increasingly informative normative 

forecast maps of seismic hazard. Seismic hazards 

cannot be reduced, the acceptable seismic risk of 

natural disasters can be reduced by having 

information on the location of hazards, the location of 

natural disasters, and their consequences. 

The assessment of seismic hazard, which is 

predictive in nature, depends on several parameters 

of the earthquake focus, which were used in this 

study, i.e., the geographical coordinates of the 

epicenter, the depth of the source, and magnitude. 

Using NN modeling to predict the occurrence of 

earthquakes in Greece, it was possible to calculate the 

magnitude of future earthquakes. A methodology has 

been developed to calculate seismic hazards in 

settlements located within the radius of influence of a 

group of seismic zones in Greece, and to build a map 

of seismic zoning of large areas, for example, for the 

whole of Europe using a spatiotemporal clustering 

algorithm [78, 79]. This could be the next step in 

identifying and exploring new potentially different 

seismic zones [80]. 

 

The key point in improving the accuracy of the built 

NN may be to expand the data sample during model 

training and increase/decrease the number of hidden 

layers and neurons, as the final graph predicts the 

occurrence of medium-strong earthquakes (Mw>=4) 

in Greece the accuracy of the model is lost with 

increasing magnitude of the earthquake. This may be 

due to insufficient data on the magnitude of the 

earthquake, which can be easily corrected by 

expanding the data sample. 
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A limitation of using this approach is that it is not 

possible to predict the exact date and time of the 

seismic event, because the data type is not able to 

convert to the numerical type for modeling an ANN. 

At the present stage of research, American 

developers have managed to introduce a NN called 

UrbanDenoiser, which was taught to filter 

anthropogenic noise in the city from seismic signals 

signaling an earthquake. However, given the data set 

for training, the NN can only work in California [81]. 

Therefore, the main goal of improving such devices 

is to adapt them to the specifics of any region, but 

this requires more than one year of research and 

expansion of impact factors specific to the 

characteristics [82] of different seismic areas. 
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Appendix I 
## connect the library to work with the neural network 

library (nnet) 
## download data 

data = events  

## build a graph of linear dependence of data 
plot (events) 

## check the data type 

class (events)  
## logarithm data, because the output data was a time series 

g.series = log (as.numeric (events))  
## delete empty values from the data set 

events <- na.omit (events)  

## set the number of observations 
n.obs = length (g.series)  

## build a row graph after logarithmization of data 

plot (1: n.obs, g.series, type = "l")  

## set 12 inputs of the neural network, and define the 13th 

observation as the initial value to be predicted 

g.2 = matrix (rep (0,240 * 13), nrow = 240, ncol = 13)  
## fill the data matrices with segments of the series 

for (i in 1: 240)  

{ 
g.2 [i,] = g.series [i: (12 + i)] 

} 

## set the grain as a random number sensor controller 
set.seed (12345)  

## teach neural network 

g.net <-nnet (g.2 [, 1: 12], g.2 [, 13], size = 6, linout = TRUE, rank 
= 0.1, decay = 0.001, maxit = 1000)  

## build the original row in black 

plot (1: 252, g.series, type = "l")  
## build a row fit in red 

lines (13: 252, g.net $ fitted.values, col = "red")  

## begin to calculate the predicted values 
g.forecast = g.2 [nrow (g.2), - 1]  

## set the forecast horizon at level 12 under a given condition 

pred.n = 12  
## start calculating predicted values 

pred.1 = rep (-9999, pred.n)  

for (i in 1: pred.n) 
{ 

pred.1 [i] = predict (g.net, g.forecast, type = "raw") 

g.forecast = c (g.forecast [-1], pred.1 [i]) 
} 

## b14uild a linear output graph in black* 

plot (1: 252, exp (g.series), type = "l", xlim = c (0,252 + pred.n), 
ylim = c (0,50))  

## build a fit in red* 
lines (13: 252, exp (g.net $ fitted.values), col = "red")  

## build a linear forecast in blue* 
lines (252 + 1) :( 252 + pred.n), exp (pred.1), col = "blue")  

*be sure to set the value of the exponent, because the data was 

converted to format logarithms. 

 

Appendix II 
## connect the necessary libraries 

library (ggplot2) 
library (neuralnet) 

library (caret) 

## uploading data 
data = Greece_data 

head (Greece_data) 

delete = createDataPartition (Greece_data $ MAGNITUDE, p = 1, 
list = F) 

Greece_data = Greece_data [delete,] 

## normalize the data, taking into account the prerequisite of the 
neural network: the data must be from 0 to 1 

samplesize = 0.83 * nrow (Greece_data) 

set.seed (50) 
index = base :: sample (seq_len (nrow (Greece_data)), size = 

samplesize) 

datatrain = Greece_data [index,] 
datatest = Greece_data [-index,] 

max = apply (Greece_data, 2, max) 

min = apply (Greece_data, 2, min) 
scaled = as.data.frame (scale (Greece_data, center = min, scale = 

max-min)) 
## we divide training (83% of all data) and test (17% of all data) 

data sets 

trainNN = scaled [index,] 
testNN = scaled [-index,] 

colnames (trainNN) 

## prescribe the appropriate neural network activation function 

NN = neuralnet (MAGNITUDE ~ LONG + LAT + DEPTH, 

trainNN, hidden = c (5,3), err.fct = "sse", linear.output = F) 

## visualize the neural network 
plot (NN) 

## overal results i.e. output for each replication 

NN$net.result 
NN$weights 

NN$result.matrix 

## compare the input vector and actual output 
NN$covariate 

infert$MAGNITUDE 

##outcome for all observations and overall assessment of results 
NN$net.result[[1]] 

NN1=ifelse(NN$net.result[[1]]>0.5,1,0) 

NN1 
## plot the predicted values 

predict_testNN = compute (NN, testNN [, c (2: 4)]) 

predict_testNN = (predict_testNN $ net.result * (max (Greece_data 
$ MAGNITUDE) -min (Greece_data $ MAGNITUDE) + min 

(Greece_data $ MAGNITUDE))) 

plot (datatest $ MAGNITUDE, predict_testNN, col = "blue", pch = 
16, ylab = "Predicted data", xlab = "Real data") 

##determine the standard error 

RMSE.NN = (sum (datatest $ MAGNITUDE-predict_testNN) ^ 2) 
/ nrow (datatest)) ^ 0.5 

RMSE.NN 

## build the graphs of dependencies 
par(mfrow=c(2,2)) 

gwplot(NN,selected.covariate="LAT", min=-2.5, max=5) 

gwplot(NN,selected.covariate="LONG", min=-2.5, max=5) 
gwplot(NN,selected.covariate="DEPTH", min=-2.5, max=5) 
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Appendix III 
S. No. Abbreviation Description 

1 AI Artificial Intelligence 

2 ANN Artificial Neural Network 

3 BPNN Back Propagation Neural Network 

4 CNN  Convolutional Neural Network  

5 DEMETER  Detection of Electro-Magnetic 

Emissions Transmitted from 
Earthquake Regions 

6 DNN  Deep feed-forward fully connected 

Neural Network 

7 FFNN Feed-forward Neural Network 

8 GNSS Global Navigation Satellite System 

9 GMM Ground-motion Model 

10 GLM General Linear Regression Model 

11 GPS Global Positioning System 

12 InSAR Interferometric Synthetic Aperture 
Radar 

13 MAPE Mean Absolute Percentage Error 

14 MLP  Multi-layer Perceptron  

15 NARX Nonlinear Autoregressive Network 

with Exogenous Inputs 

16 NN Neural Network 

17 NNM Neural Network Model  

18 PGD Peak Ground Displacement 

19 PNN  Probabilistic Neural Network  

20 RBF  Radial Basic Function Neural 
Network  

21 RNN  Recurrent Neural Network 

22 SOM Self-organizing Map  

23 USSR Union of Soviet Socialist Republics 

 

 
 


