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1.Introduction 
Regression testing (RT) plays an essential role in the 

software development life cycle (SDLC), and it 

assists in validating the faults which are not identified 

in the existing software products [1]. These faults are 

identified when there are some variations in prior 

software products. The test case execution is a 

complex task where the evaluation of a subset (test 

case) over the testing process has to be concentrated 

by the upcoming researchers [2]. Various approaches 

prioritize, minimize, optimize, and select test cases; 

whereas other methods evaluate the group of test 

cases with the assistance of RT [3]. These approaches 

are listed as graph-based relations, greedy algorithms, 

fuzzy entropy, and capacity-based fault detection for 

selection, minimization, and optimization and so on 

[4]. The computation cost of executing the RT model 

is associated with the product size that needs 

validation, and more appropriate test cases have to be 

analyzed [5].  

 

 
*Author for correspondence 

The incremental and iterative model is considered 

during software development and short cycles. 

 

The complete test case execution is determined as an 

unnecessary trial over the provided amount of test 

cases (agility processing target is lost) [6]. It leads to 

the rise of soft computing techniques in coincidence 

with agile approaches to predict the test cases and 

fulfil the acceptable verification level over the 

software products. The outcomes of various studies 

specify the efficiency of alternative RT optimization 

for clustering the test cases based on the available 

characteristics, patterns, and criteria like test cases 

that predicts a similar set of faults from the open 

cluster [7]. For instance, specific strategies composed 

of various test profile execution, sampling, test run 

functionality, database access, function calls, filtering 

patterns, program partitioning, etc., are appropriate 

test cases for all clusters [8]. Moreover, the problem 

in handling these approaches is determined based on 

the cluster size and quality determination to balance 

the efficiency and cost of the model [9].  
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With the advancements in machine learning 

approach, cluster analysis is a method used for 

organizing and training the data based on the 

mathematical model of the application domain 

autonomously [10]. However, it is necessary to add 

information for data like cluster size and total clusters 

are formed, which causes the processing to be 

expensive and sometimes constraints [11]. However, 

a supervised learning-based cluster needs particular 

experimentation to group the information manually. 

The alternative process is to adopt an unsupervised 

clustering model where the probabilistic model 

determines the number of clusters. 

 

Traditionally, RT approaches are applied from 

extensive code perspectives, i.e., determination of 

software product with finite state machine (FSM), 

maintaining the database (DB) constant with 

alternative evolution. Moreover, with the software 

products and the DB access, two different database 

states are sensed concurrently (data and code state). 

Therefore, RT approaches need to be determined in 

two other aspects [12]. In the first case, the code state 

is defined as the labelled set with the memory 

location of individual data stored (code state). 

Moreover, in the alternative state, the database is 

organized based on various data models like the 

relational model [13]. Thus, the enormous data 

volume is influenced by single code instruction that 

exploits the characteristics of instruction nature over 

the software product components evaluated on DB 

respectively [14, 15]. Based on the review, it is 

known that test case prioritization (TCP) is not 

achieved efficiently and lacks a global solution, 

which is a significant research constraint. To handle 

this issue, this research aims to provide a novel meta-

heuristic optimization approach to enhance the 

prioritization process and attain both local and global 

solutions. Therefore, this work integrates both 

genetic algorithm (GA) and ant colony optimization 

(ACO) to enhance the prioritization process. In this 

research, an approach for analyzing the TCP with RT 

using ACO and an improved GA is proposed. The 

features of these two models are identifying the fault 

with the number of iterations, number of test cases, 

and the determination of path traversal efficiently. 

The empirical evaluation is conducted in the manual 

process to attain suitable outcomes to establish the 

trade-off of the proposed model with prevailing 

approaches. The TCP approach works effectually 

with the adoption of ACO and improved GA, 

respectively. The objective of this research with TCP 

and RT involves scheduling test cases for RT to 

enhance its effectiveness to fulfil specific 

performance. However, it is inefficient to re-execute 

all the available tests cases in RT based on the 

software modification. This challenge needs to be 

addressed using meta-heuristic optimization 

approaches like ACO and GA. Using ACO for TCP 

aims to increase the fault detection rate, and 

execution time is reduced with automated TCP 

compared to manual TCP in RT. Similarly, GA helps 

prioritize the test case with the statement coverage 

technique. Both the methods work effectively in the 

case of TCP in RT and intend to address the 

challenge with more significant effort.  

 

This document is further partitioned as section 2 

provides the detailed review analysis of RT and TCP 

approach. Section 3 provides the extensive analysis 

of TCP for RT using ACO and improved GA, 

respectively. Section 4 is numerical results and 

discussion to analyze faults, followed by the 

conclusion and future research direction in Section 5.   

 

2.Related work 
Recently, most of the TCP approaches have been 

used for code-based analysis. Mei et al. [15] executed 

various functional coverage and statement coverage 

models for TCP. Yoo et al. [16] adopted a cluster 

analysis model to specify multiple test cases. 

Marchetto et al. [17] anticipated a novel multi-

heuristic approach for TCP. This method establishes 

the link between the software artefacts and predicts 

the fault-prone region using the software artefacts. Di 

et al. [18] proposed a novel hyper-volume-based GA 

to deal with the test cases adopting various coverage 

criteria. The empirical study determines the 

functionality of hyper-volume GA as an efficient 

model when evaluated with five different approaches.  

Guo et al. [19] evaluated the statistical TCP model 

with a dynamical TCP approach. The experimental 

outcomes demonstrate 60 different java programs to 

project the statically designed model with better 

performance in an unexpected way for certain 

specific criteria. The provided measurements do not 

drastically influence the mutant's type and the 

number of mutants for effectual TCP. Laali et al. [20] 

adopted an online fault detection approach for test 

case sorting. Khatibsyarbini et al. [21] adopted the 

firefly approach for test case sorting using the 

similarity distance measure. The experimentation 

demonstrates that the anticipated firefly model 

performs superior functionality than the prevailing 

techniques.  

 

Jahan et al. [22] explained a semi-automatic risk-

based TCP method using functional invocation 
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relationship and software modification information. 

Solanki et al. [23] anticipate a model with the 

adoption of ACO for sorting the test cases with the 

nature of the ant colony-based food selection process.  

Similarly, a prioritization method attains the 

investigator's attraction for the past few decades. 

Kundu et al. [24] anticipates three diverse 

prioritization approaches with performance metrics 

that embrace edge and message weights. Kundu et al. 

[24] adopt information from various unified 

modeling language (UML) sequence diagrams to test 

cases. Kundu et al. [24] transformed the UML 

activity graph to control flow graph (CFG) for test 

case ranking. Kaur et al. [25] used the most effective 

industrial system as an experimental subject to study 

general approaches. Sharma and Singh [26] 

anticipated various TCP approaches using a powerful 

finite state machine. The empirical study shows that 

the proposed model can diminish the testing time 

contrary to the prevailing code-based model. Niu et 

al. [27] provided an extensive review of the ACO 

approach for sorting the model-based test cases. 

Conversely, Ye et al. [28] merged the selective 

approach and spread the count-based technique to 

employ test cases by scrutinizing ordering criteria. 

The integrated model performs superior functionality 

with a single system based on a finite decision model.  

 

Re-testing or RT model is essential to verify the 

evolution phase and software maintenance over the 

SDLC. It is performed to fulfil certain modifications 

that are not hampered by prevailing software 

versions, and a newer version of this model is known 

as backward compatibility. The testing process 

consumes half the cost used for the entire software 

development [28]. It is a highly time-consuming 

process and considered an expensive process. RT 

process is optimized in three different ways: 1) 

minimization (test cases), which reduces the test 

suites by avoiding the obsolete test cases and 

patterns; 2) selection (test cases) which chooses the 

test cases that are associated with specific criteria. 

For example, handles the updated region only; 3) 

prioritization (test cases) orders the available test case 

with specific properties which are highly ranked with 

test cases that are executed over the high 

prioritization model [29]. 

 

Both selection and minimization are determined as 

the truncated version of original test suites. At the 

same time, prioritization is considered re-ordered 

with various test case suites devoid of eliminating the 

test cases. However, in some cases, the test cases are 

not essential in specific versions; but it is helpful in 

the recent version of the provided software. 

Subsequently, the prioritization process is safer than 

the permanent removal process; TCP is a more 

reliable, secure, and cost-effective approach for the 

RT. Hence, the investigators need to concentrate on 

TCP rather than test-suite reduction or selection.  

 

The investigator extensively categorizes the TCP 

model into searching-based, fault-based, history-

based, requirements-based, code-coverage based 

models. When there is some source code availability, 

then the process of prioritization is based on test case 

ranking, which relies on the 

coverage/block/statement coverage model known as 

the code-coverage based prioritization method [29]. 

 

The requirement based prioritization uses customer 

requirements for test case analysis. The fault 

coverage-based prioritization method uses the test 

case based on faulty rate coverage. Other approaches 

like history-based prioritization utilize historical 

information regarding the software model. The 

search-based prioritization assists in determining the 

optimal ordering of diverse test cases by predicting 

the global space for multiple and single objective 

processes [30]. 

 

The investigators adopt various search-based models 

for TCP, for instance, hill climbing and the greedy 

algorithm. This research concentrates on performing 

RT using the meta-heuristic ACO and GA to adopt 

TCP. Table 1 depicts the comparison of various 

existing methods with their pros and cons. 

 

Based on all these analyses, it is observed that TCP 

helps the testers to predict the faults over the 

applications with high prioritization. However, the 

primary research challenge and constraints rely on 

the execution time. The execution time is higher 

while testing all the available cases for a specific 

application. The significant research gap is the lack 

of computational complexity and execution time 

which needs to be addressed. This research adopts 

ACO and GA to handle the issue and pretends to give 

better and feasible solutions to the existing research 

challenges. 
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Table 1 Comparison of various existing approaches 

S. No. Authors Methods Advantages Disadvantages 

1 Yoo et al. [16] Cluster analysis 
Validates various test 

cases 

It does not concentrate 

on prioritization 

2 Marchetto et al. [17] 
Models meta-heuristic 

optimization approach 
Concentrates on TCP 

Higher computational 

complexity and 

execution time 

3 Di et al. [18] Hyper-volume based GA 
Adopts various test 

coverage criteria 
Higher complexity 

4 Guo et al. [19] 
Statistical TCP model for 

dynamical analysis 

It uses 60 programs for 

analysis and gives 

unexpected results 

Complex computation 

and   

5 Laali et al. [20] Firefly approach for TCP 
Measures similarity 

distance 

RT is not performed and 

consumes more time for 

execution 

6 Khatibsyarbini et al. [21]  
Semi-automated risk-based 

TCP 

Considers functional 

invocation and software 

modification 

information 

Execution time is higher 

while handling the 

software modification 

information 

7 Solanki et al. [23] Adaptive ACO 
The higher fault 

detection rate 

But execution time is 

higher 

8 Kundu et al. [24] 
UML sequence diagram 

based TCP 

Measures edges and 

weights 

Reduced computational 

complexity 

No proper prioritization 

is done 

9 Sharma and Singh [26] 
The extreme finite state 

machine 
Reduce testing time 

Lack in the prioritization 

process 

10 Ye et al. [28] 
Integrated selective approach 

and count-based technique 

Designs finite decision 

model 
-- 

 

3.Methodology 

This section discusses the analysis of RT with TCP 

using meta-heuristic approaches. They are GA and 

ACO. The empirical research is done with manual 

computation, where the fault detection rate is 

considered the essential evaluation metric. Here, a 

test case in prioritized order using ACO and GA 

gives better results. ACO will find the best test cases 

with the maximum fault in minimum time. The 

proposed approach has been validated with a 

benchmark example. The result shows the effective 

test case has been selected with a higher score. 

Similarly, TCP is becoming a hot topic in software 

testing research. Combining GA with test-points 

coverage attains superior results in TCP, especially 

for functional testing. The hybrid model works well 

by handling the shortcomings of the other. 

Genetic algorithm (GA) 

The problem related to software testing is more 

complex and challenging to resolve efficiently using 

deterministic algorithms. This work adopts GA with 

an underlying principle: the individual over the 

population needs to fight for resources. The success 

of the individuals relies on the production of 

offspring and genes propagated to successive 

generations. The parent chromosomes mate together 

to alter the gene to produces the offspring, giving 

better fitness (parents). This process preserves the 

generation to form species, individuals and adapt to 

the provided environment [31−35].  

Test case prioritization (TCP) with GA 

The TCP is mapped to GA to specify the genetic 

information; chromosomes are considered the 

sequence of test cases. Therefore, chromosomes are 

identified using encoding permutation in which 

sequence numbers are allocated for all test cases. The 

process is initiated by forming random individuals 

(initial population). The population is given in fitness 

testing, which is evaluated with specific coverage 

criteria for prioritizing the test cases. The selection 

mechanism needs to choose the test cases, where the 

fitness is better than another model to generate 

successive generations. The best test suites are 

merged with a pair of mutation and cross-over 

operators to develop the most delicate offspring for 

consecutive generations. Similarly, the cross-over 

operator is the re-combination of two chromosomes 

that inherits the parent characteristics. It adopts cross-

over operators, as matched and ordered cross-over. In 

the former model, the crossover process is performed 

based on the position exchange indeed of sliding 

motion. In contrast, in the latter model, two positions 
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are randomly chosen with pre-defined locations. 

They are analyzed of the test cases left over of 

another parent to generate newer offspring. Mutation 

operators are utilized to preserve individual diversity 

in a successive generation. In the case of swap 

mutation, the positions are randomly chosen based on 

two positions, which are continued to a certain 

termination point. GA assists in predicting the 

optimal test case ordering [36−40]. It utilizes 

chromosomes' genetic information to help search the 

location of the most satisfactory solution over search 

space.  Various investigators adopt GA for TCP 

which tries to identify the potential of the GA. This 

model is extensively partitioned into single objective 

and multi-objective GA, respectively. Various 

researchers analyze the single objective constraints as 

it is a simple model. The multi-objective GA model 

holds two or more purposes during the test 

prioritization during a specific time. It is shown in 

Figure 1. 

 

 

 
Figure 1 GA process 
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Ant colony optimization (ACO) 
ACO is a swarm intelligence algorithm is constructed 

based on the characteristics of ant seeking food and 

individual population. Multiple investigators have 

designed various ACO models; however, all those 

models concentrate on the single-objective problem 

but lack multi-objective constraint concentration. 

This work intends to give a multi-objective ACO 

where the test cases are in sequence with the ant's 

path travelling from one place to another. It is known 

as a transition path. There are six different stages in 

this multi-objective algorithm. 

Initialization: The individuals are initialized with a 

random sequence with the available parameters of 

ACO, which is constructed with the best-so-far 

method by choosing the individuals (non-dominate 

information) where the pheromone needs to be built. 

Construction (individual): The ants need to select 

the appropriate test case using visiting point 

probability, and execution is redundant until all the 

test cases are visited. The sequences of test cases are 

modelled individually. The possibilities of selecting 

successive cases are represented as    
   determined as 

    ant (probability) moves from test case (   )  It 
is expressed as in Equation 1: 

   
   

{
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Here,     is transition weight (pheromone) for test 

cases (   ),     is the number of objectives (  
 ),    

  is heuristic information,     is the heuristic 

factor with pheromone information         handles 

the relative weight    
 , and   

  is set of test cases 

from ant     for all test cases      
 

Evaluation (individual): 

The fitness value is evaluated after constructing 

individual evaluation. 

Multi-objective (ranking): 

Here, Pareto non-dominant method is used where the 

individuals are ranked, and individuals with rank 

(high) are chosen as the best iteration. 

Individual set updation: 

Iteration (best) is utilized to evaluate individual sets, 

where the individual (best so far) is replaced while 

dominated by other individuals. At last, the best 

individuals are set as optimal individuals. 

Update pheromone: 

Pheromones are adopted to assist in searching the 

most proper direction in the front set and diminish the 

value on relative weaker individuals with fewer 

visited ants. Here, the pheromone values are reduced 

due to the evaporation rate. The pheromone values of 

individuals are increased to assistants for selecting 

the transitions, and the diminished transition values 

are to be visited. Pheromone updation leads the ant to 

choose the superior change, which is highly likely 

than superior paths in a successive generation. It is 

expressed in Equations 2 and 3: 

    (   )              (2) 

      ∑     
  

       (3) 

 

Here,     is the evaporation factor,     is the test case 

pheromone (   ) belongs to the individual 

(                  ),             respectively. 

The calculation is based on transition pheromone 

increment (   ), and     is number     non-

dominated individual,   is total amount of iteration 

(best). Therefore,      is equal to the total pheromone 

increment (iteration-best). In alliteration,     (various 

test cases) is computed to assistants in successive 

generations to determine superior transitions, and 

ants are facilitated to realize pheromone to fulfil 

essential information needs to be collected. It is 

explained in Algorithm 1. 

 

Algorithm 1: ACO algorithm 
1. Initialize the test criteria 

2. Fulfil the optimal set 

3. Initialize the ant individuals and set parameters 

4. Multi-objective ranking 

5. Model best set 

6. Set pheromone trials 

7. While   terminal conditions do 

8. Individual evaluation and construction 

9. Multi-objective ranking 

10. The model best iterative set 

11. Update pheromone and best set  

12. End while 

 

From  Figure 2, the pheromone update is shown 

using ACO. Here, five test cases are considered, 

where four individual test cases are in the front set. 

The steps are updated, and the results are presented 

separately. In step 1, the pheromone is updated where 

A-B-C-D-E is evaluated with test cases,  
               , respectively. The updated 

pheromone is given in Figure 3. The pheromones 

from transition test cases are provided, and the last 

key test case is updated. The updated pheromone is 

supplied as:                   , 

respectively.  
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Figure 2 ACO based test case prioritization 

 

Figure 3 depicts the flow diagram of the anticipated 

model, which includes three phases: initialization 

phase, pheromone update and solution construction 

phase. The fine-tuning processes of the ants are 

provided with the computation of heuristics of all 

candidates with ant edge computation. The solution 

phase provided a better fault rate prediction outcome 

than other approaches. 

 

Case study 

Let   be the number of a test suite,   be the number 

of faults identified, and execution time (ET) specifies 

the execution time of each test suite. With the initial 

random population,     ants are considered for 

initial foraging. The generated populated looked as 

upon as a matrix, and foremost, the matrix is sorted 

in ascending order based on the execution time of 

each test suite. Table 2 depicts the parental matrix of 

test cases and fault coverage. Here, F1, F2, F3, F4, 

F5, F6, F. F8, F9, F10 are the number of faults 

considered with the execution time. The test cases are 

ordered randomly over the table based on the 

execution time. The highlighted contents provide the 

fault over the test case. Table 3 is the Sorted matrix 

based on execution time. The primary research 

objective is the concentration towards the execution 

time, and the model consumes lesser execution time 

than other approaches. 
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Figure 3 Flow diagram of ACO model 

 

Table 2 Parental matrix of test cases and fault coverage 

Faults 

 

 

 

 

 

 

 

 

 

 

 

Test 

cases 

Test 

cases 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Execution time 

T7 *   *       1 

T8 * *     *  * * 2 

T5 *   *      * 21 

T12 *   * *     * 23 

T9 *          4 

T10 *     *     7 

T17    *      * 27 

T18   * *       29 

T11 *         * 9 

T6 *       * *  10 

T19    *    *  * 31 

T20    *      * 33 

T1 *         * 13 

T2 *   *       14 

T13    *       35 

T14    *      * 38 

T3 *  *       * 16 

T4 *   *       18 

T15    *       40 

T16 *   *      * 41 
* Specified fault 
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Table 3 Sorted matrix based of Table 2 on execution time [34] 

Faults 

 

 

 

 

 

 

 

 

 

 

 

Test 

cases 

Test 

cases 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Execution time 

T7 *          1 

T8 * *     *  * * 2 

T9 *          4 

T10 *     *     7 

T11 *         * 9 

T6 *       * *  10 

T1 *         * 13 

T2 *   *       14 

T3 *  *       * 16 

T4 *   *       18 

T5 *   *      * 21 

T12 *   * *     * 23 

T17    *      * 27 

T18   * *       29 

T19    *    *  * 31 

T20    *      * 33 

T13    *       35 

T14    *      * 38 

T15    *       40 

T16    *     * * 41 
* Specified fault 

 

First round of iteration 

The matrix is converted into a binary form with 1’s 

as the faults covered by the test cases and 0’s being 

the uncovered faults. Next follows the test case 

assignment and coverage test. 

 

Assigning test cases to ants - In this stage, the test 

cases are assigned to each ant. Every ant is given two 

test cases, each for N/4 number of ants in the 

sequential order. Now, half of the test cases are 

covered, and the remaining test cases are assigned to 

each and again from ant one in the same sequential 

order taking two test cases each. It will cover all the 

test cases. All ants are now ready for foraging with 4 

test cases each (See Figure 4).  

 

Fault coverage is checked to see if any of the 5 ants 

gives complete fault coverage. If achieved, then that 

ant provides the optimal solution. Else, the next 

round of iteration is started.  

 

Table 4 depicts the round 1 assignment of ants and 

test cases with the least execution time. The total 

execution time is measured in seconds. The least time 

is 47 seconds and 67 seconds, respectively. 

 

Table 4 Round I assigning ants and test cases with the least execution time 

Faults 

 

 

 

 

 

 

 

 

 

 

 

Test 

cases 

Test 

cases 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Execution 

time 

Assigned 

Ant 

Total 

ET 

T7 1 0 0 1 0 0 0 0 0 0 1 A1 47 

T8 1 1 0 0 0 0 1 0 1 1 2 A1 

T5 1 0 0 1 0 0 0 0 0 1 21 A1 

T12 1 0 0 1 1 0 0 0 0 1 23 A1 

T9 1 0 0 0 0 0 0 0 0 0 4 A2 67 

T10 1 0 0 0 0 1 0 0 0 0 7 A2 

T17 0 0 0 1 0 0 0 0 0 1 27 A2 

T18 0 0 1 1 0 0 0 0 0 0 29 A2 

T11 1 0 0 0 0 0 0 0 0 1 9 A3 83 

T6 1 0 0 0 0 0 0 1 1 0 10 A3 

T19 0 0 0 1 0 0 0 1 0 1 31 A3 

T20 0 0 0 1 0 0 0 0 0 1 33 A3 

T1 1 0 0 0 0 0 0 0 0 1 13 A4 100 
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Faults 

T2 1 0 0 1 0 0 0 0 0 0 14 A4 

T13 0 0 0 1 0 0 0 0 0 0 35 A4 

T14 0 0 0 1 0 0 0 0 0 1 38 A4 

T3 1 0 1 0 0 0 0 0 0 1 16 A5 115 

T4 1 0 0 1 0 0 0 0 0 0 18 A5 

T15 0 0 0 1 0 0 0 0 0 0 40 A5 

T16 1 0 0 1 0 0 0 0 1 1 41 A5 

 

 
Figure 4 First round of iteration 

 

Second round of iteration - procedure for selection 

and cross over 

The resultant test cases are Ta Tb TC TD and Tc Td 

TA TB. Assign the two consequential test cases to 

new ants A6 and A7. In this problem, ants A1 and A2 

have the least execution time. These ants are selected 

for the cross of the GA process (See Figure 5). 

 

Cross Over A1, A2 

A1 × A2 =  
    
     

×
     
      

 

 

The ants A1 and A2 are the ones with the least 

execution time. These ants are selected for the cross 

over GA process. These new combinations of test 

cases are assigned to new ants and in the existing 

data set. 

T7 T8 T17 T18 - A6 

T5 T12 T9 T10- A7 

 

Fault coverage -Full fault coverage is not achieved. 

Thus, moving to the next round. 

 

The third round of iteration 

Adding new test cases- Two more specific test cases 

are randomly added to the four existing test cases. 

Now each ant will have 6 test cases. The test cases 

are Ta Tb Tc TD TE TF and Td TeTf TA TB TC. 

The ants A1 and A2 are the ones with the least 

execution time. These ants are selected for the cross 

over the process of the GA (Figure 6). 

Cross Over A1, A2 

A1 x A2 = 
      
       

 ×
      
         

 

A8 = 
      
         

 

A9 =
      
       

 

 

Fault coverage -Full coverage of faults not achieved. 

Moving to next round. 
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Figure 5 Second round of iteration of selection and cross over 

 

 
Figure 6 Third round of iteration 
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The fourth round of iteration 

Adding new test cases- Two more specific test cases 

are randomly added to the 6 existing ones. Now each 

ant will have 8 test cases. The fault coverage is 

checked for every ant in the existing combination. 

The ant that satisfies full coverage of faults is taken 

as the optimum solution. Complete fault coverage is 

achieved at this point. 

 

4.Results and discussion 
The ant A8 has a full coverage of faults from round 

4. It is identified as the solution for the problem. The 

iteration stops here. The initial count of 20 test cases 

is minimized to 10 test cases. The optimum solution 

is T2 T6 T7 T8 T10 T12 T17 T18 T19. Figure 7 

depicts the ant’s traversal path. Based on the 

representation, the fault is plotted from       
                          The 

plan is provided in contrast to the ant's traversal path 

and the total number of faults. Figure 8 shows the 

TCP process of the non-prioritization approach, 

GA+ACO and the adaptive model, and the proposed 

model consumes less time for prioritization and 

offers superior performance. The numbers of 

iterations are shown in Figure 9. The number of 

iterations is evaluated here, and the comparison is 

made. Based on all these analyses, the anticipated 

model works more effectually than the other.  

 

 
Figure 7 Ant traversal path 

 

 
Figure 8 Test case prioritization 
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Figure 9 No. of iterations carried out 

  

The functionality of the proposed model is evaluated 

to diminish the test case suites and competency to 

identify faults during RT [32−36]. The following are 

metrics considered for evaluation. 

Reduction percentage: Assume     is the total 

number of test cases accessed over the database and 

    is the number of test cases chosen for regression. 

It is expressed as in Equation 4: 

    
    

 
       (4) 

 

Precision: Assume,     be set of test cases chosen 

from DB to reveal the faults where     is expressed 

using Equation 5: 

           
   

      (5) 

 

Recall: Assume,     is a set of test cases with faults 

where the metrics are expressed as in Equation 6: 

        
     

    
    (6) 

 

Fault detection: It is directly related to recall. 

Equation 6 is utilized to compute the fault detection 

ability of chosen test cases. 

F-measure: It integrates recall (R) and precision (P). 

It is expressed as in Equation 7: 

            
                

                
  (7) 

 

Figure 10 depicts the comparison of performance 

metrics like TR, recall, precision, F-measure with 10 

iterations. The recall value of proposed model is 

100%, precision value ranges from 8% to 29%, TR 

value ranges from 6.5%-80.8%, and the f-measure 

value ranges from 0.13 to 0.45 respectively. Here, 

total numbers of iterations are 10 with 100% recall 

for all the iterations; TR, precision and F1-measure 

changes for the provided iteration. The TR for all the 

10 iterations are 9.3%, 9.9%, 26.5%, 80.8%, 6.5%, 

26.8%, 18.8%, 6.5%, 9.9% and 9.3%. The precision 

values are 80%, 80%, 90%, 29%, 8%, 9%, 9%, 8%, 

8% and 8%. The F1-measure is 0.13, 0.14, 0.16, 0.45, 

0.13, 0.16, 0.15, 0.13, 0.14, and 0.13 respectively. 

 

Table 5 depicts the execution time in minutes. The 

test case ranges from           where the execution 

time is measured in milliseconds where the execution 

time for all these test cases are 13 ms, 14 ms, 16 ms, 

18 ms, 21 ms, 10 ms, 1 ms, 2 ms, 4 ms, 7 ms, 9 ms, 

23 ms, 35 ms, 38 ms, 40 ms, 41 ms, 27 ms, 29 ms, 31 

ms, and 33 ms respectively. Table 5 depicts the 

comparison of proposed and existing methods for 

mutant 1 to mutant 8, respectively. The proposed 

multi-objective GA with ACO model gives better 

outcomes with 94.5%, 94.8%, 93.8%, 92.5%, 95.8%, 

97.8%, 99.2%, and 93.5% respectively. Table 6 

compares proposed vs. existing approaches where 8 

mutants are considered and compared with existing 

approaches like convolutional GA, simulated 

annealing (SA), ACO and GA. The proposed model 

gives 94.5%, 94.8%, 93.8%, 92.5%, 95.8%, 97.8%, 

99.2% and 93.5% fault prediction rate for 1 to 8 

mutants which is comparatively higher than 

conventional GA, SA, ACO and multi-objective GA. 

 

The mutant achieved with the proposed multi-

objective GA and the ACO is 94.5, 94.8, 93.8, 92.5, 
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95.8, 97.8, 99.2 and 93.5, respectively. Based on all 

these performance metrics, the anticipated model 

shows a better trade-off than other TCP approaches 

[37−40]. But, the primary research limitation is the 

lack of real-time datasets from various organizations 

like Facebook and Twitter. This research 

significantly concentrates on modelling an efficient 

TCP using ACO with GA to enhance the prediction 

rate of the fault during the process of RT. The idea of 

fault prediction diversity is done by altering the 

selection of food source criteria using the nature-

inspired ant algorithm. This model modifies the flow 

of ACO uses the food source (faults), food source 

evaluation (faults handled by the provided test cases), 

and natural ants selection criteria (test cases) before 

the selection of the food source (test case selection). 

Some real ants in ACO do not measure the 

uniqueness or food fitness before selecting a food 

source with the adaptive ACO+GA and select the 

food that deals with the fitness criteria and improves 

the food source diversity. The proposed multi-

objective GA with ACO model gives better outcomes 

with 94.5%, 94.8%, 93.8%, 92.5%, 95.8%, 97.8%, 

99.2%, and 93.5% respectively. Also, the anticipated 

model is 27%, 18%, 40% and 5% higher than non-

prioritized test cases, reverse order prioritization, 

random order prioritization and hybrid artificial bee 

colony with GA. Any test case prioritization is 

considered as a better model than the other 

contemporary approaches. Thus, the anticipated 

ACO+GA are used to prove the significance of the 

model with superior fault detection percentage and 

improve the fault diversity even in smaller test suites. 

A complete list of abbreviations is shown in 

Appendix I. 

 

Table 5 Execution time (minutes) 

Test case Execution time (minutes) 

   13 

   14 

   16 

   18 

   21 

   10 

   1 

   2 

   4 

    7 

    9 

    23 

    35 

    38 

    40 

    41 

    27 

    29 

    31 

    33 

 

 

 
Figure 10 Performance metrics evaluation 



T.K. Akila and A. Malathi 

398 

 

Table 6 Comparison of proposed versus existing approaches 

Mutant Conventional GA 

Conventional SA 

(Simulated 

annealing) 

Conventional ACO 
Multi-objective 

GA 

Multi-objective 

GA with ACO 

Mutant 1 81 92.2 88.6 91.2 94.5 

Mutant 2 83 92.7 87.5 90.8 94.8 

Mutant 3 88 91.8 90.1 88.6 93.8 

Mutant 4 81 90.7 91.8 86.5 92.5 

Mutant 5 81.5 93.5 89.7 93.4 95.8 

Mutant 6 81 95.3 89.3 96.5 97.8 

Mutant 7 80 99.1 82.3 94.2 99.2 

Mutant 8 82.2 89.2 90.7 88.3 93.5 

 

5.Conclusion and future work 

RT is essential for establishing software maintenance 

and quality assurance. TCP has attained the 

researcher's interest for re-combining the test cases 

indeed of permanent removal. Here, TCP is 

performed with meta-heuristic optimization 

approaches like ACO and GA. Young researchers 

extensively explore these approaches. The GA and 

ACO approach efficiently achieves the TCP based on 

the extensive analysis. 

 

Therefore, this research extensively analyses RT uses 

TCP with the adoption of GA and ACO. Therefore, 

there is a rigorous impact over the coverage criteria, 

test case and tools used for analysis. The critical 

factors of GA are population size and representation, 

operator type and generation size, fitness function, 

and operator's probabilistic rate. Similarly, with 

ACO, the factors like population initialization, 

evaluation, construction, ranking, and pheromone 

updation are performed efficiently. The fault 

detection rate of multi-objective (ACO and GA) 

model provides outcome of 94.5%, 94.8%, 93.8%, 

92.5%, 95.8%, 97.8%, 99.2%, and 93.5% 

respectively. Similarly, the execution times for all the 

provided test cases are 3, 3, 4, 2, 5, 4, 3, and 5 

minutes respectively. Similarly, other performance 

metrics like recall, F-measure, TR, and precision are 

also evaluated to analyze the efficiency of the 

proposed model. In future, this work will be extended 

with the adoption of a real-time TCP dataset, and 

evaluation will be made with these above-mentioned 

statistical measures. 
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Appendix I 
S. No. Abbreviation Description 

1 ACO Ant Colony Optimization 

2 CFG Control Flow Graph 

3 DB Database 

4 ET Execution Time 

5 FSM Finite State Machine 

6 GA Genetic Algorithm 

7 RT Regression Testing 

8 SA Simulated Annealing 

9 SDLC Software Development Life 

Cycle 

10 TCP Test Case Prioritization 

11 UML Unified Modelling 
Language 

 

 

 


