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1.Introduction 
The escalating demand for high performance in 

wireless communication systems has led to the 

replacement of single antennas with antenna arrays 

for transmission or reception. An antenna array is 

typically a group of two or more similar antennas, 

which function as a single antenna. Due to this, 

antenna arrays offer higher gain, directivity, signal to 

noise ratio (SNR), agility and low side lobe level 

(SLL) [1]. SLL resembles the peak level of minor 

lobe compared to the main lobe level. It forms one of 

the key parameters in measurement of antenna array 

performance. Side lobes usually occur in the 

direction other than the desired beam direction, 

making it unwanted and creating interference.  
 

 
*Author for correspondence 

Lower the SLL, lower the power wastage and lower 

the interference with other radiating elements [2]. 

This increases the efficiency of antenna array. 

 

Lowering the SLL has thus become a prime target for 

antenna array designers, specifically in technologies 

like fifth-generation mobile systems, to achieve 

higher spectral efficiency and signal-to-interference 

ratio [3].  Among the different techniques aimed at 

SLL reduction, excitation control is the most 

common technique, in which the elemental 

excitations to the antenna array are chosen to achieve 

the output pattern with desired side-lobe levels. 

Simple excitation tapering techniques such as 

Chebyshev and Taylor amplitude distributions reduce 

the SLL considerably but are not very effective as 

they require large array size for a desired radiation 
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Fifth generation (5G) mobile networks require highly directional beams to serve its users. The basic requirement of 

beamforming techniques used in 5G is to generate narrow beams with lowest side lobe level (SLL) possible. SLL indicates 
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are compared. Better results are obtained by optimizing both excitation amplitudes and spacing between elements in an 

array, thus the name concurrent optimization. 
 

Keywords 
Genetic algorithm, Half-power beam width, Multi-objective optimization, Particle swarm optimization, Side-lobe level. 



International Journal of Advanced Technology and Engineering Exploration, Vol 9(95)                                                                                                             

1481          

 

pattern [4]. Evolutionary algorithms are better suited 

for these applications. Genetic algorithm (GA) is one 

such dynamic evolutionary algorithm used to solve 

complicated problems [5]. GA with excitation 

amplitude control synthesizes the weights of the array 

to achieve a desired SLL.  

 

One drawback of tapering the elemental excitations is 

to increase in the width of main lobe [6]. To mitigate 

this effect, another technique can be used in which 

the spacing between antenna elements is varied using 

GA, i.e., non-uniform spacing. In this technique, the 

excitation amplitude is kept constant. These two 

techniques can significantly reduce the SLL. 

 

SLL and beam width are usually conflicting in 

nature, i.e., a reduction in SLL increases the beam 

width and vice versa, which is undesirable for latest 

technologies like 5G. The main objective of the work 

is to reduce side-lobe level of a linear antenna array 

(LAA), without compromising on the beam width. To 

simultaneously reduce SLL and beam width, multi-

objective optimization algorithms such as genetic 

algorithm (MO-GA) and particle swarm optimization 

(MO-PSO) are implemented with amplitude, spacing 

and concurrent amplitude-spacing controls.  

 

The first section of the paper gives a detailed 

introduction to the work done. Section 2 discusses 

about various related papers and their contribution. 

Section 3 explains the method of approach which 

includes the antenna array design, algorithms used 

and fitness function formulation. The sections 4 and 5 

present the results of the work and comparison 

between discussed techniques respectively. Finally, 

conclusions are stated in section 6. 

 

2.Literature review 
Several techniques have been proposed in literature 

to reduce the side-lobe level. Chebyshev amplitude 

distribution is implemented in [7] and is compared 

with particle swarm optimization (PSO). Windowing 

techniques like Taylor, Kaiser, Hamming, Blackman 

and Hann were used in [8] and [9]. Chebyshev 

distribution is not suitable for larger arrays, whereas 

the Blackman distribution yields wider main beam. 

To yield the desired radiation pattern and SLL, 

without much compromise on beam width, an 

optimum set of excitations or spacing are to be 

generated by a number of iterations using some 

specific algorithms.  

 

Several algorithms have been well-defined in 

previous works, which include PSO, GA, 

biogeography based optimization (BBO), invasive 

weed optimization (IWO), bat flower pollination 

(BFP), etc. [10–14]. In [10], Taylor distribution and 

classical   PSO are used to obtain desired SLL. 

Implements IWO to optimize elemental excitation 

amplitudes and phases for reducing SLL and 

positioning nulls in desired direction [11]. BBO 

algorithm achieved good SLL reduction and 

placement of nulls in desired direction by optimizing 

excitation amplitudes in [12]. In [13], GA is used to 

find optimum antenna weights that result in 

maximum reduction in SLL. Implements BFP 

algorithm, which is the combination of bat   

algorithm and flower pollination   algorithm [14]. It 

suppressed SLL by optimizing excitations to array 

elements.  

 

Some recent works include improved chicken swarm 

optimization (ICSO) [15] for reducing peak SLL, 

modified sparrow search algorithm (MSSA) [16] 

using amplitude and spacing control to reduce 

maximum SLL and improved cuckoo search   with 

reverse learning and invasive weed operators [17] to 

obtain minimum SLL possible by optimizing element 

excitations in LAAs. In [18], a salp swarm algorithm 

(SSA) is proposed to reduce SLL in linear and planar 

sparse antenna arrays. A moth flame optimization 

(MFO) is implemented in [19] to lower the SLL in 

LAA and circular antenna array (CAA) by 

controlling inter-element spacing and elemental 

excitations. A hybrid optimization method which 

combines gray wolf optimization (GWO) and PSO is 

implemented in [20] to suppress SLL in LAA and 

CAA with specific radiation characteristics. 

 

All the above algorithms are based on elemental 

excitation amplitude, phase or spacing controls. 

Spacing control can yield better results in terms of 

reduced SLL without increasing beam width 

significantly. As a first objective of the work, 

elemental excitations and spacing are varied 

individually for 16- and 64-element arrays, and their 

optimum values are obtained for SLL reduction.  

 

Some of the radiation pattern characteristics are 

conflicting in nature, i.e., an improvement in one 

characteristic degrades the other. To simultaneously 

improve the conflicting characteristics, a multi-

objective optimization of antenna array parameters is 

to be implemented. Significant work is also carried 

out in this area [21–32]. In [21], two design 

objectives-SLL and null control in specified 

directions are minimized simultaneously by 

controlling spacing between array elements using 
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differential evolution. One more conflicting pair – 

fixed interference suppression and avoiding further 

rise of SLL, while scanning the beam, are 

simultaneously achieved by using GA in [22]. 

Collective social behavior (CSB) algorithm is 

developed in [23] to minimize SLL and achieve 

adaptive nulling using antenna weight controls. A 

backtracking search optimization algorithm (BSA) is 

implemented in [24] to reduce the maximum SLL 

with nulls in desired directions. Presents a cuckoo 

optimization algorithm (COA) aimed at reducing 

SLL and controlling nulls in LAAs and CAAs [25]. 

In [26], LAA is designed for reduced SLL and null 

control using flower pollination algorithm (FPA), by 

amplitude or spacing control of array elements. A 

new approach called dynamic cooperative grey wolf 

optimizer   is used to reduce SLL and generate deep 

nulls at desired positions simultaneously using 

weighted sum in [27].  In [28], a multi-objective 

beam pattern optimization problem of reduction of 

SLL and achieving desired nulls is solved using 

improved evolutionary algorithm based on 

decomposition approach. Presents modified version 

of seagull optimization algorithm (SOA), based on 

moving and attacking behavior of the seagull, to 

reduce SLL and control the nulls in LAA pattern 

[29].  

 

One more optimization method based on mayfly 

algorithm (MA) is proposed for equally spaced and 

unequally spaced LAAs in [30] to reduce SLL and 

increase the null depth. However, the computational 

time and number of parameters involved are larger. 

In [31], a brainstorm optimization (BSO) algorithm 

has been proposed for LAA thinning, to reduce SLL 

and directivity/SLL ratio. A hybrid GA-PSO based 

optimization algorithm has been proposed in [32] to 

reduce SLL and generate deep nulls. 5G technology 

requires non-interfering, highly directional beams for 

communication, which implies that the beam width 

and SLL should be as minimum as possible. But they 

are conflicting parameters and simple optimization 

cannot simultaneously reduce both of them. As the 

second objective of the work, a pareto optimization 

of SLL and half-power beam width (HPBW) is 

implemented using MO-GA and MO-PSO using 

amplitude, spacing and amplitude-spacing controls. 

The output is a set of non-dominant solutions called 

pareto front. Any particular point on the pareto front 

is a valid solution to the problem. 

 

3.Method  
Initially, a 16-element uniform linear array of 

isotropic elements is considered as shown in Figure   

1. The radiation pattern in θ direction is equal to the 

array factor in that direction, given by (Equation 1): 

  ( )  ∑  ( )    * 
  

 
 ( )     + 

    (1) 

Where A(n) is excitation amplitude and d(n) are 

spacing from origin respectively of     element of 

the array. λ is wavelength corresponding to the 

operating frequency and N is the total number of 

elements of the array. A fixed element spacing d= λ/2 

and unity excitation amplitude are considered for the 

elements. Thus  ( )     . The array is simulated 

using MATLAB2018b and from the resulting 

radiation pattern, peak level of side-lobe and HPBW 

values are obtained. Similar procedure is repeated for 

N=64 and its peak SLL and HPBW are also 

calculated.  

 

 
Figure 1 Array geometry 

 

To reduce SLL, the elemental excitations, A(n) are 

varied between 0 and 1 with the elemental spacing 

constant at 0.5λ. This approach widens the main 

beam resulting in reduced directivity.  Next, the 

spacing between elements, d(n) are varied between 

0.2λ and 0.8λ, keeping all the elemental excitation 

values as unity. The maximum value of spacing is 

taken as 0.8λ to avoid grating lobes. Spacing 

optimization is found to reduce SLL without 

widening the main beam much. After performing 

multiple iterations of GA, optimum values of A(n) 

and d(n) are obtained. These two techniques are 

performed for N=16 and 64 and the SLL and HPBW 

are calculated and compared. In order to reduce the 

HPBW and SLL, a multi-objective optimization is 

implemented using GA and PSO. First an amplitude-

only control technique is employed and then spacing-

only control technique is used. To obtain much lower 

HPBW for the given SLL, concurrent amplitude-

spacing control technique is implemented in this 

work, in which both excitation amplitudes and 

spacing are simultaneously optimized. The results of 

these techniques are a pareto front plot with SLL 

versus HPBW. This pareto optimization yields a 

number of solutions instead of a single solution. Most 

feasible solution can be selected among them. 
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3.1Genetic algorithm 

GA is used for finding optimal solutions to search 

and optimization problems, based on natural selection 

and evolutionary genetics. It solves both constrained 

and unconstrained problems. Similar to biological 

evolution, GA uses selection to obtain the fittest 

individuals among a population. These are crossed 

over and mutated to produce new improved 

offspring. These new offspring are declared fit for 

further reproduction using a fitness function, which 

depends on the problem. The steps selection, 

crossover and mutation are implemented multiple 

times until the optimum solutions are reached or a 

stopping criterion is met [33]. 

 

The steps of GA are given below. 

Step-1: Creation of random population.  

Step-2: Evaluation of Fitness for the population. 

Step-3: If stopping criterion is met, go to step-7, else 

go to step-4 

Step-4: Selection of individuals with best fitness. 

Step-5: Crossover and mutation applied to the 

selected individuals to generate new offspring. 

Step-6: Go to step 2. 

Step-7: End.  

 

3.2Particle swarm optimization 

The population in PSO is referred to as swarm and 

the solutions are referred to as particles. The particles 

move in search space and the movement is guided by 

individual best-known positions and the swarm’s 

best-known position. The positions are evaluated 

based on the fitness function [34]. Along with the 

position, particle velocity is also updated. After a 

number of iterations, the best position or solution can 

be reached.   

The steps of PSO are given below. 

Step-1: Creation of random population containing n 

particles.  

Step-2: Assign initial velocity and position to each 

particle.  

Step-3: Evaluate fitness of each particle.  

Step-4: Update local (of individual) and global (of 

swarm) best fitness values. 

Step-5: Update particle positions and velocities. 

Step-6: If stopping criterion is reached, go to step-7, 

else go to step-3. 

Step-7: The optimum solution is in global best.  

Step-8: End. 

  

 

 

3.3Fitness functions 

For minimizing SLL and beam width, the two fitness 

functions, Fitness1 and Fitness2, described by 

Equations 2 and 3 respectively, have to be 

minimized. 

Fitness1=                    

 max,     |
  ( )

  ( )   
|-             (2) 

Fitness2 = HPBW = 2|     |  (3) 

 

Where   ( ) are array factor values in all directions 

excluding the main lobe,   ( )    is the maximum 

or peak value of main lobe,        is the desired 

value of SLL which is taken as -30 decibels (dB) in 

this paper,     corresponds to   ( )    and    

corresponds to 0.707  ( )   , which is nothing 

but the half-power level of   ( )   . 

            represents the peak side-lobe level 

obtained, and in Equation (3),    is taken as   ⁄  for 

broad-side array. Fitness1 can be minimized using 

simple GA or PSO, but at the cost of increment in 

Fitness2, and vice-versa. Both fitness functions are to 

be minimized simultaneously, which is not possible 

using simple optimization technique. Therefore, 

multi-objective GA and PSO are used to produce a 

set of solutions called pareto Front. A plot of Fitness1 

versus Fitness 2 represents pareto optimization of 

SLL and HPBW for the LAA. The numerical 

calculations of             and HPBW are as 

follows: for example, a 16-element uniform LAA 

with spacing between elements, d=0.5λ and elemental 

excitations of unity, obtained main lobe peak of 

amplitude 16 and peak side lobe of amplitude 3.489 

as shown in Figure 2.    observed is 90⁰  and    

corresponding to half power is -86.83⁰ . Then, 

            =      (
     

  
)     = -13.23 dB and 

HPBW = 2 (90⁰ - 86.83⁰ ) = 6.34⁰ . 

 

4.Results  
For a 16-element uniform linear array having spacing 

between elements d=0.5λ, excited uniformly with 

unity amplitude, the array factor plot obtained is 

indicated in Figure 2 below. From the plot, an SLL 

of -13.23 dB (         (
     

  
)    ) and a HPBW of 

6.34⁰  (by taking twice the difference of angles at 

main lobe peak and at 0.707 times the peak) are 

observed. The SLL can further be reduced by 

optimizing the amplitude or spacing. 
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Figure 2 Rectangular plot of Array Factor when unity excitations and λ/2 spacing are applied for 16-element array 

 

The SLL has been considerably reduced using GA 

optimization with the fitness function given by 

Fitness1 in equation 2, and the optimization curve is 

shown in Figure 3. The weights of excitation are 

optimized after 500 iterations and using the 

optimized excitations, rectangular plot of array factor 

is obtained as shown in Figure 4, from which an SLL 

of -20.63 dB (           ) and a half power beam 

width of 7.84⁰  are calculated. A decrease in SLL has 

led to an increase in beam width. Also, a decrease in 

peak value,   ( )    is observed. This is because of 

amplitude tapering, which reduces amplitude of 

excitation of few elements. 

 

 

 

Figure 3 GA optimization curve of Fitness1 function using amplitude control for 500 iterations 

 

 
Figure 4 Rectangular plot of array factor when element excitations are GA optimized for SLL reduction 
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In spacing optimization technique, the factor d /    is 

varied between 0.2 and 0.8, and the fitness function is 

reduced to 9.04dB, as shown in Figure 5, when the 

excitation amplitudes are all unity. Using the 

optimized spacing values, array factor obtained is as 

shown in Figure 6 and the beam width calculated 

from this plot is 6.72⁰ , while the SLL calculated is 

reduced to -20.95 dB. This is an improvement over 

amplitude optimization technique. Also, the main 

lobe level is not reduced, unlike in amplitude 

optimization case, where the amplitudes vary 

between 0 and 1. The array size is further increased 

to N=64 isotropic elements and the array factor plot 

observed for uniform elemental excitations of unity 

and an element spacing of 0.5λ is shown in Figure 7. 

An SLL of -15.79 dB and a HPBW of 1.34⁰  are 

calculated from the plot. The increase in number of 

antenna elements from 16 to 64 has resulted in 

decrease in HPBW from 6.34⁰  to 1.34⁰ . 

 

 
Figure 5 GA optimization curve of Fitness1 function using spacing control for 500 iterations 

 

 
Figure 6 Rectangular plot of Array factor when spacing between elements, d /   are GA optimized for SLL 

reduction 

 

 
Figure 7 Rectangular plot of Array factor when unity excitations and λ/2 spacing are applied for 64-element array
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By applying excitation amplitude optimization on the 

64-element array, amplitudes are varied between 0 

and 1 keeping uniform element spacing d=0.5λ. The 

minimum value of fitness function obtained is 7.10 

dB after 500 iterations, as seen in Figure 8. From 

Figure 9, an SLL of -22.93 dB is observed and 

HPBW of 1.62⁰  is obtained, which is an increment 

over the HPBW in no optimization case. Reduction in 

SLL is accompanied by increase in HPBW in 

amplitude optimization case. 

 

 
Figure 8 GA amplitude optimization curve for fitness 

function after 500 iterations (N=64) 

 

 
Figure 9 Rectangular plot of array factor when GA 

optimized excitations and λ/2 spacing are applied for 

64-element array 

 

By using spacing optimization technique, the 

amplitude excitations are maintained unity and 

spacing between antenna elements is varied between 

0.2λ and 0.8λ. The best value of fitness obtained is 

4.68 dB after 500 iterations as seen in Figure 10. The 

SLL obtained is -25.31 dB with a HPBW of 1.12⁰ , 

as calculated from Figure 11. These values are better 

compared with amplitude optimization and no 

optimization cases. 

 

 
Figure 10 GA spacing optimization curve for fitness 

function after 500 iterations (N=64) 

 

 
Figure 11 Rectangular plot of array factor when 

unity excitations and GA optimized spacing are 

applied for 64-element array 

 

To reduce both SLL and beamwidth, multi-objective 

GA using Amplitude-only control is employed. The 

spacing is maintained at d = 0.5λ and amplitudes are 

varied between 0 and 1. The pareto optimized output 

is a set of 70 non-dominant solutions as shown in 

Figure 12. The point P1 in Figure 12 shows an SLL 

of -20.7 dB, which is obtained from Equation 2 when 

SLL is chosen as -30dB, and a HPBW of 6.94⁰ . This 

is an improvement over the side-lobe level of -

20.63dB and a half power beamwidth of 7.84⁰  in 

simple GA using amplitude control (Figure 4), since 

HPBW is reduced for nearly equal SLL. The point P2 

shows an SLL of -16.4 dB (i.e., -30 dB + 13.591 dB) 
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and a HPBW of 6.34⁰ . This is an improvement over 

an SLL of -13.23dB and a HPBW of 6.34⁰  (Figure 

2) of un-optimized uniform linear array, since, the 

SLL is reduced for the same value of HPBW. This 

implies that MO-GA with amplitude-only control 

performs better than no-optimization case and simple 

GA with amplitude-only control case.   

 

 
Figure 12 Pareto front obtained for Fitness1 (           -      ) versus Fitness2 (HPBW) using amplitude-only 

control in MO-GA 

  

Next, the pareto optimization is implemented using 

spacing-only control. The excitation amplitudes are 

maintained unity while the spacing between 

elements, d /     is varied between 0.2 and 0.8. For 

first element, distance from origin is considered. The 

pareto optimization is represented by a set of 70 

solutions as shown in Figure 13. The point P3 shows 

SLL of -20.61 dB (i.e., -30 dB + 9.385 dB) and a 

HPBW of 6.1⁰ . This is an improvement over SLL of 

-20.95 dB and HPBW of 6.72⁰  of simple GA using 

spacing optimization in Figure 6, in terms of reduced 

HPBW for nearly equal SLL. Similarly, P3 is better 

compared to P1 (SLL of -20.7 dB and HPBW of 

6.94⁰ ) in Figure 12, making spacing-control better 

than amplitude-control for reducing SLL and HPBW.  

 

 
Figure 13 Pareto front obtained for Fitness1 (〖SLL〗_obtained-〖SLL〗_des) versus Fitness2 (HPBW) using 

spacing-only control in MO-GA 
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Further, the pareto optimization is implemented with 

concurrent amplitude-spacing control. The excitation 

amplitudes are varied between 0 and 1, and the 

spacing between elements, d /     is varied between 

0.2 and 0.8. The obtained solution set contains 64 

points as shown in Figure 14. The point P5 indicates 

an SLL of -20.71 dB (i.e., -30 dB + 9.285 dB) and a 

HPBW of 4.6⁰ , which is clearly better than P3 and 

P1, in terms of reduced beamwidth for nearly equal 

SLL. If further reduction in SLL is preferred, the 

solution can be moved to P6, which shows an SLL of 

-22.89 dB (i.e., -30 dB + 7.11 dB) and HPBW of 

5.38⁰ .  

 

 
Figure 14 Pareto Front obtained for Fitness1 (           -      ) versus Fitness2 (HPBW) using concurrent 

amplitude-spacing control in MO-GA 

 

MO-PSO is also implemented with amplitude-only 

control, i.e., the spacing is maintained at d = 0.5λ and 

amplitudes are varied between 0 and 1. The pareto 

front is a set of 69 solutions and the point P8 

indicates an SLL of -20.46 dB (i.e., -30 dB + 9.536 

dB from eq. 2) for a beamwidth of 7.14⁰  as shown in 

Figure 15. This is not a better performance in 

comparison with amplitude-only control MO-GA (P1 

with SLL of -20.7 dB and HPBW of 6.94⁰  in Figure 

12), but is still a good trade-off. 

 

 
Figure 15 Pareto front obtained for Fitness1 (〖SLL〗_obtained-〖SLL〗_des) versus Fitness2 (HPBW) using 

amplitude-only control in MO-PSO 

 

Next, PSO is implemented with spacing-only control, 

i.e., the excitation amplitudes are maintained unity 

while the spacing between elements, d /     is varied 

between 0.2 and 0.8. For first element, distance from 

origin is considered. The set of 35 output pareto 

solutions are shown in Figure 16.  The point P9 
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indicates an SLL of -18.33 dB (i.e., -30 dB + 11.661 

dB from eq. 2) for a beamwidth of 4.94⁰ . This is 

comparable to point P4 of spacing-only control MO-

GA in Figure 13 (SLL of -18.33 dB with a HPBW of 

4.88⁰ ). Finally, MO-PSO with concurrent amplitude 

and spacing control is implemented, i.e., the 

excitation amplitudes are varied between 0 and 1, and 

the spacing between elements, d /     is varied 

between 0.2 and 0.8. The obtained pareto front of 34 

solutions is shown in Figure 17. Point P10 indicates 

an SLL of -17.89 dB (i.e., -30 dB + 12.11 dB) and 

HPBW of 4.2⁰ . This is comparable to point P7 (SLL 

of -17.84 dB and HPBW of 4.2⁰ ) of amplitude-

spacing control MO-GA. 

 

 
Figure 16 Pareto Front obtained for Fitness1 (〖SLL〗_obtained-〖SLL〗_des) versus Fitness2 (HPBW) using 

spacing-only control in MO-PSO 

 

 
Figure 17 Pareto Front obtained for Fitness1 (           -      ) versus Fitness2 (HPBW) using concurrent 

amplitude-spacing control in MO-PSO 

 

5.Discussion 
A comparison of SLL and HPBW obtained using 

amplitude and spacing optimization in GA.  

It is indicated in Table 1 for 16-element and 64-

element LAAs. 
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Table 1 A comparison of amplitude and spacing optimization techniques for N=16 and 64 

N. No. optimization Amplitude optimization Spacing optimization 

SLL HPBW SLL HPBW SLL HPBW 

16 -13.23 dB 6.34⁰  -20.63 dB 7.84⁰  -20.95 dB 6.72⁰  

64 -15.79 dB 1.34⁰  -22.93 dB 1.62⁰  -25.31 dB 1.12⁰  

 

From the table, the following points can be inferred: 

 It is seen that as the antenna array size increases, 

the beam width gets narrower and also the SLL 

reduces to some extent. This reduction in peak 

SLL can be attributed to increase in number of 

sidelobes with N.  

 Amplitude optimization reduces the SLL and a 

further reduction in SLL can be achieved through 

spacing optimization.  

 The HPBW in spacing control technique is also 

lower compared to that of amplitude optimization 

technique.  

 For N=64, spacing optimization technique showed 

a reduction in SLL by 9.52 dB and 2.38 dB 

compared with no optimization and amplitude 

optimization cases respectively. The beamwidth is 

also lowest for spacing optimization case.  

 Since beamwidth and directivity are inversely 

proportional, the 64-element antenna array with 

spacing optimization has the best directivity 

among others discussed above. 

 

A comparison of SLL and HPBW for different single 

and multi-objective optimization techniques using 

amplitude-only, spacing-only and amplitude-spacing 

controls is presented in Table 2. Note that the array 

size considered is 16. 

 

Table 2 Comparison of results of various techniques discussed above 

Optimization 

technique 

SLL (in dB) HPBW (in degrees) 

No optimization  -13.23 dB 6.34⁰  

GA (Amplitude control) -20.63 dB  7.84⁰  

GA (Spacing control) -20.95 dB  6.72⁰  

MO-GA (Amplitude control) -20.7 dB (P1) 6.94⁰  

MO-GA (Spacing control) -20.61 dB (P3) 6.1⁰  

MO-GA (Concurrent Amplitude-Spacing 

control) 

-20.71 dB (P5) 4.6⁰  

MO-PSO 

(Amplitude control) 

-20.46 dB (P8) 7.14⁰  

MO-PSO 

(Spacing control) 

-18.33 dB (P9) 4.94⁰  

MO-PSO (Concurrent Amplitude-Spacing 

control) 

-17.89 dB (P10) 4.2⁰  

 

From the table, the following points can be inferred: 

 MO-GA and MO-PSO are found to achieve much 

lower beamwidths compared to GA, for nearly 

equal SLL values. 

 Concurrent amplitude and spacing control 

optimization have resulted in lower beamwidth, 

making it more superior over amplitude-only and 

spacing-only controls. 

 

Multi-objective optimization techniques have 

facilitated the simultaneous reduction of both SLL 

and beamwidth, which is desired in most of the 

upcoming communication technologies. MO-GA and 

MO-PSO have performed almost equally in reducing 

beamwidth for a given SLL. However, the 

implementation of concurrent amplitude and spacing 

controls in this work have drastically improved the 

results. 

 

5.1Limitation 
Practically, the excitation amplitude control requires 

specialized feed network designed to generate 

required excitation for each element of the array. 

Thus, concurrent amplitude-spacing control 

technique requires complex hardware. A complete 

list of abbreviations is shown in Appendix I. 

 

6.Conclusion and future work 
The SLL for a 16-element array is reduced by 

excitation amplitude optimization using GA. As a 

consequence, the HPBW is increased. While in 

spacing optimization, SLL and HPBW are reduced 

compared to excitation optimization, which improves 
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the array antenna performance. In a 64-element array, 

the beamwidth is very less compared to that of 16-

element array, making the beam more focused. In this 

case also, spacing optimization has less SLL and 

HPBW than amplitude optimization. Thus, array 

antennas with optimized spacing perform better than 

those with optimized excitation amplitudes for 

different antenna sizes. Also, amplitude control MO-

GA and MO-PSO exhibit better performance than 

simple GA with amplitude control. But spacing 

control MO-GA and MO-PSO perform better than 

amplitude control MO-GA and MO-PSO in terms of 

reduced HPBW. Concurrent amplitude-spacing 

control MO-GA and MO-PSO show the best 

performance among all other techniques discussed 

above, by exhibiting the least HPBW for a given 

SLL. Also, the performance of MO-GA is 

comparable to that of MO-PSO, with MO-GA 

slightly better than MO-PSO in few cases in terms of 

number of solutions. 
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Appendix I 
S. No. Abbreviation Description 

1 5G Fifth Generation Mobile Network 

2 BBO Biogeography Based Optimization 

3 BFP Bat Flower Pollination  

4 BSA Backtracking Search Optimization 

Algorithm 

5 BSO Brainstorm Optimization 

6 CAA Circular Antenna Array 

7 CSB Collective Social Behavior  

8 COA Cuckoo Optimization Algorithm  

9 dB Decibels 

10 FPA Flower Pollination Algorithm 
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11 GA Genetic Algorithm 

12 GWO Gray Wolf Optimization 

13 HPBW Half Power Beam Width 

14 ICSO Improved Chicken Swarm 

Optimization  

15 IWO Invasive Weed Optimization 

16 LAA Linear Antenna Array 

17 MA Mayfly Algorithm 

18 MFO Moth Flame Optimization  

19 MO-GA Multi-Objective Genetic 

Algorithm 

20 MO-PSO Multi-Objective Particle Swarm 

Optimization 

21 MSSA Modified Sparrow Search 

Algorithm  

22 PSO Particle Swarm Optimization 

23 SLL Side Lobe Level 

24 SNR Signal to noise ratio 

25 SOA Seagull Optimization Algorithm 

26 SSA Salp Swarm Algorithm 

 


