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1.Introduction 
According to the World Heart Federation, there will 

be 23 million deaths due to cardiovascular disease 

(CVD) annually by 2030 [1]. This is 28.5% higher 

than the CVD deaths that occurred in 2019. This 

indicates the need to take appropriate measures to 

reduce the mortality rate. One broad group of CVDs 

is arrhythmia, which manifests as an abnormal 

electrical behaviour of the heart [2]. This electrical 

activity can be measured using an electrocardiogram 

(ECG) [3]. The morphological pattern changes in the 

ECG can be used to identify the arrhythmia type [4]. 

Some arrhythmia can be potentially life-threatening 

and some others are not. There are five groups of 

arrhythmias in the association for advancement of 

medical instrumentation (AAMI) dataset: non-ectopic 

(N), ventricular ectopic (V), supraventricular ectopic 

(S), fusion (F), and unknown (Q) [5].  Although these 

arrhythmia types are not fatal, they can lead to life-

threatening complications if not treated in a timely 

manner [6].  
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Therefore the early detection and classification of 

these arrhythmia types are essential to provide proper 

treatment and decrease the CVD death rate [7]. 

 

To accurately distinguish and classify abnormal 

heartbeats from ECG signals, remarkable expertise in 

this area is required. This criterion imposes a number 

of limitations on professional ECG data analysis: i) it 

is prone to human error and a time-consuming 

process.  ii) The number of cardiologists available to 

diagnose heart problems in a large population is 

limited. iii) The cost of diagnosis is high. These 

limitations highlight the need for reliable and 

inexpensive methods to accurately identify and 

classify abnormal beats to ensure a person’s heart 

health [8]. Therefore, automated arrhythmia 

identification and classification models are required. 

 

Over the past decade, researchers have developed 

various pattern recognition models for the automated 

identification and classification of the arrhythmia 

beats. The already available arrhythmia identification 

and classification models have proven to be quite 

useful for cardiologists and medical institutions [9]. 

However, ECG beat classification performance can 
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be further improved. The classification of ECG beats 

is typically performed mainly in three phases [10]. 

They are: (i) filter noise from raw ECG signals (ii) 

extract and select the optimal set of features, and (iii) 

perform classification to identify the beat type. The 

classification performance depends upon quality and 

distinctive features extracted from the ECG signal to 

understand and analyze arrhythmia characteristics. 

The traditional machine learning algorithms can only 

perform classification tasks. Noise removal, feature 

extraction, and selection were performed using other 

methods. In addition, human interaction may be 

required between the above stages. However, the 

convolutional neural network (CNN) can handle all 

three phases on its own. That is, it can extract and 

choose the optimal features from acquired raw ECG 

signals and perform classification. That was the 

reason, deep neural networks, such as CNN have 

recently attracted a lot of attention in the applications 

of biological signal processing.  

 

Even though deep learning models produced 

promising outcomes in arrhythmia classification, they 

were seriously influenced by imbalanced data. When 

a dataset contains extremely imbalance data, 

especially in deep learning, training models become 

more biased towards majority class samples [11]. In 

case of arrhythmia datasets, most of the abnormal 

heart beats are very rare, which restricts the 

development of automated models. There exist 

different methods for dealing with imbalanced data, 

including affine transformation, random translation, 

random flipping, and random cropping, and so on. 

These techniques, however, are not recommended for 

augmenting because morphological data in ECG 

signals has more meaning. Beside these, under-

sampling and over-sampling can handle imbalanced 

data classification; each has its own problems. 

Oversampling not only increases training time but 

may also lead to model over-fitting. In the case of 

under-sampling, the model may fail to learn a few 

properties of the majority classes owing to the 

dropping of some samples. Therefore, a novel 

weighted method is proposed to handle imbalanced 

data. The novel weighted mechanism assigns weights 

to AAMI classes. The purpose is to pay more 

attention to minority class beats while training. 

Additionally, number of CNN layers, optimal number 

of neurons to be used in the fully connected layers, 

batch size, loss function, activation function, 

optimizer, mechanism to prevent over-fitting, and 

other factors to be determined and optimized. This 

study enhanced arrhythmia classification 

performance when compared to state-of-the-art 

approaches. 

 

The remainder of this paper is organized as follows. 

Section 2 provides the literature survey. Section 3 

discusses the structure of the proposed one-

dimensional convolutional neural network (1D-CNN) 

model, the novel weighted approach and also details 

of database used in this study. Section 4 provides the 

details of training and evaluation of proposed 1D-

CNN model, as well as the evaluation metrics, and 

experimental results. Section 5 presents a discussion 

and comparison of proposed work with the state-of-

the-art methodologies, and limitations of the 

proposed work. The future enhancements and 

conclusions are presented in section 6. 

 

2.Literature survey 
In existing literature, researchers have classified 

arrhythmia beats using both traditional machine 

learning algorithms (random forest, support vector 

machine (SVM), etc.) and deep learning algorithms 

(CNN, recurrent neural network (RNN), etc). In 

traditional approach, separate methods are required to 

extract important features from ECG and then 

appropriate classifier to be selected in the 

classification stage. Mian and Fawad [12] extracted 

statistical features from sub-band coefficients of 

wavelet decomposition of ECG signal. They 

classified five arrhythmia types using random forest 

and achieved 97% accuracy. Sharma et al. [6] applied 

discrete wavelet transform (DWT) on ECG signal 

and extracted fractal dimension, Renyi and fuzzy 

entropy features. Later, k-nearest neighbours (KNN) 

as used to classify AAMI five classes and attained 

98% accuracy. Sahoo et al. [13] extracted Hilbert and 

wavelet transform based features from the ECG 

signals. Later, they applied principal component 

analysis (PCA) to reduce the feature set and used 

SVM classifier and obtained 98.5% accuracy for 

classifying five arrhythmia types. Sultan and 
Ghorbani [14], proposed time–frequency (TF) 

representation-based algorithm to extract ECG 

features. TF features along with higher order 

statistical features and R-R interval of ECG beats are 

given to ensemble-based decision trees to classify 

them into 5 AAMI classes. The results demonstrate 

that N, V, and S classes have accuracy over 99%. But 

F class beats achieved very less sensitivity of 12.11% 

and positive predictive value of 51.09%. However, 

all of these approaches used traditional machine 

learning algorithms and required hand-crafted 

features. 
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The adequacy of the features extracted from ECG 

signals has substantial effect on the overall 

performance and reliability of the classification 

algorithm [15]. The auto-extracted features by CNN 

have higher quality than hand-crafted features, which 

enhances classification performance. But different 

CNN structures exhibit different feature extraction 

capabilities [16]. Therefore, determining the optimal 

CNN structure is a design issues. The training time of 

a CNN model increase when the number of layers 

increases. However, graphics processing units 

(GPUs) can be used to efficiently train convolutional 

based models. 

 

Various noise removal methods have been utilized to 

improve the classification results of arrhythmia [5, 6, 

16, 17]. Acharya et al. [5] proposed a nine-layer 

CNN model for classifying five categories of ECG 

beats. They experimented with the original and noise-

free ECG data. They found that the average 

sensitivity and accuracy increased for noise-free ECG 

signals compared with the original. Yao et al. [16] 

pre-processed raw ECG signals to filter noise using 

wavelet decomposition and balanced the classes 

using data augmentation techniques. Their results 

proved that data augmentation and the addition of the 

gated recurrent units (GRUs) to the CNN model can 

improve the sensitivity of each AAMI beat category. 

Khan et al. [17] classified five different types of 

cardiac arrhythmia using a ten-layer 1D-CNN model. 

They used segmented noise-free ECG data after 

balancing the classes using the augmentation 

technique as the input. Their model attained 95.2% 

overall accuracy, 95.4% and 95.2% average recall 

and precision respectively. Sharma et al. [6] proved 

that the average precision, specificity, sensitivity, and 

accuracy of noise-free ECG data for five classes were 

better than those of original noisy data.  

 

CNN models can also be deployed in wearable 

devices to monitor the heart activity in real -time. It 

can also be trained to detect the abnormal beats of a 

particular individual. Xiolin et al. [18] proposed a 

ten-layer CNN model suitable for wearable devices to 

detect arrhythmia beat types. They reduced and 

optimized the complexity of the CNN using the 

multistage pruning technique. Kiranyaz et al. [4] 

developed a dedicated CNN model for each patient, 

separately from a generalized model. They claimed 

that such a model could classify ECG beats of that 

patient quickly and more accurately. Sarvan and 

Özkurt [15] applied a nine-layer 1D-CNN model to 

the original unbalanced AAMI classes of ECG data 

to detect five categories of the ECG beats. They 

claimed that when the number of epochs was 

increased to 300, their model performed better. 

 

Although CNN can auto-extract features and perform 

classification, researchers used CNN to implement 

classification with hand-crafted features. Al et al. 

[19] applied continuous wavelet transform on ECG 

data to convert it into input that is suitable to pre-

trained CNN model popularly known as visual 

geometry group network (VGGNet) to generate the 

features. These obtained features are given to fully 

connected layers to classify the beats. Li and 

Boulanger [7] proposed to combine hand-crafted 

features such as statistical and morphological with 

features extracted from short-time Fourier transform 

spectrogram of ECG using a CNN to detect abnormal 

beats. Yu [20] used the wavelet transform to 

preprocess the ECG signal to detect R peak and find 

R-R interval. Then ECG segments formed from R 

peaks are given to an eight-layer CNN model for 

classifying them into four AAMI classes (N, S, V, F). 

Their model attained sensitivity of 93.0% and 81.3%, 

respectively for V and S class beats. Huang et al. [3] 

transformed the ECG signals into ECG spectrograms 

using short-time Fourier transform. These 

spectrograms are given as input to the two-

dimensional convolution neural network (2D-CNN) 

model and classified five different arrhythmia types 

and achieved 99% average accuracy. Even though 

2D-CNN model accuracy improved over 1D-CNN, 

computation cost increased significantly. 

 

Innovative approaches to extract features from ECG 

signals and use of attention layer to enhance quality 

of features have introduced in the recent literature. 

Mousavi et al. [21] developed a novel approach 

called ECG language processing (ELP), which relies 

on variations in a series of different wave 

morphologies for interpreting ECG beats. This is 

analogous to word sequences in sentences and 

inspired by natural language processing. It allows a 

computer-aided system to interpret ECG beats in the 

same way doctors do. The proposed ELP approach 

with RNN attention-based model achieved 97% 

accuracy when tested on Massachusetts institute of 

technology-Beth Israel hospital (MITBIH) 

arrhythmia database according to AAMI criteria. Ma 

et al. [22] proposed a residual network (ResNet) and 

bidirectional long short-term memory (BiLSTM) 

model with an attention mechanism to extract and 

classify arrhythmia beats according to AAMI criteria. 

Initially, the ECG signal is divided into segments 

containing arrhythmia beats after denoising it with 

DWT. Following that, generative adversarial 
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networks (GAN) was used to balance the beats in 

minority classes. Later, the spatial characteristics 

obtained from the segmented ECG beats using 

ResNet are fused with the temporal characteristics 

obtained from Bi-LSTM, and then feature 

enhancement is performed using the attention layer. 

The proposed model performs classification based on 

these enhanced features and achieves 99.4% 

accuracy. Lu et al. [23] proposed an end-to-end 

classification approach based on CNN and long 

short-term memory (LSTM) for classifying 

arrhythmia beats. CNN first extract local 

morphological features from raw ECG signal, 

followed by LSTM mining temporal correlated 

morphological features and perform classification. 

When tested against the MIT-BIH arrhythmia 

database, this model has an accuracy of 96.16%. 

Shoughi and Dowlatshahi [24] designed a hybrid 

model by merging CNN and BiLSTM in order to 

accurate classify arrhythmia in ECG heartbeats. In 

pre-processing stage, they utilized wavelet transform 

to denoise the ECG data and synthetic minority over-

sampling technique (SMOTE) to balance the 

arrhythmia beat types. In the classification step, CNN 

is used to extract local features and BLSTM is used 

to extract correlated high-level features in order to 

acquire the deep features and conduct classification 

in accordance with the AAMI standard. The accuracy 

of this model was 98.71%. Gai [25] transformed a 

one-dimensional ECG waveform into two-

dimensional in order to extract rich informative 

features using 2D-CNN. They addressed the issue of 

class imbalance by augmenting artificially created 

minority beats with up to 10% Gaussian noise in 

signal amplitude. This model obtained an accuracy of 

98.65% when tested against MIT-BIH arrhythmia 

database. Liu and Zhang [26] developed a novel 

arrhythmia classification method by including an 

attention layer into CNN. This model extracted the 

most informative features straight from raw ECG 

using an attention mechanism and increased the 

efficacy of the arrhythmia identification procedure. 

When evaluated on the MIT-BIH arrhythmia 

database, it scored average precision of 98.65% and 

average recall of 98.68%. Zubair and Yoon [27] 

proposed a novel deep-learning framework that 

includes temporal transition module composed of 

numerous convolutional layers with different size 

kernels. This approach extract both short-term and 

long-term morphological variations from ECG beats. 

They handled class imbalance problem by 

introducing a cost-sensitive loss function that assigns 

adaptive weights to class samples based on data 

distribution in the training batch. The proposed 

model obtained accuracy of 99.81%, sensitivity of 

88.82%, and precision of 95.68%. Even though, the 

accuracy of this model is high, it failed to obtain 

better sensitivity. 

 

The AAMI dataset formed from the MITBIH 

arrhythmia database was highly unbalanced. To deal 

with this problem, various augmentation techniques 

are used. This involves creating synthetic data 

through SMOTE, replicating the data, and using 

transformation operations such as reflection and 

rotation [17]. Pandey and Janghel [2] designed an 11-

layer 1D-CNN model to classify MIT-BIH 

arrhythmia beats into five categories according to 

AAMI standard. They used the SMOTE technique to 

address class imbalance problems. Their model 

achieved 98.30% accuracy when using a train-test 

split of 70:30. Jiang et al. [28] used an over-sampling 

strategy to deal with imbalance data. The auto-

encoder was used to extract features, which were then 

given to CNN after minority classes were over-

sampled. This approach achieves a total of 96.6% 

accuracy in classifying N, V, S, and F category beats 

according to the AAMI recommendation. However, 

over-sampling method may result in over-fitting. The 

authors [5, 16, 17, 22] also used augmented data to 

balance the AAMI classes. The augmentation not 

only increases the computing costs significantly, but 

also brings in new training data that might be quite 

different from the real data to be tested [29]. 

 

The following findings are drawn from the study and 

analysis of existing works. Since the ECG signal 

varies widely between individuals and under different 

physical situations, hand-crafted features are not 

generalized enough to classify ECG arrhythmia. 

However, auto-extracted features can bypass these 

constraints. Second, as CNN can handle noisy data, 

raw ECG signals can be directly fed to it without any 

noise filtering effects to reduce computational cost. 

Finally, the dataset formed according to AAMI 

criteria is highly unbalanced which has an impact on 

minority class performance. To address this issue, 

minority classes were either over-sampled or various 

data augmentation techniques were used. Due to the 

negative consequences of augmentation and over-

sampling, it is not always appropriate to balance 

datasets using them. Therefore, dealing with highly 

unbalanced data requires the development of 

innovative approaches. 

 

3.Proposed model 
The proposed model consists of a 9-layer 1D-CNN 

model with novel weighted mechanism to classify 
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arrhythmia beats according to AAMI standard by 

taking raw ECG signal as input. The proposed model 

architecture is shown in Figure 1. The openly 

available MIT-BIH arrhythmia database [30] was 

used in this study. It is collected from the following 

link: https://physionet.org/content/mitdb/1.0.0/. This 

dataset contains raw ECG signal recordings that have 

been divided into multiple segments such that each 

segment with a fixed length and a R-peak in the 

middle. These extracted ECG segments are fed into a 

9-layer 1D-CNN model to predict the class label 

associated with it. As the classes in the dataset are 

highly imbalanced, a novel weighted mechanism is 

introduced to improve the performance of the 

minority classes as well as overall classification. The 

role of novel weighted mechanism is to increase the 

importance of minority classes. Finally, the proposed 

architecture able to predict the class label associated 

with input ECG segment as per AAMI standard. 

 

 
Figure 1 Overview of proposed model 

 

 

 

3.1Database used 

The MIT-BIH arrhythmia database included 48 ECG 

records collected from different patients. Each record 

contains 30-minutes of ECG data obtained using 

Lead II with a sampling rate of 360 Hz. In each ECG 

recording, all R-peaks were annotated with the 

relevant arrhythmia beat type [31]. A Python package 

called waveform database (WFDB) was used to read 

the ECG waveform data and the corresponding 

annotations from these recordings.  From each R 

peak, a 2-seconds ECG segment was produced with a 

window size of 1-second or 360 samples to the left 

and 359 samples to the right, with reference to the R-

peak position. In other words, the 720 samples 

represented an ECG segment of 2-seconds. The 

annotated beat label at the centre R-peak of an ECG 

segment serves as a beat class. Sample 2-second ECG 

segments from the generated dataset are presented in 

Figure 2. 

 

A dataset was formed with each generated ECG 

segment as an input and the beat type associated with 

it as an output. Table 1 provides details of the dataset. 

It contains 15 arrhythmia types and their ECG 

segment numbers from the MIT-BIH arrhythmia 

database. According to the AAMI standard, these 15 

arrhythmia types were clustered into five groups and 

their details are also listed in Table 1. The generated 

AAMI dataset was randomly shuffled before 

splitting. This enabled the training model to conduct 

a thorough and unbiased exploratory data analysis. 

Table 1 clearly demonstrates that the AAMI beat 

classes were highly imbalanced. Therefore, a 

stratified train-test split strategy of 70:30 was used. 

This strategy splits the dataset into two sets such that 

the training set contains randomly selected 70% of 

each class data and the remaining 30% of the data is 

placed in the testing set. This split approach ensured 

to spread of an equal proportion of beats from all five 

classes to both sets. The details of the beats obtained 

according to this split strategy for each class in the 

testing and training sets are presented in Table 1. The 

training set was further divided into two more sets 

such that a set with 70% of the data was utilized for 

training the model and the other 30% was utilized to 

validate the trained model. This division is clearly 

illustrated in Figure 3. 
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Figure 2 Sample extracted ECG segment beats of (a) Non Ectopic (N) (b) Supraventricular Ectopic (S)(c) 

Ventricular Ectopic (V)  (d) Fusion (F) (e) Unknown (Q) 

 

Table 1 Extracted ECG segments 

MIT BIH Arrhythmia Beats AAMI Arrhythmia Beats 

Name of the Beat 
Total 

Beats 
Name of the Beat 

Total 

Beats 

Training 

Beats (70%) 

Testing 

Beats (30%) 

Normal beat   74926 

Non ectopic beat (N) 90488 63212 27276 

Nodal Escape beat 229 

Left bundle branch block    8066 

Right bundle branch block   7251 

Atrial escape beat 16 

Supraventricular premature beat  2 

Supraventricular 

ectopic beat (S) 
2780 1982 798 

Nodal (junctional) premature beat 83 

Aberrated atrial premature beat  150 

Atrial premature beat  2545 

Premature ventricular contraction  7126 Ventricular ectopic 

beat (V) 
7232 5103 2129 

Ventricular escape beat  106 

Fusion of ventricular and normal beat 802 Fusion beat (F) 802 530 272 

Unclassified beat 33 

Unknown beat (Q) 8033 5695 2338 Fusion of paced and normal beat  982 

Paced beat  7018 

 

 
Figure 3 Division of ECG segments as training, 

testing and validation sets 

3.2CNN model architecture 

The proposed CNN model contains nine layers: three 

sets of 1D convolution layers and max-pooling 

layers, then follows a flattened layer, and finally two 

sets of fully connected layers. This model uses 720 

samples that represent a 2-second ECG segment as 

input and classifies them into five categories of 

arrhythmia beats. The CNN analyzes these samples 

from a segmented ECG image to identify the type of 

arrhythmia present. The proposed CNN model is 

illustrated in Figure 4. 
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Figure 4 Proposed CNN architecture 

 

The first convolution layer collects preliminary 

features from the segmented raw ECG beats. The 

subsequent convolution layers further improve and 

detect other deeper features. The max-pooling layers 

role is to decrease the dimensionality of their input to 

summarize the features detected. This activity 

minimizes computational complexity of the model by 

reducing the number of parameters required [16]. The 

flattened layer flattens the multi-dimensional input 

array into a single dimension tensor; therefore, it can 

be suitable as an input to a dense layer. At the end, 

the classification task carried out using two fully-

connected dense layers. 

 

The first 1D convolution layer takes the ECG 

segments of 720 samples as an input. Then it applies 

six filters, and the kernel size of five on an input 

sample of 720×1 to produce a 716×6 matrix as the 

output. The max-pooling layer after the first 1D 

convolution layer uses this 716×6 matrix as input to 

reduce the dimensionality and produce an output of 

238×6 matrix. The next 1D convoluted layer uses 

twelve filters, and the kernel size of five on the input 

received from its preceding layer to obtain a 234×12 

matrix. The second max-pooling layer decreased the 

dimensionality of the input received to generate 

77×12 feature maps as the output. The third and the 

last convolution layer produce an output of 73×24 

matrix by using kernel size of five and thirty-six 

filters. The third and the last max-pooling layer 

summarize the extracted features as an output matrix 

of 24×24. The first fully connected dense layer and 

also all the three convolution layers used the "relu" as 

an activation function. The pool size and stride were 

set as 4 and 3, respectively, in all max-pooling layers. 

The flattened layer transforms the input received 

from the final max-pooling layer to obtain 576 

intermediate values which were given as inputs to the 

first fully connected dense layer to obtain 128 

outputs. Finally, the second and the last fully 

connected dense layer use the “softmax” as an 

activation function on its input to detect the ECG 

segment class label. 

 

3.3Novel weighted approach 

The loss of a multi-class classification problem is 

typically calculated using the categorical cross 

entropy loss function [32]. While training, it simply 

neglects the appearance frequency of the beat class, 

producing in lower prediction results for classes with 

fewer samples or minority classes. Wang et al. [33] 

and Mahajan et al. [34] addressed this issue by 

assigning appropriate weight to each class type by 

inferring inverse of the sample number. The weight 

assigned to a class is inversely proportional to the 

class frequency. If the number of instances in a class 

is high, then the weight of that class is low and vice 

versa. In other words, the samples from the majority 

class were given less weight, while the samples from 

the minority class were given more weight. It is given 

by Equation 1. 

            
 

                       
  (1) 

 

It was observed that using appearance frequency or 

inverse number of an object class directly leads to 

highly unstable training, since loss exponentially 

increases when the training batch includes objects 

from minority classes. To overcome this problem, we 

used a linearly scaled form of class weights. That is, 

Equation 1 multiplied by sum of samples of all the 

classes and total number of classes represented by n. 

It is given by Equation 2. 

            (
 (∑             

 
            )   

                       
) (2) 

The class weight value can be reduced by taking 

square root value of Equation 2 and it is given by 

Equation 3.  
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When the class weights derived by Equation 3 used, 

the importance of minority classes is preserved and 

also loss does not rise exponentially when the 

training batch includes objects from minority classes. 

 

4.Experimental setup and results 

The proposed CNN model was run on an 11th 

generation Core i7-based system with 16 GB of 

RAM and a NVIDIA 3070 GPU with 8 GB of 

memory. The Python programming language was 

used, together with Keras, and a Google open-source 

framework called Tensor Flow developed for 

handling deep learning challenges. 

 

4.1Selecting and tuning hyper-parameters 

The training set, described in section 2 and presented 

in Table 1, was utilized to train the model proposed 

in this study. The "categorical cross entropy" loss 

function is used because the dataset used in this study 

has multiple classes (five). When the number of 

epochs during the model training increased, the 

characteristics of training data were deeply learned. 

However, after completion of certain epochs, if the 

model is trained further, it leads to overfitting instead 

of generalization. Therefore, it is crucial to select the 

appropriate number of epochs. Different numbers of 

trials were conducted on AAMI dataset, and it was 

found that the number of epochs should not exceed 

200. Therefore, the epochs in the model training were 

set at 200, with "Early Stopping" enabling the 

monitoring of up to 50 epochs. That is, training 

terminates after a particular epoch within 200 epochs, 

such that performance of training model not at all 

enhances on the validation data for the previous 50 

epochs. 

 

Small batches converge faster than large batches, but 

large batches can reach the optimal minima that small 

batches cannot [35]. In addition, the selected batch 

size should be a power of two to get maximum output 

of GPU processing. The training and validation 

accuracies, along with the training time for different 

batch sizes of 64, 128, 256, and 512 were compared. 

The performance details of different batch sizes were 

presented in Table 2. From the observation of these 

details, it is determined that 256 was the optimal 

batch size. The role of the optimizer is to adjust the 

weights in the network to reduce the losses. The 

“Adam” is used as an optimizer because it converges 

faster and is computationally efficient. The author 

[36] evaluated the effect of different learning rates on 

a larger dataset and determined that when the 

learning rate was less than 0.05, it delivered better 

accuracy than the higher one. The training and 

validation accuracies and training times for various 

learning rates (0.05, 0.01, 0.005, 0.001, and 0.0001) 

were compared keeping batch size as 256. The 

performance details of different learning rates along 

with training time were presented in Table 3. 

 

Table 2 Comparison of the effect of different batch 

sizes on training 

Batch Size Training Time Average Accuracy 

64 36.04 min 99.32% 

128 34.53 min 99.53% 

256 33.12 min 99.58% 

512 32.03 min 99.26% 

1024 30.42 min 99.19% 

 

Table 3 Comparison of the effect of different 

learning rates on training 

Learning 

rate 

Batch 

size 

Training 

time 

Average 

accuracy 

0.05 256 32.38 min 99.12% 

0.01 256 33.22 min 99.38% 

0.005 256 35.56 min 99.41% 

0.001 256 37.14 min 99.65% 

0.0001 256 38.44 min 99.43% 

 

It was found that the training process converged 

faster at a learning rate of 0.01, but yielded slightly 

higher accuracy at 0.001. As a result, initially 0.01 

was set as the learning rate but was updated to 0.001 

after 100 epochs to fine-tune the model.  

 

Using the novel weighted approach proposed in this 

study, the classes are balanced by applying different 

weights to the calculated loss for different class 

samples, according to Equation (3). This brings 

balance to the dataset and makes the CNN model 

classify beats more accurately. Moreover, in addition 

to accuracy as an evaluation metric, precision and 

recall were also considered to calculate training and 

validation losses. In Figure 5, the green and red 

curves indicate the validation and training data loss, 

respectively. The orange and blue curves indicate the 

accuracies of the validation and training data, 

respectively. From Figure 5 (a), it can be observed 

that the validation data loss did not further decrease 

after approximately 100 epochs. Thus, according to 

the early stopping with monitoring up to 50 criteria, 

the training process progressed for a further 50 
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epochs and thereafter stopped. The accuracy of the 

validation and training data is shown in Figure 5 (b). 

 

 

 
Figure 5 Plotting of 1D-CNN Training and 

Validation (a) loss curves (b) accuracy curves 

 

When the training process stops, the model in the last 

epoch may not be optimal. Therefore, the best-trained 

model is chosen from previous epochs using an 

application programming interface (API) from Keras 

called “ModelCheckpoint”.  
 

4.2Performance assessment metrics 

The performance of the CNN model was evaluated by 

computing the following four basic metrics: precision, 

sensitivity, specificity, and accuracy. These metrics 

are computed with given below Equation 4 to 

Equation 7 by considering true-positive (TP), false-

positive (FP), true-negative (TN), and false-negative 

(FN) obtained from the confusion matrix. 

           
       

                 
                         (4) 

           
  

       
                                        (5) 

              
  

       
     (6) 

              
  

       
                                      (7)   

 

As the used dataset is extremely unbalanced, the 

samples from the majority class may influence the 

overall performance when the results are computed on 

the whole dataset, and analysis may lead to the wrong 

perception. To avoid it, class-wise metrics calculated 

in addition to the overall or average metrics. 

 

4.3Results 

The testing set, described in section 2 and presented 

in Table 1, was utilized to evaluate this trained 

model. The generated confusion matrix form this 

trained model using the test dataset is shown in 

Figure 6.  

 

 
Figure 6 AAMI class arrhythmia confusion matrix 

 

In the existing literature, ECG beat classification is 

performed using either a subject-oriented scheme or a 

class-oriented scheme [31]. The proposed model and 

all compared methods followed the same class-

oriented beat classification and used the AAMI 

standard ECG dataset. The comparison of the 

proposed 1D-CNN model performance with other 

state-of-the-art methods are presented in Table 4. The 

highest metric-wise result for each AAMI beat type is 

also highlighted in Table 4. 

 

Table 4 Comparison of 5-types of arrhythmia beat results with state-of-the-art models 

Author Method Evaluation metric 
AAMI beat categories 

Average metric 
N S V F Q 

Acharya et al. [5]  
(2017) 

9 layer 1D-CNN on 
Denoised ECG 

Sensitivity 91.64 89.04 94.07 95.21 97.39 93.47 

Specificity 96.01 98.77 98.74 98.67 99.61 98.36 
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Author Method Evaluation metric 
AAMI beat categories 

Average metric 
N S V F Q 

Precision 85.17 94.76 95.08 94.69 98.40 93.62 

Accuracy 95.14 96.82 97.84 97.97 99.16 97.39 

Sarvan  and Özkurt  
[15]  (2019) 

9 layer 1D-CNN on     raw 
ECG 

Sensitivity 98.40 82.22 95.38 85.04 99.30 92.07 

Specificity 96.63 99.09 99.60 99.77 99.90 99.00 

Precision 99.33 64.92 94.27 68.38 98.78 85.14 

Accuracy 98.10 98.75 99.32 99.68 99.86 99.14 

Pandey and Janghel   

[2]  (2019) 

12 layer 1D-CNN on  
balanced data using 

SMOTE 

Sensitivity 98.61 93.24 96.49 89.61 99.58 95.51 

Specificity 97.89 99.33 99.81 99.46 99.96 99.29 

Precision 99.65 78.28 97.44 55.95 99.00 86.06 

Accuracy 98.51 99.18 99.57 99.39 99.94 99.32 

Xiaolin  et al. [18]  

(2020) 

10 layer 1D-CNN on  

balanced data using 
SMOTE 

Sensitivity 98.37 93.60 98.03 88.00 99.60 95.52 

Specificity 98.36 99.06 99.75 99.74 99.93 99.37 

Precision 99.65 72.48 96.41 71.90 99.20 87.93 

Accuracy 98.37 98.92 99.63 99.65 99.91 99.30 

Yang et al. [32]  
(2020) 

11 layer                1D-
CNN on unbalanced Data 

Sensitivity 99.73 41.46 87.15 59.10 95.49 76.59 

Specificity 82.36 99.96 99.79 99.94 99.89 96.39 

Precision 96.83 96.08 96.72 88.10 98.00 95.15 

Accuracy 97.02 98.44 98.94 99.63 99.64 98.73 

Mousavi et al. [21] 

(2021) 
ELP + RNN-Attention 

Sensitivity 99.24 70.04 89.28 65.71 91.12 83.07 

Specificity 88.30 99.75 99.94 99.92 99.84 97.55 

Precision 97.60 87.89 91.88 86.39 97.89 92.33 

Accuracy 97.35 98.99 98.77 99.67 99.20 98.79 

Ma et al. [22] (2022) 
ResNet + BiLSTM with 

Attention layer 

Sensitivity 99.31 100 98.25 99.42 99.67 99.33 

Specificity 99.97 99.09 98.16 98.87 99.42 99.10 

Precision NA NA NA NA NA NA 

Accuracy 99.96 99.55 99.06 99.21 99.32 99.42 

Proposed 
9 layer 1D-CNN on raw 
ECG 

Sensitivity 99.53 93.11 98.07 81.62 99.44 94.35 

Specificity 98.07 99.79 99.82 99.85 99.97 99.50 

Precision 99.61 91.84 97.48 81.62 99.57 94.02 

Accuracy 99.28 99.63 99.71 99.70 99.93 99.65 

* NA: Not Available  

 

5.Discussions  
The length of the chosen ECG segment plays an 

important role in classification performance. The 

authors [5, 18] used 260 samples or a 0.72-second 

duration ECG segment, and Pandey and Janghel [2] 

used 360 samples or a 1-second duration ECG 

segment as input in their models. One of the reasons 

why their results are less than ours is their chosen 

ECG segment length. Doctors usually investigate 

ECG segment of short duration for diagnosis, but not 

just a single ECG beat [37]. The ECG segment length 

is directly proportional to the processing time. 

Therefore, the shorter the ECG segment length, the 

lower the processing time. However, when the ECG 

segment length is less than 2-second, it may not 

include important details, such as the RR interval. As 

a result, providing ECG segments of two seconds or 

longer to the 1D-CNN structure is quite realistic for 
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better arrhythmia beat classification performance. 

Hence, in this study, we used two-second ECG 

segments as inputs. We also compared the 

classification results of ECG segments with 1-second 

and 2-seconds on the proposed model, and found that 

the latter produced better results. 

 

The kernel size determines level of feature detail 

captured from the input. That is, smaller kernels 

capture lower-level details as features while ignoring 

higher level details, and larger kernels do the inverse. 

In this study, a smaller kernel was employed in the 

first convolution layer and its size was increased in 

the subsequent convolution layers. As a result, lower 

level details are initially acquired as features, and 

next layers captures higher features which are 

composed of several small features from the previous 

layers. As both lower and higher-level features are 

considered, the classification performance is 

improved significantly. Although [5, 15] followed the 

same approach used in this work in terms of kernel 

size, the overall classification performance of the 

proposed model improved compared to [5,15] due to 

the use of the novel weighted mechanism. 

 

Observation from Table 4 reveals that, despite having 

higher accuracy in normal (N) beats, the model from 

Ma et al. [22] failed to attain better accuracy in all 

abnormal arrhythmia beats when compared to the 

proposed model. But, in case of Q type abnormal 

beats from Pandey and Janghel [2] has an accuracy of 

just 0.01 higher than our model. However, the class-

wise accuracy of the remaining four beats, as well as 

the overall accuracy of Pandey and Janghel [2], is 

lower than model proposed in this study. This 

demonstrates that the novel weighted mechanism 

enhances or achieve comparable cardiac 

classification accuracy than existing methods 

especially in case of abnormal beats. 

 

Yang et al. [32] classified AAMI beats without using 

any class-balancing mechanisms. They achieved very 

low sensitivities of 59.10% and 41.46% for the two 

minority classes F and S, respectively. But, Ma et al. 

[22] obtained high sensitivities of 99.42% and 100% 

for the two minority classes F and S, respectively. 

They used GAN to artificially generate almost 

identical beats from existing minority beats and 

added them to the data set to address the issue of 

class imbalance. The training and testing sets derived 

from this enlarged data set may contain nearly 

identical or duplicate beats, implying that the trained 

model is already aware of minority class test beats, 

and thus the results may be biased. This suggests that 

it might not be an effective strategy as compared to 

our approach. The authors [2, 5, 18] used the 

SMOTE technique to produce synthetic beats and 

balance the classes in the AAMI dataset before 

performing the classification. However, augmenting 

synthetic data is not the right approach because it not 

only increases the training time but also produces 

data that may not be realistic. Therefore, we 

performed ECG beat classification using a novel 

weighted approach to balance the classes in the 

AAMI dataset without creating synthetic beats. The 

results in Table 4 proved that our approach achieved 

better or very close results than existing methods. 

Even though overall results of this work are 

comparable, it is not possible to obtain better 

sensitivity as compared to the Ma et al.  [22].  

 

Finally, when the four evaluation metric values for all 

five categories of beats are considered, it can be 

stated that the 1D-CNN model proposed in this study 

matches or outperforms previous approaches. 

Furthermore, the model can be used directly on raw 

ECG signals without using a noise filter. The 

performance of the proposed model in real-time 

depends on accurate detection of the R-peak position. 

As the Pan-Tompkins algorithm [38] can detect the 

R-peak position with an accuracy of 99.3%, with the 

help of it, the R peak can be detected to prepare 2-

second ECG segments which act as input to the 

proposed model. Therefore, the approach proposed in 

this study can be implemented to diagnose cardiac 

arrhythmia in real-time.  

 

The strengths of our approach in obtaining better 

results compared to those of state-of-the-art methods 

are summarized below. 

 A novel weighted approach was used to balance 

the classes in the dataset instead of using synthetic 

data or oversampling technique. 

 The proposed model is fully automatic; hence it 

does not need separate feature extraction and 

classification methods. 

 Early stopping technique and an API called 

“ModelCheckpoint” from Keras are used to choose 

the best trained model to evaluate the test dataset. 

 

5.1Limitations 

Even though the proposed 1D-CNN model results 

were better than those of existing methods, a few of 

the limitations of our approach are as follows: 

 The classification work was carried out only 

according to class-oriented beats. However, 

subject-oriented beat classification was not 

performed. 
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 An ECG segment of duration 2-seconds was 

chosen to perform beat classification. The effect of 

segments with duration of 3 or 5-seconds or more 

was not investigated. 

 The raw ECG signals were used in this study 

without filtering any noise. The effect of noise-

filtered signals on the proposed weighted CNN 

model has not yet been investigated. 

 

In future work, the aforementioned tasks will be 

carried out, and their results will be compared with 

the results of this work. Moreover, we can investigate 

the combination of CNN with other traditional 

machine learning algorithms for classifying the 

arrhythmia beats. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion 
In this work, a 9-layer 1D-CNN model is developed 

with a novel weighted approach to improve the 

AAMI recommended arrhythmia beat classification 

performance compared to existing 1D-CNN models. 

A set of 2-second ECG segments created from raw 

ECG signals collected from the MITBIH arrhythmia 

database was used as the input. The proposed model 

achieved an overall sensitivity of 94.35%, precision 

of 94.02%, specificity of 99.5%, and accuracy of 

99.65%. Except for the F-category beat sensitivity 

and precision, the proposed approach enhanced or 

reached very close class-wise and overall sensitivity, 

precision, specificity, and accuracy when compared 

to existing 1D-CNN models. In future work, a hybrid 

model that combines CNN with other classic machine 

learning algorithms, such as decision tree, random 

forest, and SVM needs to be investigated to further 

enhance the classification performance of arrhythmia 

beats according to the AAMI recommendations. 
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Appendix I 
S. No. Abbreviation  Description 

1 1D-CNN 
One-Dimensional Convolutional 
Neural Network  

2 2D-CNN 
Two-Dimensional Convolutional 

Neural Network  

3 AAMI 
Association for Advancement of 
Medical Instrumentation 

4 API Application Programming Interface 

5 BiLSTM 
Bidirectional Long Short-Term 

Memory 

6 CNN Convolutional Neural Network  

7 CVD Cardiovascular Disease  

8 DWT Discrete Wavelet Transform 

9 ECG Electrocardiogram 

10 ELP ECG Language Processing  

11 F Fusion 

12 FN False Negative 

13 FP False Positive 

14 GAN Generative Adversarial Networks  

15 GB Gigabyte 

16 GPU Graphics Processing Unit 

17 GRU Gated Recurrent Unit 

18 KNN k-nearest neighbours 

19 LSTM Long Short-Term Memory 

20 MITBIH 
Massachusetts Institute of 

Technology-Beth Israel Hospital 

21 N Non-ectopic 

22 PCA Principal Component Analysis 

23 Q Unknown 

24 RAM Random Access Memory 

25 ResNet Residual Network 

26 RNN Recurrent Neural Network 

27 S Supraventricular Ectopic 

28 SMOTE 
Synthetic Minority Over-Sampling 

Technique 

29 SVM Support Vector Machine 

30 TF Time–Frequency 

31 TN True Negative 

32 TP True Positive 

33 V Ventricular Ectopic 

34 VGGNet Visual Geometry Group Network 

35 WFDB Waveform Database 

 

 


