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1.Introduction 
Human activity recognition (HAR) is an emerging 

area of research that is applicable in several fields 

such as health care, security, smart homes, fitness 

assessment, sports competition and assisted living. 

HAR is performed by acquiring data from wearable 

sensors and external sensors like cameras, pressure 

sensors, and video recorders. Vision-based HAR 

plays an active role in the detection of suspicious 

activity and events in video surveillance. The 

requirement of computationally expensive image and 

video analytics, expensive hardware, and lack of 

portability are the main limitations of vision-based 

HAR [1].   

 
*Author for correspondence 

HAR system using wearable sensors overcomes these 

limitations. The contextual information required for 

HAR can be inferred using the raw data collected 

from various heterogeneous sensors which are placed 

at different positions on the human body and the 

sensors available in smartphones [2]. There are a 

couple of challenges associated with the processing 

of raw data obtained from different sensors. The first 

and foremost challenge is to devise a method for 

creating a discriminative feature space using the data 

gathered from the sensors.  Due to its importance, 

many features engineering schemes have been 

proposed with the ultimate aim of improving the 

discriminatory function and consequently the 

accuracy of HAR [3]. The process of feature 

extraction involves the acquisition of signals from 
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various sensors, processing them to extract data, 

segmenting the data, and determining the relevant 

features. The feature selection process is necessary in 

order to reduce the high dimensionality of data and 

provide feasible feature sets to enable activity 

classification easily.  Capella et al. [3] have proposed 

Relief-F a fast correlation-based filter combined with 

a correlation-based feature selection method to 

address this issue. The engineered feature subsets 

were evaluated using naïve Bayes (NB), support 

vector machine (SVM), j48 decision tree classifiers. 

Another approach to reducing dimensionality is to 

employ principal component analysis (PCA) [4]. 

Unfortunately, PCA performs poorly, if input data is 

not normalized correctly, causing difficulty in 

accurate activity recognition. Researchers proposed 

an empirical cumulative distribution function (ECDF) 

to address the drawback of PCA. ECDF is an 

approach that has been proposed for feature 

representation that preserves structural information of 

features irrespective of the absolute feature range 

[3−5]. A major challenge is in evolving a method for 

synergistically combining the features from the 

multiple feature spaces in order to evolve one feature 

set which can consistently yield results of high 

accuracy. To address this challenge, researchers, such 

as in [6], have designed an approach to generate a 

unique set from the multiple set of features extracted 

from modality, position, and feature level data sets. 

 

In the proposed work, the University of California, 

Irvine (UCI) HAR dataset is used. The dataset 

consists of a feature vector of length 561 attributes 

along with frequency and time domain variables with 

the respective class label of an activity.  The t-

Distributed stochastic neighbor embedding (t-SNE) 

method is used for feature representation and the 

results of t-SNE are compared with the results of 

PCA based feature learning method. Machine 

learning (ML) and deep learning (DL) algorithms are 

used for the classification of human activities. 

 

Significant contributions and findings of the 

proposed work are as follows: 

1. Analysis of PCA and t-SNE for feature reduction 

and visualization.  

2. Evolution of a customized 1D-CNN for sensor-

based HAR. 

3. Performance analysis of ML algorithms like radial 

bias function (RBF) kernel-based SVM and 

random forest (RF) classifier for HAR on a UCI-

HAR Dataset. 

4. Performance analysis of different 1D-CNN 

architecture for HAR on a UCI-HAR dataset by 

varying the parameters of CNN like its activation 

function, pooling function, and dropout 

percentage. 

 

The rest of this article is arranged as follows: 

Section 2 Literature survey:  It briefs about the state 

of art ML and DL techniques employed to 

accomplish HAR. Section 3 Materials and Methods: 

It describes dimensionality reduction methods, 

namely PCA and t-SNE; ML approaches and 

customized 1D-convolutional neural network models 

for HAR. Section 4 Experimental Results and 

Analysis: This section provides experimental results 

of the aforementioned ML and customized 1D-

convolutional neural network models on a UCI-HAR 

benchmark datasets. 

 

2.Literature survey  
People have recognized the need for assessing their 

lifestyles and changing them as required in order to 

improve their quality of life. In this context, HAR 

plays a significant role in creating an accurate profile 

of the person based on which his lifestyle can be 

assessed and due adjustments can be done.  HAR 

monitors the various activities of people using a wide 

range of hardware sensors, processing elements, and 

software components. These systems have evolved 

over a period of time incorporating more facilities 

and functionalities [7]. HAR plays a major role in 

assessing and improving the quality of life in both 

ambients assisted living (AAL) and activities of daily 

living (ADL) functions.  The main objective of HAR 

with respect to the ADL is to recognize human 

activities by developing predictive models which 

assist in the classification of an individual‟s behavior 

as either normal or abnormal [8]. 

 

HAR can be accomplished by using a couple of 

approaches, namely manual feature extraction using 

handcrafted features combined with ML, and 

automatic feature extraction using DL techniques [9]. 

 

Ahmed et al. [10] have proposed an efficient and 

robust feature extraction scheme for processing 

sensor data to perform HAR. Researchers have 

employed enveloped power spectrum (EPS) for 

feature extraction. The feature size is reduced in size 

to a minimal set of discriminants using linear 

discriminant analysis (LDA). The reduced feature set 

based scheme was trained by using a multi-class 

support vector machine (MCSVM) on a UCI-HAR 

and DU-MD benchmark datasets. It was observed 

that an accuracy of 98.67% and 100% of UCI-HAR 

and DU-MD datasets respectively, was achieved. 
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Irvine et al. [11], proposed a neural network 

ensemble method for data-driven HAR, where human 

activities are identified as belonging to one of the 

four groups (models) namely morning, afternoon, 

evening, and miscellaneous (mixed model), and 

labelled accordingly. Each model is trained 

separately by a multi-layer perceptron (MLP) as a 

base classifier. The results of all MLP base classifiers 

are fused and subsequently, conflicts if any are 

resolved. The dataset for this research was created in 

UJAmI Smart Lab a set of binary sensors.  

 

A comprehensive study has been carried out on 

various approaches for HAR, a few of them are 

summarized in Table 1 [12]. 

 

 

Table 1 Different approaches for HAR 

Approaches for HAR Types of Sensors & Purpose Advantages Limitations 

Computer Vision Kinect sensors [13] – Identification 

of human activities based on the 

skeleton data extracted from the 

human body. 

Provides good skeletal 

information for HAR. 

Does not permit excessive 

mobility 

RFID Based [14] RFID – real-time object 

localization and then determining 

their movements and interactions 

Identification of actions like 

making a sandwich, preparing 

coffee or tea, fetching a bowl of 

cereal 

Capable of recognizing only a 

limited number of actions.  

Motion-Based 

approach [12] 

 Accelerometer - senses the 

acceleration of the body in 3D (X, 

Y, and Z rotate). Used for 

estimating the rate of increase in 

speed to detect a free-fall 

condition.  

Better in terms of mobility and 

simplicity. 

Various kinds of noise in the 

data collected by wearable 

sensors complicate the task of 

activity classification [15]. 

 

HAR using ML and DL techniques has been the 

focus of a number of research groups in the recent 

past.  Significant results of a selected few of them are 

summarized in this paper.  

 

Anguitia et al. [16] focuses on the identification of 

movement of a person using sensors embedded in 

smartphones.  

 

Le and Van [17] used naïve Bayesian (NB) and 

Decision tree classifiers to train time and frequency 

domain features for HAR. Motion-based activities 

like walking, jumping, and running has been detected 

and classified using NB and k-nearest neighbours (k-

NN) [18].  

 

Fazli et al. [19] proposed a hierarchical classification 

system to classify human activities based on a 

different level of abstraction using neural networks.  

In this work, activities are mainly categorized into 

flat and hierarchical activities. Hierarchical activities 

are initially classified into stationary and non-

stationary in the first phase and deeper analysis in the 

second phase provides the final label of the activity. 

 

De et al. [20] evaluated the accuracy provided by five 

HAR classification techniques. For this evaluation, 

input signals were acquired using the MTx miniature 

magnetic and inertial measurement unit (MIMU) 

sensor manufactured by Xsens Technologies. A 5-s 

sliding window with no overlap was used to segment 

the input signal. Twenty-one-time domain, three 

frequency domain, and fourteen time-frequency 

domain features were extracted for each window. The 

evaluation showed that the result of the k-NN method 

had an accuracy of 97%. This outperformed 

feedforward neural network (FNN) (95.8%), SVM 

(96.6%), NB (96.5%), and decision tree (91%) for 

classification of eight activities. Such ML algorithms 

depend on handcrafted features. As there might be 

considerable overlap and hence a lower degree of 

discrimination in handcrafted features the ML 

algorithms may fail to classify various activities 

accurately.  The design of highly discriminatory 

handcrafted features relies on the expertise of a high 

order and the typical techniques used to aid in 

handcrafting are: assessing the statistics of raw data, 

transform coding, and symbolic representation [21]. 

 

The critical issue of requiring a high degree of 

expertise for designing handcrafted feature sets can 

be overcome by using a CNN for feature extraction. 

Such features are referred to as black box features 

[6].  

 

Ignatov [22] proposed an online HAR with a user-

independent deep learning approach. The authors 

used both statistical features and local features 
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extracted by CNN. The experiment was conducted on 

the wireless sensor data mining (WISDM) and UCI 

datasets. 

 

Cho and Yoon [23], proposed a test data sharpening 

method along with divide and conquer based 1D-

CNN for HAR. The exercise was conducted using the 

OPPORTUNITY and UCI HAR datasets and as 

expected the accuracy of the 1D CNN with test 

sharpening was found to be better than 1D CNN 

without test sharpening.  

 

Avilés-Cruz et al. [24] proposed a novel framework 

for performing HAR using feature-fusion-based 

multi-CNN. The framework consists of three parallel 

CNNs which consider the filtered image using the 

fine-CNN, medium-CNN, and coarse CNN to extract 

local features independently. Subsequently, the three 

sets of features are fused to form one holistic picture 

for the classification of perceived Human activities.    

 

HAR is a challenging task due to the issues like 

significant variations in each of the actions, the 

resemblance between different actions, the presence 

of a large percentage of the Null class, and long 

computation time. To alleviate some of these 

problems recent research work has focused on 

deriving systematic feature set representations and 

efficient classification techniques. 

 

Ordóñez and Roggen [25] have proposed a hybrid 

approach combining CNN and long short-term 

memory (LSTM) to address complications involved 

in sequential HAR and have achieved a high degree 

of precision. However, the efficiency of this hybrid 

approach is very poor and it rarely satisfies the real-

time requirements. This low efficiency has been 

improved to some extent by integrating of extreme 

learning machine (ELM) into the CNN-LSTM [21]. 

 

The CNN-GRU is another hybrid deep learning 

scheme proposed by [26] for classifying both simple 

and complex human activities contained in the 

WISDM dataset and it has achieved an accuracy of 

96.54%.  

 

Uddin and Soylu [27] have applied HAR on 

healthcare datasets. They proposed a LSTM based 

deep neural structured learning (NSL) scheme for 

activity modeling and obtained an accuracy of 99% 

on the MHEALTH dataset.  

 

Ye et al. [28] have proposed a hybrid approach 

combining deep learning with micro-electro-

mechanical system (MEMS) based sensors for HAR. 

In this study, researchers designed LSTM and CNN 

for smartphone posture recognition, pedestrian 

navigation, and real-time pedestrian activity 

recognition and obtained comparatively better 

accuracy than that obtained with traditional ML 

algorithms.  

 

Gao et al. [29] proposed a multi-branch CNN, which 

utilizes a selective kernel convolutional mechanism 

for HAR. The selective kernel convolutional has been 

evaluated on benchmark datasets like UCI-HAR, 

PAMAP2, UNIMIB SHAR, WISDM, and 

OPPORTUNITY. Accuracy improvements of the 

order of 0.23%, 0.80%, 0.71%, and 0.31%, while 

processing UCI-HAR, UNIMIB SHAR, WISDOM, 

and OPPORTUNITY dataset respectively.  

 

Usually, deep neural networks and CNN are trained 

with a global loss. Backward locking precludes 

memory reuse, which is a significant constraint for 

wearable activity recognition. To overcome this 

issue, the researcher of [30] proposed the Layer-wise 

CNN architecture with local loss and the architecture 

has been evaluated on WISDM, OPPORTUNITY, 

PAMAP2, UCI-HAR, and UniMib-SHAR datasets 

and obtained comparatively better results than the 

existing methods.  

 

The performance of the CNN has been improved by 

an ensemble approach. 

 

Mukherjee et al. [31] proposed an ensemble classifier 

called EnsemConvNet by combining three CNN-Net, 

Encoded-Net, and CNN-LSTM. 

  

Upon the comprehensive study on the literature of 

HAR, it has been observed that ML algorithms 

greatly depend on handcrafted features which require 

a high degree of expertise in the domain to 

successfully build the HAR system. This limitation 

has been overcome by adopting deep learning 

techniques. The research on the deep learning CNN 

approach has more scope of the application of HAR.  

Many researchers have proposed CNN architecture 

which is complex in nature and ensemble. In this 

study, we are proposing the simple and yet effective 

customized 1-D CNN architecture and finetuning it 

by tuning the CNN parameters to accomplish the 

HAR task on the UCI-HAR benchmark dataset. 

 

3.Materials and methods  
On the comprehensive study of the literature research 

papers, it has been observed that RF [1, 13] and SVM 
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[10, 20, 32] algorithms comparatively outperform 

other machine learning algorithms for HAR on most 

of the benchmark datasets, hence these algorithms are 

employed in this work to evaluate HAR on the UCI-

HAR dataset.  

 

 

The methodology followed in this paper is outlined in 

Figure 1. This work is focused on the evaluation of 

traditional classification algorithms namely, RBF 

kernel-based SVM and RF, and a DL approach 

namely, 1-D CNN for HAR on the UCI-HAR dataset. 

Figure 2 depicts the comprehensive workflow of the 

proposed system. 

 

 
Figure 1 Workflow of proposed system 

 

3.1Input-UCI-HAR dataset 

The UCI-HAR dataset was created by experimenting 

on 30 individuals who were in the age range of 19-48 

years [16]. Each individual was asked to wear a 

smartphone and was asked to perform activities like 

walking, climbing down the stairs, climbing up the 

stairs, standing, sitting, and lying down. The data is 

periodically gathered from the accelerometer and 

gyroscope sensors embedded in the smartphone. 

Noise filters were applied to preprocess the sensor 

signals. Sensor signals were sampled by using fixed-

width sliding windows of 2.56 sec with a 50% 

overlap. Each record in the dataset contains the 

following information: 

 

“total acceleration, estimated body acceleration, 

triaxial angular velocity from the gyroscope, a 561-

feature vector with time stamp, frequency domain 

variables, its activity label, and an identifier of the 

subject who was the participant in the experimented. 

The source link of the dataset is 

https://archive.ics.uci.edu/ml/datasets/human+activity

+recognition+using+smartphones#”. 

 

3.2Data cleaning 

The data cleaning has been conducted on the dataset 

by checking for duplicate values, null values, and 

data balance of data corresponding to each activity. 

3.3Data reduction 

Data reduction has been performed by using popular 

data reduction techniques such as PCA [4] and t-

SNE. PCA is a linear data reduction algorithm that 

can be used to diminish the dimensions of the 

original features to extract optimal features. PCA is 

an unsupervised method (data without labeling), 

which employs correlation between features to 

recognize the patterns from the data. The purpose of 

using PCA is to produce a new subspace of features 

with a lesser dimension than that of the original 

feature set by preserving the significant features in 

the dataset [33]. The features representing the 

original data set are translated to the principal 

components that are linear combinations of the 

existing features. The first principal component is the 

feature that causes the greatest variance and the 

feature with the second-highest variance is the second 

principal component and so on. Steps involved in the 

PCA data reduction method are summarized in [33]. 

However, in case a non-linear high dimension feature 

dataset is needed to model the data, then modeling it 

using parameters determined by conducting PCA on 

the data set will generate a very bad model and will 

result in less accurate recognition results. This 

limitation can be overcome by performing data 

reduction using the t-SNE data reduction 

methodology. 

 

 t-SNE is presented by Van et al. [34]. It is a non-

linear method for dimensionality reduction and 

visualization of data. In contrast to PCA, it is based 

on probability and it retains only local similarities 

whereas PCA aims to preserve large pair distances to 

maximize variance. On performing t-SNE on the 

UCI-HAR dataset, the data is clustered in such a way 

that each cluster is formed by grouping similar data 

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
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from disparate data, the resultant dataset will be 

simpler to analyze than the original dataset. The 

working of the t-SNE algorithm depends on a couple 

of parameters namely: (i) perplexity: denotes the 

number of neighbors of any data-point in high 

dimensional space, (ii) the number of iterations.   The 

steps involved in the t-SNE algorithm are as follows 

[34]: 

 

Algorithm: t-SNE algorithm  
Input: Dataset:  D= {d1, d2,…dn} 

Parameters: Perplexity, No. of iterations, momentum (t), 

and learning rate () 

Output: Data representation in low dimensional space S(0) 

={s1,s2,...,sn} 

Start 

Step 1: Calculate pairwise similarity measures in high 

dimensional space using Equation 1 and 2. 

     
          

  
     (1) 

Where,                                                                                         

     
     ‖     ‖

 
    

 

∑       ‖     ‖
     

 
   

   (2) 

Where σi is the variance of the Gaussian that is centered on 

data point xi. 

Step 2: Sample the preliminary solution S(0) ={s1,s2,...,sn} 

from N (0,10−4I) 

Step 3: Repeat until till reaches the maximum number of 

iterations. 

a. Calculate low-dimensional similarity measure qij 

using Equation 3. 

        
   ‖     ‖

 
   

∑    ‖     ‖
    

   
    (3) 

b. Calculate gradient using Equation 4 and 5.  
  

   
  ∑                    ‖     ‖

 
   

   

                                                              (4)                  

Set   

             
  

  
                         

     (5) 

end 

end 

 

In the proposed work, t-SNE has been applied to the 

dataset, and results are analyzed by varying its 

parameters like the number of iterations and 

perplexity factor. 
 

 
Figure 2 Comprehensive workflow of proposed system 
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3.4Machine learning algorithms 

Plenty of ML algorithms have been proposed as 

solutions for the classification of human activities. 

Important among them are SVM [1, 4, 5, 15, 35 and 

36], decision tree and its variations [1, 4, 17 and 36], 

k-NN [1−5] [15, 17, 18 and 36], MLP [1, 5 and 12], 

NB [1, 4, 21, 14, 18 and 36], RF [1, 15]. RBF kernel-

based SVM grid search and RF algorithms are used 

in the proposed work for activity recognition.  RBF 

kernel-based SVM is a classifier for non-linearly 

separable data, which uses the RBF as the kernel 

function. The optimum hyperplane can be determined 

by the vector W in a nonlinear space, which reduces 

the function given in Equation 6. [37].  

       
 

 
‖ ‖   ∑   

 
     (6) 

 

Where ξ represents the slack variable and C 

represents the cost of misclassification. The 

representation of the kernel function is given by 

Equation 7. 

 (     )         ‖     ‖
 
   (7) 

The selection of optimal parameters is a challenging 

task in SVM, which can be achieved by using the 

grid search SVM. In the case of RBF kernel-based 

SVM, two parameters (C andγ) can be optimized 

using grid search. 

 

Another ML algorithm that is used in the proposed 

work is RF Algorithm.  It is an ensemble tree-based 

learning algorithm. In this, a cluster of decision trees 

from an arbitrarily selected subset of the training set 

is created. This is used to classify and label the object 

by taking aggregates of votes from various decision 

trees.  

The flow of the SVM and RF algorithm is 

summarized in Figure 2.  

 

3.5Customized 1D-convolutional neural network 

Customized 1D CNN is a DL algorithm that has 

overcome the requirement of handcrafted feature 

extraction. Proposed work employed 1-D CNN to 

accomplish the task of HAR using the UCI-HAR 

dataset. 1D CNN is used for the recognition of both 

static activities (sitting, lying, and standing) and 

dynamic activities (climbing stairs, walking, and 

descending stairs). Figure 3 depicts the architecture 

of the CNN model employed to train both static and 

dynamic activities. 

 

 
Figure 3 Architecture of customized 1D- convolutional neural network 

 

As shown in Figure 3, 1-dimensional sensor data is 

passed through the two convolutional layers followed 

by the activation function. The convolutional layer is 

solely responsible for the feature extraction. Features 

are computed by performing the convolutional 

operations on input data using 1-dimensional kernels 

(filters). 

 

The nonlinear activation functions like Rectified 

Linear Unit (ReLu) or Leaky Relu functions are 

applied to the resultant features obtained by the 

convolutional layer to make features highly 

nonlinear. To reduce the dimensionality, down 

sampling has been performed on the feature matrix 

by using average pooling and max pooling. The 

resultant features are flattened into a vector and it is 

considered as trainable learning which will be given 

as input to the fully connected network. The 

commonly used approach for the fully connected 

network is MLP. 

 

4.Experimental results and analysis 
4.1Data cleaning 

UCI-HAR dataset does not contain duplicates and 

null values. Data distribution for all six classes is 
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almost balanced. Figure 4 depicts the data 

distribution for all six classes. 

 

 
Figure 4 Data points distribution in each class 

 

4.2Data reduction 

PCA and t-SNE methods are used for dimension 

reduction of data. PCA has been applied to the 

dataset with 2 principal components (PC), the 

outcome of PCA is depicted in Figure 5 which 

provides the visualization of data after reducing it to 

2 principal components. It can be observed that it has 

failed to cluster similar class data in some cases. The 

x and y-axis of the graph represent PC1 and PC2 

respectively. 

 

 
Figure 5 Data reduction using PCA with 2 

components PC1 and PC2 

 

To overcome the limitation of PCA, t-SNE has been 

used for data reduction and visualization. Figure 6 

depicts the visualization results of t-SNE with 

perplexities values of 10, 20, 30, 40, and 50 over 

1000 and 2000 iterations respectively. P denotes the 

perplexity value and N represents the number of 

iterations. The results show that the t-SNE algorithm 

generates robust results in a perplexity value of 50 

over 1000 iterations. Figure 6 (i) depicts the clear 

separation of static and dynamic activities by forming 

three clusters such that cluster-1 represents the 

standing and sitting postures, while cluster-2 

represents the activities for laying where both clusters 

1 and 2 represents static activities. Cluster-3 

represents all activities of walking such as walking, 

walking_upstairs, and walking_downstairs. 

 

4.3RBF-Kernel-based support vector machine 

grid search approach 

The proposed work employed the RBF kernel-based 

SVM using the grid search approach to optimize the 

parameter values of SVM.  In this experiment, the 

RBF kernel is used with parameter C set iteratively to 

2,6,10 and  set to 0.0065123, 0.125, 2.  Figure 7 

depicts the normalized confusion matrix of kernel-

based SVM. The classifier correctly classifies all 

instances of the class “LAYING”. The class 

“SITTING” has a total of 491instances, out of which 

439 instances are classified correctly, 50 instances 

are misclassified as “STANDING” and 2 instances 

are misclassified as “WALKING_UPSTAIRS”. Out 

of 532 instances of the class label “STANDING”, 

98% of (522 instances) total instances are classified 

correctly, remaining 2% of instances (10 instances) 

are misclassified as the class label “SITTING”. The 

class label “WALKING” has a total of 496 instances, 

out of which 2 and 5 instances are misclassified as 

class labels “WALKING_DOWNSTAIRS” and 

“WALKING_UPSTAIRS” respectively. Out of 420 

instances of the class “WALKING DOWNSTAIRS”, 

19 and 4 instances are misclassified as 

“WALKING_UPSTAIRS” and “WALKING” 

respectively. The last class 

“WALKING_UPSTAIRS” consists of 471 instances, 

out of which 17 instances are misclassified as label 

“WALKING” and the remaining 2 instances are 

misclassified as the class label “WALKING 

DOWNSTAIRS”. The observation of the confusion 

matrix shown in Figure 7, clearly depicts that the 

model is biased more on the “SITTING” class as 50 

instances are misclassified as “STANDING”. Figure 

8 depicts the classwise precision, recall, and F1-

score. Parameters C=10 and gamma=0.0065123 are 

the best estimators. 

 

4.4Random forest 

RF classifier has been applied on the dataset with 

following parameter values, 'n_estimators'= 

(10,201,20), max_depth=3,15,2. RF gives an 

accuracy of 90.83% with the best parameter 

estimators those are 'max_depth' =13 and 

„n_estimators'=70. Figure 9 depicts the normalized 

confusion matrix of the RF classifier. From Figure 9 

we can infer that the classifier correctly classifies all 

instances of the class “LAYING”. The class 
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“SITTING” has a total of 491instances, out of which 

443 instances are classified correctly, 48 instances 

are misclassified as “STANDING”. Out of 532 

instances of the class label “STANDING”, 491 

instances are classified correctly, remaining 41 

instances are misclassified as the class label 

“SITTING”. The class label “WALKING” has a total 

of 496 instances, out of which 10 and 6 instances are 

misclassified as the class label 

“WALKING_DOWNSTAIRS” and 

“WALKING_UPSTAIRS” respectively. Out of 420 

instances of the class “WALKING DOWNSTAIRS”, 

22 and 43 instances are misclassified as 

“WALKING” and “WALIKNG_UPSTARIS” 

respectively. The last class 

“WALKING_UPSTAIRS” consists of 471 instances, 

out of which 44 instances are misclassified as label 

“WALKING” and the remaining 7 instances are 

misclassified as the class label “WALKING 

DOWNSTAIRS”. The observation of the confusion 

matrix shown in Figure 9 clearly depicts that the 

model is biased more on the 

“WALKING_DOWNSTAIRS” class as 65 instances 

are misclassified.  Performance evaluation methods 

such as precision, recall, and f1-score are computed 

to analyze the performance of RF classifiers for each 

class of the dataset. Figure 10 depicts the classwise 

precision, recall, and F1-score. The average 

precision, recall, and f1-score of the RF model are 

0.93, 0.92, and 0.92 respectively.  Data reduction and 

visualization results of t-SNE are comparatively 

better than PCA as t-SNE handles non-linear data and 

are capable of preserving the local and global 

structure of data. 

 

From the analysis, we can conclude that precision, 

recall, and f1-score values of RBF-SVM are higher than 

the RF algorithm. Hence RBF-SVM algorithm with an 

accuracy of 96.23% outperform the RF algorithm which 

has an accuracy score of 92.5%. Compared to the RBF-

SVM, the RF classification model has more incorrect 

predictions in dynamic activities such as 

“WALKING_DOWNSTAIRS and 

WALKING_UPSTAIRS”. Hence, the RF classification 

model performs poorly when compared to the kernel-

based RBF SVM model.  

 

 

 
(a)                                          (b)                                            (c)                                           (d) 

 

 
      (e)                                             (f)                                            (g)                                           (h) 

 
(i)                                             (j) 

Figure 6(a-j) Visualization results of t-SNE [a: Demonstration of t-SNE result with    P =10   N =1000 b: Demonstration of t-

SNE results with P =10   N =2000 c: Demonstration of t-SNE result with P =20 N=1000 d: Demonstration of t-SNE result with P 

=20 N=2000 e: Demonstration of t-SNE result with P =30   N =1000 f: Demonstration of t-SNE result with P=30 N =2000 g: 
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Demonstration of t-SNE result with P=40   N =1000 h: Demonstration of t-SNE result with P=40   N=2000 i: Demonstration of t-

SNE result with P =50   N=1000 j: Demonstration of t-SNE result with P=50   N=2000] 

 

 
Figure 7 Normalized confusion matrix of RBF- SVM classifier 

 

 
Figure 8 Performance analysis of RBF-Kernel SVM classifier 

 

 
Figure 9 Normalized confusion matrix of RF classifier 
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Figure 10 Performance analysis of RF classifier 

 

4.5Activity recognition using customized 1D-CNN 

The CNN method has been employed for human 

activity detection on the UCI-HAR dataset using the 

architecture given in Figure 2 and Figure 3. An 

extensive experiment has been conducted by varying 

the parameters of CNN Architecture which is shown 

in Figure 3. The CNN architecture consists of two 

convolution layers with ReLu activation followed by 

drop out, pooling layer with average or max function, 

flattening, dense layer with ReLu or swish activation 

function, and last dense layer with softmax activation 

function for activity classification. The following are 

the training parameters used for training all 

architectures: Adam optimizer, number of epochs 30, 

and categorical cross-entropy (CCE) loss function.  

During the experimentation, there was an obvious 

increase in the validation loss of the model when the 

number of epochs was increased beyond the 30 

epochs which caused the model overfitting. The 

softmax activation function [38, 39] is employed in 

the last layer of the network to compute the 

probability distribution of the given data over „n‟ 

different classes. In the proposed work, we have 

considered six different activities, hence 6 classes are 

represented as 6 nodes in the output layer of the 

network. The softmax activation function is 

computed Equation 8. 

       ( ⃗ )  
   

∑     
   

             (8) 

 Where,  

 ⃗ is the input vector,     represents an exponential 

function of the input vector, n represents the number of 

classes and     represents the exponential function of 

the output vector.  

 

In HAR using CNN, the error of the current state must 

be estimated repeatedly. In order to accomplish this, 

the proposed system employs CCE to compute the loss 

/error of the model so that the weights can be updated 

accordingly to diminish the loss on subsequent 

evaluation.  CCE measures the loss between the 

probability distribution of the target class and the 

predicted distribution of the current data of the model 

[40, 41]. CCE also depends on the activation function 

which is used in the output layer of the network as 

shown in Figure 11 and CCE is computed using the 

relationship given in Equation 9. In this work, as 

softmax is used in the output layer the loss computed 

is also called softmax-loss.  

     ∑               
 
     (9)  

 

 
Figure 11Categorical cross-entropy 

 

The experiment has been carried out by varying the 

number of kernel functions in convolution layers, type 

of function for pooling, and type of activation function 

in the first dense layer of CNN. The detailed 

architectures of CNN used for the experiment are 

shown in Table 2.  

  

The input vector of size 561 was subjected to scaling 

and reduced the dimensionality to 128. The input 

vector comprising of 128 attributes is fed into the CNN 

for all architectures used in the proposed work. 

The architectures shown in Table 2 have been applied to 

the benchmark dataset UCI-HAR dataset. Figures 12 to 

16 depict the results of performance analysis of the 

above-shown architectures in terms of training and 
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validation accuracy; and training and validation loss. So, 

in this experimentation, the number of epochs is 

restricted to 30. The CNN architecture 1-4 produced 

very good training and validation accuracy, but the 

validation loss of those architectures was huge 

compared to the training loss.  Using architecture 1, we 

obtained the training accuracy of 99%, validation 

accuracy of 91.99%, 2.62% of training loss, and 

75.18% of validation loss. The validation loss is 

comparatively more than the training loss.  In the case 

of architecture 2, the training accuracy is 98.44%, 

validation accuracy is 90.26%, training loss is 4.3% 

and validation accuracy is 39.47%. Compared to 

architecture 1, architecture 2 shows slightly less 

training and validation accuracy, but shows a drastic 

reduction in validation loss.  

 

From architecture 2, the number of kernels in 

Conv1D_1 is reduced from 50 to 32 and trained the 

model. The results obtained after reducing the 

number of kernels is depicted in Figure 14. As 

observed in Figure 14, the training and validation 

accuracy is 99.05% and 90.09% respectively. The 

training and validation loss is 3.5% and 90.94%. 

Even though the training and validation accuracy is 

good, the validation loss of the network is very huge 

which leads to overfitting. Similarly, architecture 4 

obtained 99.6%, 92.43%, 1.21%, and 54.5% of 

training accuracy, validation accuracy, training loss, 

and validation loss respectively. Architecture 5 

obtained a very high validation loss as shown in 

Figure 16.  

 

From the above observation, we can conclude that 

both accuracy and loss of the architectures are 

increasing, the network is starting to overfit. A good 

prediction model should have less loss and high 

accuracy. In order to reduce the overfitting and 

validation loss of the network, architecture 5 is fine-

tuned by using regularization techniques. The 

regularization techniques help to reduce the 

overfitting by penalizing coefficients of the high 

value of the model. In the proposed work, we have 

applied the L2 regularization to the convolution layer 

1 and 2 of the network with weights of 0.1 and 0.06 

respectively. Figure 17 depicts the performance of 

the regularized CNN.  The regularized CNN obtained 

the training and validation accuracy of 99.58% and 

92.5% respectively. The training and validation loss 

is 7.2% and 28.3%. Figure 18 depicts the confusion 

matrix of the CNN model. 

 
Figure 12 Training accuracy, loss and validation 

accuracy and validation loss of CNN Architecture 1 

 

 
Figure 13 Training accuracy, loss and validation 

accuracy and validation loss of CNN Architecture 2 

 

 
Figure 14 Training accuracy, loss and validation 

accuracy and validation loss of CNN Architecture 3 
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Figure 15 Training accuracy, loss and validation 

accuracy and validation loss of CNN architecture 4 

 

 
Figure 16 training accuracy, loss and validation 

accuracy and validation loss of CNN architecture 5 

 

 
Figure 17 training accuracy, loss and validation 

accuracy and validation loss of regularized CNN 

architecture 

 
Figure 18 Confusion matrix of regularized CNN 

architecture 

  

The above architectures employed a swish activation 

function.  Swish is an activation function that was 

proposed by the authors of [42]. The activation 

functions of swish and Relu are shown in Equations 

(10) and (11) respectively. 

                  (10) 

),0max( xy 
    (11)

 

 

The swish activation function outperforms Relu because 

of its properties such as being unbounded above, 

bounded below, non-monotonic, and smooth function.  

Analysis depicted in Figure 17 shows that the accuracy 

of CNN Architecture with Swish Activation Function 

and regularization is comparatively better than other 

architectures mentioned in Figure 12 to Figure 16. 

Analysis of these experimental results shows that the 

Swish Activation Function gives better results than 

Relu. 

 

Table 3 summarizes the comparison of performance 

evaluation of state-of-art-techniques for HAR. The 

observation shown in Table 4, proves that the accuracy 

obtained from the proposed Regularized CNN 

outperformed the state-of-art-techniques discussed in 

the literature. 

 

A complete list of abbreviations is shown in Appendix I. 
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Table 4 Comparison of performance evaluation 

 Reference Method Accuracy 

[10] Multi-class Support Vector Machine 98.67% 

[22] CNN + stat. features, intervals of size 50 

CNN + stat. features, intervals of size 128 

94.35% 

97.63% 

[23] 1D-CNN 97.62% 

[30] CNN-Local Loss 96.90% 

[43] DRNN 96.50% 

[44] PCA + SVM 91.82% 

[45] Convolution Neural Network 94.79 % 

[46] Handcrafted features + RF 77.81% 

[47] Recurrent Neural Network 95.03% 

Proposed Method CNN (Swish Activation) Regularized   99.58% 

 

5.Conclusions 
The proposed work presented a performance analysis 

of RF and Kernel-based SVM machine learning 

algorithms and various models of CNN for HAR 

using PCA and t-SNE. t-SNE performed betters 

visualization results compared to PCA.  RF achieved 

92.5% accuracy for HAR on the UCI-HAR dataset 

and RBF–kernel-based SVM achieved higher 

accuracy than RF that is 96.23%. A detailed analysis 

has been carried out for the performance analysis of 

CNN with various parameters. The 1D CNN with 2 

convolution layers with 50 filters followed by ReLu, 

Max pooling, dense layer with Swish Activation 

function, and dense layer with softmax for 

classification has achieved very high accuracy of the 

order of the highest accuracy of 99.58%. The 

limitation of this work is that the 1D-CNN is 

evaluated only on the UCI-HAR dataset. This work 

can be further extended by evaluating the 1D-CNN 

on other HAR benchmark datasets. 
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Appendix I 
S. No. Abbreviation Description 

1 AAL Ambients Assisted Living 

2 ADL Activities of Daily Living 

3 CCE Categorical Cross-Entropy 

4 CNN Convolutional Neural Networks 

5 DL Deep Learning 

6 ECDF Empirical Cumulative 
Distribution Function 

7 ELM Extreme Learning Machine 

8 EPS Enveloped Power Spectrum 

9 FNN Feedforward Neural Network 

10 HAR Human Activity Recognition 

11 k-NN k-Nearest Neighbours 

12 LDA Linear Discriminant Analysis 

13 LSTM Long Short-Term Memory 

14 MC-SVM Multi-Class Support Vector 

Machine 

15 MEMS Micro-Electro-Mechanical 
System 

16 MIMU Miniature Inertial Measurement 

Unit 

17 ML Machine Learning 

18 MLP Multi-Layer Perceptron 

19 NB Naïve Bayes 

20 PC Principal Component 

21 PCA Principal Component Analysis 

22 RB Radial Bias Function 

23 ReLu Rectified Linear Unit 

24 RF Random Forest 

25 SVM Support Vector Machine 

26 t-SNE t-Distributed Stochastic 

Neighbour Embedding 

27 UCI-HAR UC Irvine HAR 

28 WISDM Wireless Sensor Data Mining 

 

 

 


