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1.Introduction 
The blood, which is the lifeline of humans consists of 

the plasma, platelets, red blood corpuscles (RBC), 

and white blood corpuscles (WBC) along with 

another immunoglobulin. Leukaemia is a kind of 

blood deficiency that is usually chronic. The 

prevalence of leukaemia varies based on the type of 

disease and the demographics of the population [1]. 

The major cause of anaemia is blood cell 

proliferation, which is hindered by rapid expansion of 

defective blood cells [2].  
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Cancer of the blood primarily leukaemia, myeloma, 

and lymphoma with acute lymphoblastic leukaemia 

(ALL), a variant of blood malignancy that affects the 

bone marrow [1]. The term “acute” and “chronic” 

refers to the disease's rapid and slower progression, 

and if untreated at the earliest, has the potential to 

weaken the immune system in a short span of time. 

Leukaemia, the most common type of blood cancer is 

further divided into three, namely: L1, L2, and L3.  

An important plasma-rich immature teratoma that 

aids in the removal of infection, and three times more 

frequent than ALL is the multiple myeloma (MM) 

[4]. A decreased platelet count in the blood, a 

condition known as Thrombocytopenia, is a symptom 

of MM [5] which causes bone erosion and may be 

seen on CT scans as bone lesions.   According to the 

study carried out by Ianniciello and Helgason [6], 

from 45 countries representing 90% of the world‟s 
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with InceptionV2 model was used for the segmentation, while convolutional neural network (CNN) was employed to train 
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population, it shows an increase of 3000 new cases 

from 53,000 cases in 2016 to 56,000 in 2020 with 

prevalence in Asia-pacific region representing 55% 

of the world‟s population. Similar research carried 

out by Liu and Long [7], reported that around 

876,000 patients suffered from ALL globally in 2015 

which accounts to 111,000 fatalities. Clinically, the 

progression of blood cancer can be influenced by so 

many factors such as, the patient's age, occupational 

hazards, progression rate, and contaminated regions, 

amongst others.  

 

One of the most important elements in determining 

the kind of blood cancer is the blood count [8]. 

Manual and automated counting are also possible, 

and when performed by a trained person, the manual 

technique yields a 100% identification rate, but it is 

also a time-consuming operation. Automatic 

counting, nonetheless, is a more robust approach, but 

it comes with a larger chance of miscalculations. As a 

result, both techniques offer advantages and 

disadvantages.  

Diagnosing leukaemia is a labour-intensive process 

that necessitates highly skilled medical personnel. 

Hence, a pathologist with extensive training in blood 

cell pathology must be brought in on the job. 

Pathologists rely heavily on medical images for 

diagnosis and treatment. The images are meaningless 

without proper interpretation, because the 

information is concealed in the pixels, hence 

requiring image processing. Unfortunately, there is a 

high probability that medical images may be 

misinterpreted due to a variety of variables, including 

a lack of specialists, and less attention to details [9]. 

There has been a lot of study done recently to 

automate the interpretation of medical images in 

order to reduce these challenges, highlighting the 

possibility to use computer-aided image analysis in 

the early diagnosis of disease [10–12]. Owing to 

multiple challenges in acute lymphoblastic leukaemia 

(ALL) diagnosis, a computer aided diagnostic system 

(CADS) will help the pathologist to diagnose and 

offer earlier treatment. Researchers have employed 

various deep learning models [12–14] that achieved 

“near-human” (expert-level) accuracy, but it is 

crucial to evaluate the effect different types of 

parameters and hyperparameters have in network 

training. An algorithm that uses the ResNet-50[15] 

and visual geometry group (VGG19) [16], a 

pretrained convolutional neural network (CNN) that 

has been fine-tuned for object categorization and 

detection, was used alongside a CNN model (i-Net) 

trained from scratch. Using both the SN-AM and 

ALL-IDB2 [17], we tested our methodology and 

found that it improved the accuracy of lymphoblast 

recognition compared to utilising CNNs pretrained 

on the ImageNet database [18]. As a result, we 

devised these networks in order to assess and contrast 

other networks based on their architectural design 

and parameter values. 

 

Our contribution: 

Our primary contributions are:  

 An improved deep learning model for 

discriminating cancerous from non-cancerous 

microscopic images was presented.   

 We presented an extension of the CNN model 

(Iyke-Net) proposed for pneumonia classification 

from chest X-ray (CXR) to the classification of 

WBC microscopic images. 

 By modelling the architecture from the scratch, it 

was able to achieve promising performance 

accuracy. As a result, initialization weights for 

transfer learning were created to apply information 

into the WBC segmentation analysis. 

 Using a fine-tuned, pre-trained model, we 

achieved a level of accuracy that is on par with 

most state-of-the-art methods. 

 

This manuscript is subdivided into 6 sections. Section 

1 highlights the background, and aim of the study.  In 

section 2, we presented a review of the work on 

leukaemia classification from microscopic images 

using deep learning approaches. A detailed 

description of the materials and methods is presented 

in section 3. The experimental findings and 

comparison of existing models were addressed in 

section 4. Section 5 highlights the discussion and 

limitations of the research.  The conclusion and 

future directions were discussed in section 6. 

 

2.Literature review 
In medical image processing, pre-processing and 

feature extraction are of prominence in the 

segmentation and classification phases of 

contaminated blood cell image analysis. The works 

of [19–21] on the microscopic images of patients 

with B-lineate ALL yielded the famous SN-AM 

dataset consisting of 30 images, in which one image 

served as point of reference, 29 others used to test the 

suggested stain normalization method. Based on 

image analysis, Foran et al. [22], offered a clinical 

decision support system for discriminating between 

different hematologic malignancies that allowed 

image analysis with the “gold standard” dataset and 

recommendations based on a large number of cases 

with an accuracy greater than 83%. The authors 

employed data augmentation, followed by 
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normalizing the training data prior using a CNN 

architecture for categorization. Originally, the dataset 

was enhanced for identifying acute myeloid 

leukaemia by employing numerous changes such as 

histogram equalization. To categorize ALL from 

microscopic blood samples, Rehman et al. [23], 

trained a robust CNN model from bone marrow 

images and achieved classification accuracy of 98%. 

Convinced by their findings, the authors proposed 

similar architecture for the classification of ALL.  

Using images of bone marrow, Markiewicz et al. 

[24], proposed an approach for classifying 17 kinds 

of blood cells in myelogenous leukaemia. Their 

method worked well for differentiating the most 

salient distinctive features before final classification 

with support vector machines (SVM). Shafique and 

Tehsin [25], employed a deep CNN for the 

classification of ALL into various subgroups namely, 

L1, L2, and L3. A method to reduce overfitting called 

data augmentation was used and an accuracy of 

96.06% was attained for the sub-types‟ classification. 

In a leukaemia image slide, Abd et al. [26], suggested 

an automated method for identifying the number of 

cells infected with leukaemia.  To remove 

background white blood cells, hue, saturation, and 

value (HSV) segmentation was utilized, followed by 

morphological erosion, to remove cells that 

overlapped. The segmentation of colour smear of 

microscopic images using the H component of the 

hue, saturation, and intensity (HSI) colour space 

containing information about white blood cells was 

explored by Wu et al. [27], using an iterative Otsu's 

method highlighting “S” component which provides 

information on the nuclei of cells. A thresholding 

technique for leukaemia detection using blood ratio 

was investigated by Salihah et al. [28], where the 

ratio of blood cells for leukaemia detection was 

calculated using the number of counted blood cells. 

To improve computational time, few pre-processing 

and post-processing techniques were also used. The 

result revealed that the blood cell ratio determined 

using the proposed image processing algorithms 

distinguished between normal and abnormal blood 

cells. Horie et al. [29], showed the robustness of deep 

neural networks such as CNN for oesophageal 

cancer, with a sensitivity of 98 percent for squamous 

cell carcinoma and adenocarcinoma. It was Saba et 

al. [30], who suggested a cascaded architecture for 

skin lesion identification that included three key 

steps: contrast and boundary extraction with CNN, 

followed by feature extraction with transfer learning. 

An entropy-controlled feature selection approach was 

presented, highlighting that their approach was robust 

with 98.4 percent accuracy on the PH2 dataset. 

Shekaran et al. [31], suggested a CNN to discriminate 

between infected and uninfected images. Zuluaga-

Gomez et al. [32], suggested hyperparameter-fine-

tuned computer-aided diagnostic systems for 

categorization of thermal images using a CNN. Using 

an optimization method with a tree-based 

discriminator, false-positive and false-negative 

classification rates was reduced considerably. A fine-

tuned CNN model called Iyke-Net was proposed by 

Ikechukwu et al. [33], for the training and 

categorization of pneumonia and normal chest X-ray 

images. With a recall of 92.03%, the pre-trained 

model yielded better results when compared to a 

model trained from scratch. The works of Dabeer et 

al. [34] offered a method for classifying 

mammographic images with a densely connected 

network, which recorded an accuracy of 

approximately 100%. 

 

In a study by Ahmed et al. [35], a new strategy for 

reducing noise from microscopic blood cells on the 

ALL-IDB and ASH image bank databases, both of 

which are open to the public was proposed. The CNN 

model's performance was found to be 88.25 and 

81.74 percent, respectively, for the ill and healthy 

groups. The CNN model outperforms other common 

machine learning algorithms in their study. Genovese 

et al. [36], presented the first histopathological 

transfer learning method for detecting leukaemia-

related lymphomas.  For the purpose of identifying 

diseased tissues, techniques were developed 

employing CNNs trained on a histopathology 

database. When trained on the ImageNet database, 

CNNs was able to recognize lymphoblasts more 

accurately than those trained on the ALL-IDB2 

dataset. The works of Zolfaghari and Sajedi [37], 

focused on the classification of ALL and WBCs from 

microscopic images. Detailed survey was presented 

on most articles published in the same domain. It was 

observed that diagnosis of acute leukaemia has 

generated a lot of attention and many scholars have 

employed deep neural networks for the same. The use 

of hypercomplex-valued network (HVN) was 

investigated by Vieira and Vale [38], using 8 

complex-valued CNN. Analysis showed that their 

proposed hypercomplex CNN produced 

commendable results at 96.6% when tested on ALL-

IDB2 dataset using 50% of the data for texting. 

Kasani et al. [39], employed data augmentation and 

transfer learning. This approach was adopted to 

increase the sample size of the dataset that made the 

model more generalizable. Results showed that their 

approach was better at discriminating diseased and 

healthy cells. Bodzas et al. [40], proposed an 
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approach based on human visual perception with the 

implementation of three-phase filtration algorithm for 

segmentation. A combination of SVM and neural 

nets had a specificity of 95.31 percent, and sensitivity 

were 98.25 and 100 percent, respectively. A fused 

approach involving UNET and deep CNN was 

employed by Alagu [41]. The dataset used was 

obtained from the ALL-IDB2 and resized to a 

uniform dimension. Statistical analysis yielded a p-

value of 0.00001, an improvement over classical 

methods suggesting that the methodology can help in 

clinical decision support systems. Fouladi et al. [9], 

applied deep neural networks in the diagnosis of 

COVID-19 from CT scan images using two pre-

trained networks. With accuracies above 90%, it 

could be inferred that pretrained networks were better 

at discriminating important features from biomedical 

images. Similarly [42–43] used ensemble learning 

approaches to classify ALL from microscopic 

images. Data enhancement method for random 

sampling was employed to address the issue of data 

imbalance. An accuracy of 99.03% proved that 

ensemble approach was better than classical methods.  

 

Based on the existing literature, it was observed that 

numerous works has been done using datasets 

obtained from ALL-IDB2 repository. Traditional 

approaches such as K-Means, Fuzzy C-Means 

clustering and SVM has achieved accuracies closer to 

the state-of-the-arts model. However, deep learning 

models always outperform classical machine learning 

owing to a greater number of hidden layers and the 

choice of hyperparameters. Data augmentation, 

dropout regularization and ensemble approach 

constantly yield better accuracies, suggesting that 

deep CNN is a de-facto standard for medical image 

analysis.  

 

3.Methods 
3.1Dataset description 

For this research, we combined data from two 

separate sources. The first dataset is called SN-AM 

retrieved from the cancer imaging archive (TCIA) 

repository. It has 100 images of MM and 90 images 

of B-ALL with enough variation between them. At 

1000x magnification, using a Nikon Eclipse-200 

microscope fitted with a digital camera, Duggal et al. 

[20], acquired the images in a raw BMP format at a 

size of 2560×1920 pixels. There is a total of 30 

images in the collection, with a single image serving 

as the gold standard. These 30 images were 

accompanied by two more images, one showing the 

nucleus mask and the other the background mask as 

shown in Figure 1. The second dataset is the ALL-

IDB2. IDB1 and IDB2 are two distinct datasets that 

can be found in the ALL-IDB database. The ALL-

IDB2 version 1.0 is a compilation of normal and blast 

cells' cropped areas of interest from the ALL-IDB1 

dataset. Images from the ALL-IDB2 have the same 

grey level characteristics as images from the ALL-

IDB1, with the exception of the image size. Since the 

ALL-IDB2 dataset was created to evaluate the 

effectiveness of classification systems, we used it to 

test our method. ImXXX Y.jpg is the first character 

in the names of the ALL-IDB2 picture files. XXX is 

a progressive 3-digit integer, Y is a boolean digit that 

is equal to 0 if the cell placed in the image's centre is 

not a blast cell and equal to 1 if it is. 

 

                      
Figure 1(a) Input image              (b) Input mask 
 

Data augmentation was employed to obtain a total of 

3102 microscopic images in both the training and 

testing folders, corresponding to 1650 healthy cells 

and 1,452 leukaemia cells saved in two separate 

folders as normal and cancerous, shown in Figure 2. 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 2 Distribution of the ALL dataset 
 

i) Data Augmentation: The absence of enough data is 

one of the most frequently occurring issues that arise 

during the implementation of machine learning in the 

workplace. This is due to the fact that the collection 

of such data can frequently be both time-consuming 

and costly. A collection of strategies known as "data 

augmentation" was implemented in order to enhance 

the sample size. These strategies involved the 

creation of additional data points using the already 

collected data. The SN-AM dataset contributed by 

[18–21] was initially supplemented by translating and 

rotating the images as shown in Table 1. Model 

training and validation sets were created from the 

Dataset 
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jumbled images while ensuring that variation in sizes, 

postures, and lighting settings was addressed to 

generalize well during model evaluation. Thus, 

additional images were created from the existing 

dataset by using different image manipulation 

techniques. The parameters chosen are highlighted in 

Table 1. 
 

Table 1 Framework for data augmentation 

Method Default Adjusted 

Horizontal flip None True 

Rescale - 1.0/255 

Zoom range - 0.25 

Rotation (Degrees) - 30, 45 & 60 

Fixed image size 1024×1024 224×224 

 

Firstly, we rotated the images by 30, 45 and 60 

degrees respectively as shown in Figure 3(a), (b) and 

(c). These approaches proved helpful in handling 

over-fitting, thereby making it easier for the model to 

generalize to new cases outside of the training set. 

 

3.2ResNet-50 and VGG-19: 

Residual neural network (ResNet) was initially 

proposed by the Microsoft research team in early 

2015, consisting of 50 deep convolutional layers. A 

pretrained version of the network can be found in the 

ImageNet database, trained on images greater than 

one million. It is about 6 times deeper than VGG-19 

and regarded as the deepest neural network at that 

time. It yielded the best classification result in the 

ILSVRC 2015 competition, an approach that made it 

possible to rank first place in a number of other 

categories as well. Since ResNet-50 and VGG-19 are 

closely identical in terms of the number of hidden 

layers, we will discuss the architecture of ResNet-50, 

better explained in the works of Wang et al. [44], and 

depicted in Figure 4.  
 

     
3(a): 30

o
            3(b): 45

o
              3(c): 60

o
 

Figure 3 Data augmentation highlighting rotations at 

30, 45 and 60 degrees respectively 
 

 

 
Figure 4 ResNet-50 architecture with different stages and FC-Block 
 

Identity blocks are shown as “ID BLOCK” in the 

diagram, and “ID BLOCK × 3” refers to stack three 

identity blocks. Between the input and output, layers 

are 4-stages with one fully-connected layer. 

 

i) Stage 1: There are two-dimensional (2D) 

convolution of dimension (7×7) with 64 filters. Batch 

normalization and pooling (Max-pooling) was 

applied using a stride length of 2. 
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ii) Stage 2: This convolution stage uses three sets of 

filters of sizes (32, 32, 64), a stride length of 2 and a 

max-pool layer. 

iii) Stage 3: This consists of two blocks with three 

sets of filters of size (128, 128, 512). Batch 

normalization with rectified linear unit (ReLU) is 

designated as “B” and “BA” respectively.  

iv) Stage 4: At this layer, the identity block consists 

of filter sizes (256, 256, 1024), with only two blocks.  

v) Stage 5: The last stage is the fully connected layer, 

followed by average pooling and flatten layer for 

classification. This layer does not contain any 

hyperparameters. 

 

The ResNet-50 is a type of pre-trained CNN that is 

50 layers deep. It consists of 48 convolutional layers, 

with one max-pooling and average-pooling layers 

respectively. Input image of dimension 224 by 224 is 

fed as an input which is first passed through a 

convolutional layer with a filter of 7×7, and a stride 

length of 2. Max-pooling operation is performed 

next, followed by series of convolutional operations 

that employs 3x3 kernel sizes. At the end of the fifth 

convolutional layer, summation of all pooling 

operation, called “average pooling” is performed. 

Subsequently, a sigmoid activation function is 

applied to “squash” the probability between 0 and 1 

on the final output image. These set of operations 

ensures the output image is not overfitted. 

 

3.3Preprocessing of images 

Two approximately processed images are used for 

additional processing in this stage. We begin by 

converting the colour image to grayscale. The 

contrast was adjusted using the alpha (α) and beta (β) 

values, often called the gain and bias parameters 

expressed as Equation 1. 

 (   )      (   )       (1) 

 

OpenCV inbuilt methods cv2.convertScaleAbs(), 

already implements this along user defined alpha and 

beta values. Figure 5 shows the grayscale and 

contrast-enhanced images used to categorize the 

pixels. The global contrast stretching (GCS) method 

was used to boost the contrast of the image. GCS is 

done by moving a sliding window across the image 

and changing the middle pixel element according to 

Equation 2. 

 (   )  
    |  (   )  |

(   )
   (2) 

 

Where:  (   ) represents the output colour level for 

the image pixel coordinates. (   )
 
    (   ), the input 

colour level for the pixels (   )         are the 

maximum and minimum values respectively. 

 

       
(a)                     (b)                         (c) 

Figure 5 (a) input image, (b) grayscale image and 

(c), contrast-enhanced image 

 

The adjusted data produced after feature selection 

was first normalized using the ImageDataGenerator 

with a shear range of 20%, subsequently resized to 

       , then shuffled into training, test and 

validation sets with 60% for training, 10% for testing 

and 10%, for validation. The remaining 20% was 

reserved as “unseen dataset”, an approach that was 

investigated in our study. Subsequently the images 

were rotated by 30, 45 and 60 degrees respectively as 

shown in Figure 3(a), (b) and (c) to ensure the model 

recognizes the images in various orientation. These 

approaches proved helpful in handling over-fitting, 

thus making it easier for the model to generalize to 

new cases outside of the training set. 

 

3.4CNNs 

Given that our solution relies on a deep neural 

network, we detail how it works. CNNs are class of 

neural networks that has found useful application in 

image classification and machine vision.  

 

There are three primary layers in a CNN, namely: a 

convolution layer, an aggregation layer, and a 

completely linked layer. The image is passed to the 

convolution layer, which contains neurons that 

function as feature extraction units. An activation 

map is created by convolving a filter,     matrix 

with the input images; stride        is the constant 

amount which advances the filter along the images. 

Convolution performed on an image of      using 

a filter   , padding pa, and stride sr yields the 

corresponding image (Equation 3). 

(    )  (        )  (    )  (    
   )   (    )    (3) 

In addition, the filter's depth is determined by the 

type of images utilized for training. The standard 

SoftMax  (  )was used to introduce nonlinearity to 

the model defined as (Equation 4):   

 (  )  
   

∑     
   

    (4) 

                  (          )      

                                                    
                  (          )     
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3.4.1 Convolutional layer: 

The introduction of non-linearity is an essential idea 

in CNNs. This model employs the non-linear 

function of the max-pool layer which ensures that 

maximum value of non-overlapping regions was 

selected. The maximum value of any region of 

interest in the image of     dimension, described 

by a kernel function k and stride size sr, is extracted 

using max-pooling operation: 
   

    
 
(   )

    
. A max-

pooling layer down samples the given image, as seen 

in Figure 6. 

 

 
Figure 6 Maxpooling function on convolved image 

 
3.4.2 Fully Connected layer: 

The name “totally connected” comes from the fact 

that a completely linked layer binds every neuron to 

another. They work like regular neural networks, 

classifying images using the convolved features. At 

this point, loss functions are computed and then 

backpropagated. The proposed model is comprised of 

five interconnected layers, the fifth of which is the 

output layer. All four interconnected layers utilize 

SoftMax as their activation function. The sigmoid 

activation function defined in Equation 5, produces a 

probability in the range of 0 and 1 for each 

independent class label the model aims to predict 

according to Equation 5. 

    ( )  
 

     
     

  

    
  (5) 

 

Where x=input vector 

 

3.5 Segmentation using UNet: 
The UNet has found useful applications in computer 

vision in which white blood cell nuclei may be 

precisely segmented, which aids in the detection of 

the alterations seen in people with ALL. With U-Net, 

we were able to isolate the nucleus from both normal 

and cancerous cells, then applied upsampling to 

output the final image. 

 

The architecture of UNet model is as shown in 

Figure 7. 

 

A narrowing path and an expanding path make up the 

U-Net structure. The inducing route is a common 

convolutional network, with convolutions followed 

by a ReLU and a maxpooling operation. The process 

of compression results in a reduction in the amount of 

space available, and an increase in the number of 

available features. The high-resolution features from 

the contracting path are included into the expansive 

pathway via a series of upsampling that preserves the 

feature and spatial information. Upsampling typically 

involves a transposed convolutional layer, and the 

resulting feature map has a higher spatial dimension 

than the original feature map. In order to increase the 

precision of the segmentation process, the 

concatenation operation is helpful since it fills the 

gap in the positional data for the pixels that were lost 

during the convolution step. 

 

The input image was that of microscopic images of 

both normal and masked cells as depicted in Figure 

8. The respective binary images were first resized to 

224×224, and trained for about 30 epochs. Accuracy 

and receiver operating curve (ROC) performance 

measures were used alongside the corresponding 

ground truth to validate the results.
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Figure 7 UNet architecture for semantic segmentation 

 

                     
Figure 8 (a) Normal image                    (b) Masked Image 

 

3.6 Proposed deep neural network model  

An improved CNN model (i-Net) for cancer type 

categorization (such as ALL) was implemented. It 

employs a minimal amount of pre-processing in 

contrast to other image categorization methods. The 

model takes an input image and predicts the cancer 

type as an output. The fundamental CNN consists of 

5 convolution layers, fully connected and dense 

layers with varying dropout regularizations. The 

technique is based on training a CNN for leukaemia 

classification using images obtained from the TCIA 

database, replacing the last fully-connected layer with 

a layer designed for detecting pneumonia from chest-

x-ray (CXR) images, followed by fine-tuning the 

resulting CNN for ALL detection. The resulting CNN 

is referred to as i-Net in the remaining sections of the 

paper. Our method involves the following approaches 

as shown in Figure 9. 

 

For classification, the convolution layers of 128, 64, 

32, 16, and 8 filter lengths were included in the 

network, as well as two convolution layers of size 64. 

Kernel function 2×2 was used for all the layers. The 

2×2 max-pooling layer is considered with stride 

length of 2 in this architecture. A flattened layer takes 

the 2D output of the final pooling layer and converts 

it to a 1D layer. All convolution layers utilize the 

same padding. Using a 1024 fully connected layer, a 

SoftMax activation function was used to categorize 

data into two classes (normal and leukaemia). Batch-

normalization layers was evaluated after all the 

convolution and dropout layers with rates of 0.2, 

0.25, 0.35, and 0.45 respectively in order to prevent 

overfitting the model as illustrated in the algorithm 

and accompanying Table 2. The optimization 

function, Adam was used, which has a learning rate 

of 0.0001.  
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Figure 9 Proposed deep neural network (i-Net) 

 

Algorithm for the proposed model (i-Net) for WBC classification:    
Begin Procedure LoadImages(datasets) 

for every x in datasets (SN-Am, ALL-IDB2) do  

 resize the input image (224 x 224 x 3) 

    do: 

   find the countours 

   apply data augmentation (30o, 45o, 60O) 

   normalize the images (imgPixels / max(255)) 

  end do 

  find subclass(dataset) 

   if “Normal” in subclass, then: 

    return 0 

   otherwise: 

    return 1 (Cancerous) 

   end if 

  end find 

  sub-procedure segmentation(dataset) 

   for every image in normalized images: 

    apply UNet model 

    select region of interest 

   end for 

   forward to the proposed model(i-Net): 

    do: 

1.create sequential model 

2. add convolution, maxpooling layer 

3.activation(relu) 

4.padding(same) 

     dropout (20%) 

    repeat steps 1,2,3 and 4 

     dropout (25%) 

    repeat steps 1,2,3 and 4 

     dropout (25%) 

    repeat steps 1,2,3 and 4 

     dropout (35%) 

    Add flatten and dense layers 

     dropout (40%) 

    add dense(1) and activation (softmax) 

   end forward 

  end sub-procedure 

  procedure classify (testImages) 

   if argmax() prediction < 0.5 then 
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    classify = 0 (Normal) 

   otherwise: 

    classify = 1 (Cancerous) 

   end if 

  end procedure 

end Begin procedure 

 

Table 2 Table of values for the input and output layers 

Layer (type) Output Shape No. of Parameters 

conv2d_16 (Conv2D) (None, 32, 32, 64) 3316 

max_pooling2d_16(MaxPooling2D) (None, 16, 16, 64) 0 

conv2d_17 (Conv2D) (None, 16, 16, 64) 65600 

max_pooling2d_17(MaxPooling2D) (None, 8, 8, 64) 0 

dropout_12(Dropout) (None, 8, 8, 64) 0 

conv2d_18(Conv2D) (None, 8, 8, 128) 131200 

max_pooling2d_18(MaxPooling2D) (None, 4, 4, 128) 0 

dropout_13(Dropout) (None, 4, 4, 128) 0 

conv2d_19 (Conv2D) (None, 4, 4, 128) 262272 

max_pooling2d_19(MaxPooling2D) (None, 2, 2, 128) 0 

dropout_14(Dropout) (None, 2, 2, 128) 0 

conv2d_20(Conv2D) (None, 2, 2, 128) 262272 

max_pooling2d_20 (MaxPooling2D) (None, 1, 1, 128) 0 

dropout_15(Dropout) (None, 1, 1, 128) 0 

flatten_3(Flatten) (None, 128) 0 

dense_19(Dense) (None, 256) 33024 

dropout_16(Dropout) (None, 256) 0 

dense_20 (Dense) (None, 1) 257 

Total params: 757,761 

Trainable params: 757,761 

Non-trainable params: 0 

 

Data was sent to the network in batches of size 32 

after the network has been trained for 30 epochs 

using Keras and Tensorflow libraries. Research in 

this study was conducted on Google Colaboratory 

(Colab), a free open-source library for training deep 

learning models to discriminate salient features for 

the classification of cancerous images. 

 

The effectiveness of our approach was verified on the 

publicly available SN-AM dataset, which proves to 

be more accurate on large datasets.  

 

3.7 Performance metric: 

The performance of the proposed model (i-Net) for 

discriminating cancer and non-cancerous images, was 

evaluated using standard metrics expressed 

mathematically as in Equations 6 to 10. The accuracy 

of ALL (Acc_all) is defined as the number of 

instances rightly classified to the sum of instances. 

This is expressed in Equation 6: 

          
            

                          
  (6) 

Precision, commonly called the positive predictive 

value represents a portion of instances that were truly 

classified as represented in Equation 7: 

    (   )      
     

            
  (7) 

The sensitivity assesses the model's capability to 

identify positive samples in a dataset. The greater the 

recall, the greater the number of positive samples 

found, expressed mathematically in Equation 8:  

    (      )      
     

            
  (8) 

 

In Equation 9, the model‟s specificity measures how 

many true negatives it accurately predicts. 

          
     

            
   (9) 

 

F1-score or the F-measure is the harmonic mean of 

the model's precision and recall. This is illustrated in 

Equation 10. 

               (
                

                
) (10) 

 

4. Results 

The purpose of this research was to propose practical 

characteristics of healthy and infected cells for ALL 

detection. The research takes into account 1650 

images of normal cells and 1452 images of cancer 

cells from the publicly available SN-AM and ALL-
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IDB2 repository. The results of pre-processing 

alongside segmentation and ground truth validation 

are highlighted in Figure 10. 

 

 

Input image U-Net segmented image Ground truth 

   

  

 

 

  

Figure 10 Results of segmentation and ground truth validation 

 

TensorFlow, an open-source python framework was 

used to create the classification model. Followed by a 

binary classification after 30 epochs. Each cycle uses 

the Adam optimizer as the loss function, resulting in 

the smallest loss in the end. Owing to limited 

computational resources, the model was trained on 

the collab, a freely available development 

environment powered by Google graphics processing 

unit (GPU) and tensor processing unit (TPU) that 

gives researchers easy access to collaborations. Table 

3 suggested that our proposed CNN approach was 

better at classifying normal and cancerous 

microscopic images. 

 

Table 3 Model performance metrics on both datasets 

SN-AM  #Epochs Training Acc. (%) 

VGG-19 

Training Acc. (%) 

ResNet-50 

 

 

 

 

 

 

10 86.2 89.1 

20 89.5 88.1 

30 90.1 89.3 

50 89.5 90.1 

70 92.1 89.8 

90 92.3 90.2 

ALL-IDB2 #Epochs Training Acc. (%) Validation ACC. (%) 

 

 

 

 

10 89.1 87.2 

20 90.2 88.1 

30 90.5 89.2 

50 86.2 89.2 

70 90.9 90.1 

90 92.2 90.2 

*Note: Bold figures indicate best performance metrics (Accuracy) 

 

Stochastic gradient descent (SGD) was used to train 

all models over the course of 30 iterations. For 

ResNet-50 and VGG-19, the starting learning rates 

were set at 0.001 and 0.01 respectively. The initial 

learning rate for i-Net was set to 0.001, and on 

epochs 30 and 40 it was dropped by a factor of 10. 

All models had their momentum and decay set to 

90% and 0.000001, respectively. For training, there 

are two options: (1) fixed, where convolution filters 

cannot be trained after initialization, and (2) 

trainable, where filters can be trained to the best 

representation. As seen in Figure 11, CNN performs 
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badly in the first scenario after the 25
th

 epoch. This is 

as a result of the model being overfitted and our 

failure to implement an early stopping. However, on 

the second „trainable‟ option, where filters and other 

hyperparameters were adjusted, a noticeably greater 

test accuracy is obtained. For the VGG-19 and 

ResNet-50 results prefixed with the trainable layer in 

the last row, we used a 5-fold cross validation 

method. For the VGG-19 on the SN-AM dataset, we 

observe a considerable increase in training accuracy, 

from 89% to 92.2%. Similar improvements were seen 

on the ALL-IDB2 dataset up to the 90
th
 epoch. The 

behavior accounted for since both pre-trained models 

are similar in the architecture as shown in Figure 11. 

When we extended the training to the 90
th

 epoch, the 

accuracy of the training increased from 89% to 91%. 

 

Table 4 suggested that our proposed CNN approach 

was better at classifying normal and cancerous 

microscopic images with limited computational 

resources. 

 

In the proposed model, we employed variations of 

data-augmentation, dropout and batch normalization 

techniques as explained in the discussion section

 

 
Figure 11 Results of training and validation accuracy on SN-AM and ALL-IDB2 

 
Table 4 Model accuracy (Acc.) for proposed model (i-Net) 

Epochs Training Acc. (%) Validation Acc. (%) 

5 80.20 80.20 

10 95.00 90.00 

15 97.20 96.00 

20 93.20 88.20 

24 99.60 99.18 

25 78.00 78.00 

30 90.00 91.00 

*Note: Bold figures indicates best performance metrics (Accuracy). 
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Figure 12 Training vs validation accuracy 

 

5. Discussion 
The entire ALL dataset was then divided into thirds: 

60% for training, 10% for validation, and 10% for 

testing and another 20% was reserved, called 

“unseen” data. Each i-Net is trained for 30 iterations 

using a stochastic gradient descent on the training 

portion of the SN-AM dataset, using the following 

parameters: batch size of 32, learning rate (LR) of 

0.0001, and momentum (M) of 0.9. After 24 

iterations, the learning rate was adjusted to 0.00001. 

The strategy employed to verify if the accuracy of the 

proposed network can be further increased, which 

turns out to be the opposite. We use a deep tuning 

strategy to fine-tune the network, allowing gradient 

update on all weights of the CNN rather than just the 

final fully-connected layer. The weights for each i-

Net are chosen based on their ability to produce the 

best classification accuracy on the training set, and 

subsequently applied to the testing set of the SN-AM 

dataset, from which the error measures are calculated. 

All of the i-Net accuracy across the various epochs is 

as detailed in Table 4. It was observed that accuracy 

did not improve after the 24th epoch. Using the early 

stoppage technique, training was halted when the 

accuracy did not improve beyond 99.18%, a 

behaviour shown in Figure 12. Subsequently, the 

model was able to discriminate cancerous from 

normal microscopic cells when deployed as shown in 

Figure 13.  

 

      
Figure 13 (a) Cancerous image                            (b) Normal image 

 

One way to visualize how well a classification model 

performs across different cutoff points is through an 

ROC. The two variables shown by this curve are: true 

positive rate (TPR) and false positive rate (FPR) as 

explained in equations 6 to 8. On a ROC curve, TPR 

and FPR are displayed against one another for a 

variety of categorization criteria. When the threshold 

for positive categorization is lowered, a greater 

number of objects are labelled as positive. This 

results in an increase in the frequency of both false 

positives and true positives. The accompanying 

Figure 14 provides a representation of a typical ROC 

curve. 
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Figure 14 Typical ROC curve 

 

The proposed model's ROC curve is shown in Figure 

15. An evaluation using the TPR was done against 

the FPR to construct the ROC curve (FPR). Since 

comparing curves is extremely difficult, we define an 

ideal test case for accuracy and recall curves further 

towards the top right corner. For each conceivable 

cutoff, Figure 15 depicts the connection between 

accuracy and recall. Our classification findings, as 

shown in Figure 12, tends to the ideal case of the 

ROC curve. Further analysis done using pre-trained 

models suggested that our model outperforms 

transferred learning approaches like VGG-19 in 

terms of accuracy, with the goal of reducing 

computing costs considerably. Simonyan and 

Zisserman [45], in early 2014 proposed the famous 

VGG network which was trained on the ImageNet 

ILSVRC dataset consisting of 1.3 million images 

using SoftMax as the classification algorithm (Yu et 

al., 2016). 

Validation Sets: A comparative analysis was 

presented in Table 5 against existing state-of-the-arts 

techniques, used as “ground truth” in most situations. 

 

 
Figure 15 Line plot of the model‟s ROC curve 

 

Table 5 Performance comparison with existing methods 

Related works Models Accuracy (%) F1-value (%) Precision (%) Recall (%) 

[46] ChexNet 85 95 - - 

[47] ResNet-50 84.5 - - 0.10 

[48] VGG-19 93.5 - - 86.0 

[49] Alexnet 96.5 - - - 

[50] Xception 93.90 - - - 

Proposed method Proposed (i-Net) 99.18 99.19 99.30 99.18 

 

The effectiveness of the proposed deep learning 

technique in comparison to previous efforts. The 

proposed method outperforms competing approaches, 

with an accuracy of about 3%. As can be shown in 

Table 5, the overall accuracy of 99.18% and the 

ability to distinguish cancer cells from normal cells 

are both enhanced by the selection of 

hyperparameters and fine-tuning features. At the 

twenty-fourth epoch, the accuracy of the 

classification was found to be quite high as compared 

to earlier approaches. 

 

 

5.1Limitation 
The lack of expensive computational resources made 

us limit the size of the dataset to about 3102 

microscopic images. Although, it has more 

convolution layer than normal CNNs, the network (i-

Net) will take a little less time to implement in 

systems with basic configurations. Further, our 

proposed convolutional network's validation accuracy 

was better than VGG-19 and ResNet-50, despite only 

being tested on a small dataset. Its simpler 

architecture and faster execution time will lead to its 

use being explored further. We did not investigate 

segmentation approaches for myeloma and non-
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myeloma as we focused only on ALL. A complete 

list of abbreviations is shown in Appendix I. 

 

6. Conclusion and future work 
In this paper, we demonstrated the ability of training 

a deep convolutional network for the segmentation of 

WBC cells from microscopic images with 

comparable accuracy on the freely available GPU on 

Google colab. Our method was able to distinguish 

key elements that aided in discriminating cancerous 

white blood cells from microscopic images. For the 

previously indicated aim, a new CNN model was 

proposed. We were able to achieve 99.18 percent 

training accuracy through variations of 

hyperparameter optimization, 84.5 percent for 

ResNet-50, and 93.5 percent for VGG-19.    The 

results show that these techniques can improve 

classification accuracy and precision. Our tests 

revealed that our model can generalize to new 

datasets, which is an important step toward 

developing a reliable computer-assisted diagnostic 

tool. However, it was observed that for deep neural 

networks to reach state-of-the-art accuracy, extensive 

experimentation is required. Furthermore, the size of 

the dataset chosen was smaller compared to those 

used in pre-trained models. It is common for pre-

trained networks to be slow to run, yet our proposed 

model was better and produced promising results 

despite its simplistic architecture.  We only used a 

little amount of data for training and evaluating deep 

neural networks in this study, which may have an 

impact on how well they learn. Because of this, we 

hope to use explore more with larger image datasets 

in the future. These computational methods can be 

used to assist oncologists and specialists in accurately 

detecting leukaemia. This work will be further 

investigated to classify all sub-types of cancers from 

microscopic images as we considered only one type 

of white blood cancer (ALL), and validating that 

deep learning could be of aid in diagnosis of various 

blood cancers.  
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Appendix I 
S. No. Abbreviation Description 

1 ALL Acute Lymphoblastic Leukaemia 

2 BMP Bitmap  

3 CADS Computer Aided Diagnostic System 

4 CBC Complete Blood Count 

5 CDSS Clinical Decision Support System 

6 CNN Convolutional Neural Network 

7 CT  Computed Tomography 

8 CXR Chest X-Ray images 

9 FNall False Negative of ALL 

10 FPall False Positive of ALL 

11 FPR False Positive Rate 

12 GCS Global Contrast Stretching 

13 GPU Graphics Processing Unit 

14 HSI Hue, Saturation and Intensity 

15 HSV Hue, Saturation and Value 

16 HVN Hypercomplex-Valued Network  

17 ILSVRC 2015 ImageNet Large Scale Visual 

Recognition 

18 LR Learning Rate 

19 M Momentum 

20 MM Multiple Myeloma 

21 PPV Positive Predictive Value 

22 RBC  Red Blood Corpuscles  

23 ReLU Rectified Linear Unit 

24 ResNet Residual Networks 

25 ROC Receiver Operating Curve 

26 SOTA State-of-the-Art 

27 SVM Support Vector Machines 

28 TCIA The Cancer Imaging Institute 

29 TN True Negative 

30 TP True Positive 

31 TPR True Positive Rate 

32 TPU Tensor Processing Unit 

33 2D Two dimensional 

34 VGG Visual Geometry Group Networks 

35 WBC  White Blood Corpuscles 

  

 


