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1.Introduction 
Emergency medical service (EMS) control centres 

are essential components of modern healthcare 

systems. They are the pre-hospital component of the 

health system, which includes medical care and 

transport activities performed from the arrival of an 

emergency call with the release of a patient or its 

transfer to a hospital [1]. EMSs thus, play an 

important role in responding to emergency calls and 

significantly impact a patient's health and recovery 

[2, 3]. However, the major challenge for EMS is to 

strategize and work towards providing a quick 

service to society. Thus, EMS has to efficiently 

handle some issues like deciding on the locations of 

ambulance stations (base stations), allocation of 

ambulances to base stations, policies regarding the 

dispatch of the ambulance to handle service requests, 

and relocation of ambulances if needed [4, 5]. In 

recent years, various support tools have been 

developed using different optimization techniques. 

These tools help EMS organizations in decision-

making and policy framing. 
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The effectiveness of any service can be measured in 

terms of quality. The measurement of the quality of 

EMSs can be done by evaluating response time, the 

type of care provided by EMS staff, types of 

equipment used by staff, the number of requests 

handled, and so on. Among all the attributes, 

response time is believed to be strongly correlated 

with a patient's survival rate. The response time in 

EMS is the time interval from patients calling for 

service until being reached [6]. Increasing call 

volumes and worsening traffic conditions in the 

metropolis are creating a challenge for the EMS 

control centres to achieve good performance. To 

shorten the time in which the emergency help reaches 

the service requesters, the EMS control centres need 

to decide the locations at which the ambulances 

should be stationed, the number of ambulances that 

should be allocated at these base stations, and 

dispatching policies. However, irregular population 

density across the city makes the allocation of 

ambulances at the base stations difficult. A dynamic 

and stochastic environment is associated with the 

process of decision-making by EMS. Some 

predictable and unpredictable attributes associated 

with EMSs are locations from where requests are 

raised, traffic conditions on roads, the arrival rate of 

requests, time used to serve the requests, travel time 
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to and from different locations, and the service time 

at the request calls‘ scenes and hospitals. All the 

stated attributes associated with EMS cause 

obstruction in making decisions about ambulance 

deployment [7]. 

 

In recent years, the counts of road accidents in India 

have increased. Delhi, the capital of India, accounts 

for the maximum count of accidents in the country 

[8]. Road accidents in India are expected to cause 

2,500 deaths in a year by 2025 [9]. The leading cause 

of death in accident cases is a road traffic crash 

(RTC). However, since not much focus has been 

placed on this topic, it has been termed ―the 

neglected disease of modern society‖ [10]. To 

provide a good EMS to the trauma victims, a special 

organization named, centralized accident and trauma 

services (CATS) has been established in Delhi by the 

central government. CATS is an autonomous body 

that provides 24X7 free ambulance services to the 

victims of accidents and trauma. Currently, it 

comprises 151 ambulances deployed at 28 base 

stations serving the city with an average response 

time (ART) of approximately 13 minutes [11]. A 

deployment plan refers to the allocation and 

relocation of ambulances among the base stations. 

The proposed work intends to find a new optimal 

deployment plan for ambulances that can serve the 

city with an ART value of less than 13 minutes. To 

assess the operational performance of the new plan, 

the framework used here considers all the 

uncertainties associated with the working model of 

EMS. It aims to investigate and analyze the 

performance of ambulance deployment from different 

perspectives. The work also focuses on finding the 

maximum count of ambulances that can be added to 

the existing base stations beyond which no further 

improvements can be achieved in ART until more 

base stations are added. 

 

The remaining paper is structured as follows: Section 

2 offers a brief overview of the related works carried 

in the same domain. Section 3 focuses on the 

problem, proposed framework, methodology and the 

mathematical formulation of the work. The 

experiments, results and discussions are covered in 

Section 4. Finally, Section 5 contains the conclusion 

and future scope related to the work. 

 

2.Literature review  
A wide range of literature is available on EMSs 

focusing on strategies for improving the quality of 

medical service. However, we have confined the 

literature review to the work that is closely related to 

our topic. To provide a satisfactory level of service to 

the population, the ambulances used by EMS are 

strategically placed at different locations in the 

region. This static ambulance location problem deals 

with the selection of base stations or standby sites 

and the count of ambulances that should be placed at 

these locations. The very first explicit study on the 

location of ambulances was based on minimizing the 

count of ambulances that are supposed to cover all 

the demand points. This is also called location set 

covering model (LSCP) [12]. A major drawback of 

this model is that it considers equal demands from all 

the nodes along with only one facility site per 

demand location. This drawback was overcome by 

another model proposed by Church and ReVelle [13] 

to solve the maximal covering location problem 

(MCLP), which allowed the specification of demand 

at each node. The model worked on covering 

maximum demands with a given (fixed) number of 

ambulances. Recently, Zonouzi and Kargari [14] 

used the results of [13] and a method of data mining 

for allocating ambulances and rescue vehicles to 

handle the trauma victims. These are static models 

that do not consider the fact that ambulances will 

become unavailable throughout the day and certain 

demand points might not be covered anymore. 

Several approaches have been developed in order to 

handle this problem of uncertainty. For example, the 

probability model for unavailable ambulance 

developed by Daskin, presented a solution to the 

maximum expected covering location problem 

(MEXCLP) [15]. In this, a probability p is associated 

with the system indicating the non-availability of 

ambulance to serve a request. In the models proposed 

earlier, a value indicating the probability of non-

availability of ambulances was considered to be 

constant. However, in the models proposed later, 

iterative methods were used to achieve a rational 

value indicating the probability of non-availability of 

ambulances [16]. Another possibility includes 

multiple coverages, i.e. demand points are supposed 

to be covered by more than one vehicle. Such a 

model called the double standard model (DSM) was 

introduced by Gendreau et al. [17]. DSM was further 

enhanced to work in a dynamic context, allowing it to 

take advantage of the time frame between calls by 

predicting fleet deployment decisions in the future 

[18]. DSM that initially worked for a single period 

was further modified by Schmid & Doerner to work 

for multiple periods [19]. Shariat-Mohaymany et al. 

proposed two reliability-based linear models for the 

optimal location of ambulances [20]. Similarly, a 

framework was proposed to help in decision-making 

strategies for locating and assigning the emergency 
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vehicle (firefighter vehicle) for improving response 

time [21]. However, most optimization models do not 

effectively handle the dynamic situations, stochastic 

environment, randomness, and uncertainty related to 

locations, travel time, traffic situations, and service 

time [8]. To address such problems, optimal or 

heuristic search solutions have been developed using 

genetic algorithm (GA) and particle swarm 

optimization (PSO). 

 

GA is search and optimization algorithm that imitates 

the processes involved in biological evolution, such 

as mutation and crossover [7]. A mathematical model 

was proposed to solve the ambulance coverage 

problem by Benabdouallah et al. [22]. In this work a 

hybrid combination of GA and guided local search 

was used to find an optimal solution. It resulted into a 

plan that distributed ambulances in each potential 

waiting site, minimizing the total latency of 

emergency intervention. McCormack et al. used GA 

with an integrated simulation model to optimize the 

EMS fleet allocation and location of base station 

[18]. The optimization and simulation work was done 

using the real call data from the London Ambulance 

service. The work optimized the existing resource 

plan showing significant improvement in the survival 

probability. In another work put forward by the 

authors in [4] three different case studies are 

analyzed using optimization techniques to support in 

the decision making policies for medical services. 

Apart from handling the deployment of ambulances, 

some authors have improved the emergency services 

by optimizing the management of human resources 

for handling emergencies in hospitals [23]. Another 

work incorporating the use of GA is in scheduling 

surgeries in a Mexican Public Hospital [24]. To 

improve the results of the GA; a technique of 

population seeding is used to initialize the population 

in GA. This method improves GA in terms of 

problem search space exploration, convergence 

speed, and the final optimal solution obtained. 

Random initialization, nearest neighbor, selective 

initialization, gene bank, knowledge based, and 

regression based initialization are some of the well-

known population seeding methods used by different 

authors [25−28] to attain optimal results. 

 

The field of ambulance allocation has also been 

extensively exploited by various researchers using 

another optimization algorithm of PSO. In the work 

by Kolomvatsos et al. [29], a scenario of disaster was 

considered to propose a methodology for allocating 

resources for emergency response. They used the 

PSO algorithm for the work. The authors distributed 

the area concerned into various cells and calculated 

the cell weight based on the spatial data for all the 

cells. Later, different counts of ambulances were 

allocated to each cell considering the run time and 

coverage of the area. In another work, adaptive PSO 

was used by the authors to determine the number of 

facility locations required along with the allocation 

process at the locations [30]. A work was proposed 

by the authors in [31] where a solution for optimally 

allocating the ambulances was proposed using 

Jumping PSO. To ensure that medical help is reached 

to the patient in the shortest time possible, the work 

of [32] deployed ambulances using the data of 

requests raised and the coverage to be achieved. 

 

The servicing capability of an EMS system is also 

highly dependent on the dispatching and 

redeployment strategy of the ambulances. As per the 

related work carried out in [33, 34] there is not much 

scope for improvement in terms of servicing 

capability of EMS due to complex dispatching 

policies. Generally, the nearest ambulance is 

dispatched to the demand location to serve the 

request which does not always provide a good result. 

Therefore, ambulances should be redeployed so that 

the service provided could be improved. A two-stage 

stochastic optimization model was presented in [35] 

to solve the ambulance redeployment problem to 

minimize the number of relocations. The authors in 

[36] considered the workload of EMS personnel 

while planning for the redeployment of the 

ambulances. A real-time ambulance redeployment 

approach was proposed by Ji et al. [37]. It used real-

time data to find a new optimal location for the free 

ambulance to optimize transporting capability. 

Yavari et al. considered the problem of ambulance 

dispatching and relocation to avoid overcrowding of 

emergency departments [38].In the maximum of the 

models and works stated above, the researchers have 

considered response time as the prime attribute while 

assessing any deployment configuration. The 

background of many articles has validated response 

time as a major factor for gaining better insight into 

the operational performance of EMS.  The work of 

Wilde has also clearly demonstrated that mortality 

rate and recovery rate of patient is highly influenced 

by the response time [39]. The literature discussed 

gave some strong motivations to find a cost-effective 

solution that improves service performance of EMS. 

In most of the previous works, researchers have 

worked on finding new locations for base stations. 

However, finding new locations for ambulances may 

demand construction or setting up of new base 

stations. Therefore, the authors chose to utilize the 
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existing locations by allocating ambulances to the 

existing base stations. The problem undertaken by the 

authors is novel in its form as both the allocation and 

relocation activities of ambulances will be done 

amongst the existing base stations. The proposed 

work takes into consideration the intricate and 

random evolution of the CATS EMS system over 

time, the uncertainty of request arrivals, real-time 

traffic conditions, patterns in road accidents, and 

accident-prone areas as stated in the report of road 

accidents by Delhi traffic police [40]. Although many 

heuristic approaches exist these days to solve the 

optimization problem, the authors chose GA and PSO 

due to their easiness in handling potential solutions 

and capability of combining optimal features from 

the population of solutions. The algorithms are 

capable to explore huge search space in less time, 

which otherwise is a time-consuming process. One 

more advantage of GA is that it has an inherent 

property of parallelism. The parallelism nature helps 

to avoid it being trapped in local optima and provides 

a global optimized result. 

 

3.Methods 

3.1Problem background 

The working environment of EMS comprises of base 

stations, ambulances, hospitals, demand locations, 

and patients. The base station is a location where the 

ambulance is in standby mode and activates for 

movement whenever a request call arrives. 

Ambulances are vehicles that help in transporting 

patients to hospitals. Demand location is a location 

from where the request is raised. Patients are people 

who are in need of medical aid. As the medical 

service requests (demand sites) in a territory are 

irregularly distributed, the paper deals with the 

optimal allocation and relocation of ambulances. The 

aim is to optimize the operational efficiency of the 

EMS so that the response time is reduced [40, 41]. As 

shown in Figure 1, when a request call is initiated, 

ambulance is selected and dispatched to the demand 

site. The decision for dispatching the ambulance is 

taken as per the decision rules set by the EMS 

authority. The general rule used is to select and 

dispatch the ambulance that is nearest to the 

requested location [4, 33, 42, 43]. When the 

ambulance reaches the request location it may 

provide first aid to the patient or resuscitation. It then 

takes the patient to the hospital if needed or returns to 

the base station and waits until dispatched to serve 

new request. The counts of accidents in Delhi have 

increased in the last few years. In some cases, the 

victims of these accidents die as they are not 

provided a timely assistance. Therefore, there is a 

need to optimally allocate ambulances among the 

base stations so that ambulance reaches the requested 

site in the shortest time possible. Studies also reveal 

that the occurrence of accidents is more at night time 

in comparison to day. Limited brightness, range of 

illumination, and fatigue are some of the major 

reasons behind the high frequency of accidents at 

night [44, 45]. To deal with such time dependent 

scenarios and different request rate, there is a need to 

relocate ambulances [7, 46]. Relocation is concerned 

with changing the location i.e. redeploying the 

ambulances amongst the base station between 

different time frames of a day to meet the change in 

the arrival rate of request calls. Attaining two 

different allocation plans for ambulances for day and 

night, we need to find how to relocate ambulances so 

that the total relocation (distance) cost in minimized. 

Relocation cost is the cost incurred while moving 

ambulance from one base station to other in the city. 

The relocation plan should consider the following 

three conditions: (a) select a time at which the 

ambulances need to be relocated; (b) it is not 

mandatory to relocate all the ambulances; (c) the 

movements of the ambulances to go to the new base 

stations should minimize the cost incurred for the 

ambulances. 

 

 
Figure 1 Working of EMS 
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3.2Framework 

A simulation optimization (SO) framework is used in 

this work. The block diagram of SO framework used 

is illustrated in Figure 2. It consists of ambulance 

assignment component (AAC) and an optimization 

component (OC). AAC provides a simulation 

environment and provides a potential solution to OC 

which then optimizes the result. The figure depicts 

the flow of data from one entity to the other. The 

detailed working of AAC and OC are explained in 

the subsequent sections. 

 

 
Figure 2 Block diagram showing the simulation optimization framework 

 
3.2.1 Ambulance assignment component  

An ambulance assignment component is a simulation 

program that captures the workflow of EMS. It is a 

program that assigns the ambulances to fulfil the 

random requests raised from the various locations of 

the city. In order to assign ambulance to serve a 

demand, Google distance matrix application 

programming interface (API) is used. This API 

generates a matrix of travel time between the demand 

point and all the base stations. The ambulance with 

least travel time from base station to the demand 

point is assigned to provide the required service. The 

algorithm for detailed working of AAC is shown in 

Figure 3. The selection of the ambulance, travelling 

to the demand point, and fulfilment of requests are 

carried out by AAC. This captures the operational 

level behaviour of EMS to measure the service 

performance by evaluating the ART of all the 

requests raised. 

 

Algorithm 1:  Ambulance Assignment Component (X) 

Input: Chromosome (X) 

Output: Objective value OVx of chromosome X 

Function: Ambulance Assignment Component (X) 

 Generate 300 instances randomly// every instance consists of randomly generated requests (r) as per 

the PDFs of request arrival and distribution and PDFs of service time of requests 

ist = 1 // ‘ist‘ stands for index of instance 

whileist<= 300 do 

for all generated requests(r) in an instance do 

 Call Google Distance Matrix API to find t// t is the travel time from all the base stations to the 

request location  

Sort the base station as per the travel time obtained above in increasing order  

Select the ambulance from the base station with the shortest travel time, and assign it to the 

request r  

Check the status of the ambulance 

if status is ‘available‘ then 

 Update the status of ambulance as ‘assigned‘ The ambulance sets out from the base station 

and reaches request r‘s location. 

Decrement the count of ambulance from the particular base station by 1 

else 
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Select the base station next in the increasing order obtained 

End 

 Response time (RT) is recorded between the request(r) arrival and arrival of ambulance at the 

location of request(r)  

Ambulance provides service to the patient as needed and returns back to its allotted location  

Update the status of ambulance to ‘available‘ 

End 

 Evaluate the Average Response Time(ART) for all the requests 

T(ist) = Average(RT) 

ist++ 

end 

 For all the instances calculate the mean value of T(ist) 

OVx =
 

   
∑          

      return 

OVx 

Figure 3 Algorithm of AAC 

 
3.2.2 Optimization component 

The OC consists of meta-heuristic algorithms GA and 

PSO to work on the results generated by AAC to find 

an optimized allocation plan for ambulances. 

 

a) Genetic Algorithm 

GA imitates the natural evolution process of 

inheritance, mutation, selection, and crossover to find 

an optimal solution [47, 48]. Here, the current 

configuration of deployment of ambulances is 

reconfigured by the optimizer by finding an alternate 

solution for integer decision variable 'X'. 'X' 

comprises of integer values xi that signifies the count 

of ambulances deployed at ‘N‘ base stations and is 

denoted by X = {x1, x2,…. , xN}. Thus, as per 

Equation1. 

∑   
           (1) 

 

The algorithm for working of GA is illustrated in 

Figure 4. 

 

In this research, the working of GA has not been 

modified with respect to the evolutionary operators. 

Here, the authors have incorporated a new method of 

population seeding to enhance the capability of GA. 

The population is a set of chromosomes or a subset of 

solutions generated in the different generations of 

GA. The population that gives the best result for the 

specified objective function is acknowledged as the 

outcome in GA. To obtain a global optimum solution, 

good quality and diversified population should be 

generated at every iteration. Since the population of 

every generation is dependent on the population of 

the previous generation, high importance is placed on 

the step of initial population seeding [49]. In the 

initial population seeding phase, the population of 

feasible solutions is randomly or heuristically 

generated to give it as input for the GA. The random 

initialization technique is used when complete 

knowledge about the problem is not available [50]. 

However, this may generate a poor fitness solution 

and reduce the likelihood of finding an optimal 

solution. On the other hand, having prior knowledge 

of the problem helps in generating the initial 

population heuristically. The results of the previous 

studies indicate that heuristic generation of the initial 

population enhances the capability of GA to provide 

optimum or near to optimum solutions. However, the 

generation of the entire population should not be 

done heuristically as it may result in a population 

having identical solutions with very little diversity 

[51]. Therefore, the best way is to use a mixed 

approach of heuristically seeding some populations 

with good solutions and allowing the random 

generation of remaining solutions. In this paper, the 

authors have proposed a novel method of proportion-

based initial population seeding method. This method 

is used to attain a solution that can be used in the 

initial population seeding phase to define one 

population heuristically and the remaining population 

can then be randomly generated by GA. A detailed 

explanation of the steps involved in the proportion-

based population seeding is explained below. 
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Algorithm 2: Optimization Component(GA) 

Input Data about ambulances and base stations 

Output Optimized deployment plan 

Initialize N  // Total number of base stations 

Initialize C  // Total number of ambulances 

Initialize      
array 

 X []= [x1 x2 ...xN]  // The values of array X correspond to the number of ambulances at every base station 

and size of array is equal to the number of base station 

Initialize a population P(X) of twenty chromosomes// every chromosome is an integer array 

Evaluate the  objective function value of each chromosome using Ambulance Assignment Component (X) 

while minimum average time has not been improved for 100 successive iterations do 

 

 

 

 

 

 

 

 

end 

Sort the twenty chromosomes in ascending order of their objective value  

The best 10% chromosomes evolve to the next iteration without any modification. 

The moderate 80% chromosomes undergo mutation operation. 

The worst 10% chromosomes undergo crossover operation  

Evaluate the objective value for all the chromosomes of the new population obtained using Ambulance 

Assignment Component (X)  

For the current iteration Record the objective value of best chromosome  

Update the existing best solution obtained so far if necessary  

 

Figure 4 Algorithm of GA as OC 

 

a. Proportion-based seeding method:  

This new method is based on the concept of 

proportion that relates a part or share to a whole. To 

get a deeper insight into the working procedure, Let, 

N = total base stations in the area concerned, 

X = {x1, x2,…. xN} where 'xi' signifies the count of 

ambulances deployed at ‘N‘ base stations, 

T = {t1,t2, t3,…..,tN}where 'ti' is the initial count of 

ambulances allocated at 'N ' base stations and as per 

Equation 2. 

                                                                        

∑    
 
          (2) 

R = maximum count of request calls generated in the 

area concerned. This data is retrieved using the 

historical data. 

 

Since at the beginning of the simulation there is no 

certainty of from where and when the requests will be 

generated, the count of ambulances at each base 

station is set equal to the value 'R' so that for every 

request there is one ambulance always available at 

the base station. Thus, using Equation 3. 

t1=t2=t3 … tN=R                                     (3) 

It is assumed that each request demands exactly one 

ambulance. Therefore, an integer variable 'C' is 

defined as C = {c1,c2,c3, …., cN }where 'ci' is the 

count of requests fulfilled at each base station. 

 

Each iteration 'k' is run for 'R' requests assuring that 

atleast one request is raised from every demand point 

and     

1< k < K,  

 

where 'K' is the total number of iterations. 

Let Fi 
k 

= the count of ambulances used in every 

iteration 'k' from each base station in fulfilling the 

requests. Thus, according to Equation 4. 

   
             

    where iєN    (4)  

 

Now, the total count of ambulances (Ai) used at every 

base station 'i' after the completion of 'K' iterations is 

given by Equation 5.  

    ∑   
  

       (5) 

The total average response time (RS) after the 

completion of 'K' iterations is given by Equation 6. 

    ∑       
 
       (6) 

where 'Sk' denotes the average response time of the 

ambulances achieved in each iteration 'k'. 

  

Average count of ambulances (Avgi) at every base 

station 'i' after the completion of 'K' iterations is 

calculated by Equation 7. 

        
  

   ⁄      (7) 

After all the requests are fulfilled and the value of 

Avgi is attained, we can calculate the proportion of 

ambulances 'P'i that are used at all the base stations. 

This can be evaluated by Equation 8. 

   
    

  
                                              (8) 

Using the value of Pi, the values of xi in initial 

population can be defined as shown in Equation 9. 

xi = X *        (9) 

 

Mean of response time denoted as 'AT' taken by the 

ambulances after the completion of 'K' iterations is 

given by Equation 10. 

AT = RS/K     (10) 
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The value of 'AT' attained using this approach is the 

minimum ART achieved in an ideal situation where 

each base station has an ambulance available for 

every demand request at any point of time. Therefore, 

the value of 'AT' is considered as the benchmark 

value for ART in the proposed work. 

 

b. Particle swarm optimization 

The technique of searching for food and the method 

of social interaction by the flock of birds was 

observed and modeled by Poli et al.  in the year 2007 

[52]. In this method popularly known as PSO, the 

swarm particles make movements to attain food 

(optimal objective). A group (swarm) of randomly 

generated particles is given as input to the PSO 

algorithm. Every particle in the swarm is a possible 

solution to the problem. Two major attributes linked 

with every particle are position and velocity. 

Considering the ideal optimum solution as zero, the 

position of the particle evaluates the distance of the 

particle from the optimum solution by finding the 

fitness value of the optimization function. The 

velocity of the particle establishes the movement of 

the particle in the solution space. Two other variables 

namely pbest and gbest are associated with the social 

behavior of every particle. The best position of the 

particle that it achieves in the iterations of the 

optimization is denoted by the value of pbest. On the 

other hand, gbest represents the best position attained 

by the whole swarm. The values of the variables are 

updated in the successive iterations only if the new 

achieved values are better than the last stored values 

of pbest and gbest. Thus, to achieve their objective, 

the swarm makes use of their personal (pbest) and 

swarm‘s (gbest) best experiences. The values of the 

current velocity of the particle, its best position, and 

the swarm's best position are used to update the 

position of each particle. These values are 

continuously updated until the optimal solution is 

attained. The algorithm of PSO is given in Figure 5. 

 

Algorithm 3 Optimization Component(PSO) 

Input Data about ambulances and base stations 

Output Optimized deployment plan 

Initialize N  // Total number of base stations 

Initialize C  // Total number of ambulances 

Initializeswarm   X []= [x1 x2 ...xN]  // The values of array X correspond to the number of ambulances at every base station 

and size of array is equal to the number of base station 

Initialize a population P(X) of particles , position and velocity 

 for each particle find the fitness value using Ambulance Assignment Component (X) 

     Update  the best local solution Pbest 

    Update the best global solution gbest 

 

 

 

 

 

 

         for population size do 

Compute   
         

      (          
 )       (          

 )    

Compute    xj
k+1 = xj

k + vj
k+1 

        end 

end  Update the existing solution obtained 

Figure 5 Algorithm of PSO as OC 

 

3.3 Methodology 
3.3.1 Area of concern 

Delhi, the capital of India, has been taken as the area 

of concern for this work. It provides shelter to 

approximately 19.5 million people. Being one of the 

largest metropolitan areas of the world and having a 

population density of 11,297 persons per square 

kilometer, Delhi has area coverage of about 1484 

square kilometers. Nowadays various private 

organizations are providing the ambulance facility in 

Delhi. However, we have confined our research to 

the CATS EMS organization that is operated and 

handled solely by the central government. In Delhi, 

28 base stations and 151 ambulances are operated by 

CATS as shown in Figure 6. Base stations have been 

numbered from 1 to 28 as reference numbers used in 

this work and all the base stations are located to 

nearby government hospitals. Base stations are 

responsible for maintaining records of ambulances 

and handling other exigencies. 

 

Being densely populated a huge amount of accidents 

are reported daily in Delhi. Out of these accidents, 

some are fatal and some are non-fatal. The authors 

have used the accident report of the year 2019 

(January 1 to December 31) for the work [33]. The 

data of the report has mentioned many locations and 

zones that are accident-prone. As per the report, 

taking the different locations of accidents in an area, 

various clusters are formed. In all the clusters, a point 
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is selected as cluster head that covered a distance 500 

meters in diameter. Then, considering the frequency 

of accidents, the cluster head of the areas are 

categorized into accident black spot (ABS) and 

accident prone zone (APZ). If an area having a 

diameter of 500 meters has 3 or more fatal accidents 

in a day then its cluster head is classified as an ABS 

and if the total count of accidents (including fatal and 

non-fatal) within the same range is 10 or more in a 

day, its cluster head is classified as APZ. A total of 

100 APZ and 20 ABS have been reported in Delhi as 

shown in Figure 7 and Figure 8 respectively. Figure 

9 shows all the accident-prone sites of Delhi. The 

work aims at finding out an optimal deployment plan 

with minimum ART for the accident-prone sites 

mentioned in this section. 

 

 
Figure 6  Base stations of CATS                         Figure 7 Accident prone zones (APZ) 

 

 
Figure 8 Accident black spots (ABS)       Figure 9Accident-prone Sites 

 
3.3.2 Data  

Two types of data are usedin the work: static data 

and real-time data.  

(i) Static data:This is the information that is known 

before running the framework. Static data comprises 

of(a) thedata about the number of  base stations, (b) 

geographical location of base stations, and (c) 

accident-prone sites as stated in the report. The 

coordinates of the sites are obtained using Google 

Map API. This helped in the segregation of zone with 

a higher count of accidents. As per the data of the 

report, the frequency of accidents has been used as a 

key attribute to divide the day into two-time frames: 

peak hours and lean hours. Peak hours include the 

hours (7 p.m.-7 a.m.). Since the frequency of 

accidents in this frame is more due to poor 

illumination, fatigue of driver, reflection of light, 

improper judgment etc., the arrival rate of request 

calls at the base stations is increased [31]. On the 

contrary, lean hours include the hours (7 a.m.-7 

p.m.), when the accidents are less and therefore call 

arrival rate decreases. To ascertain a good 

performance of CATS EMS throughout the day, the 

authors have proposed a relocation plan for relocating 

the ambulances once between peak hours and lean 

hours. 

(ii) The real-time data: This comprises of the travel 

time from one location to another. Google Distance 

Matrix API  provides this data in form of a matrix. 

The data is integrated into AAC and OC framework 

as explained in Section 3.2.   
3.3.3 Assumptions 

The authors have taken two assumptions for the 

work. First, if two ambulances are required at a single 
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demand location, then the request will be split into 

two requests from the same location. Second, the 

dispatch decision will only consider the vehicles 

available at the base stations and not the ambulances 

that are busy serving the patient. 
3.3.4 Ambulance allocation  

For the research, a map enclosing the coordinate 

plane values for the city is defined using Arcgis 

software ArcPro 2.8. The coordinate plane shows 

various locations like base stations and accident-

prone sites as stated by the Delhi traffic police report. 

Initial number (initial population) of ambulances at 

the base stations is defined using the proportion 

based population seeding method. Random requests 

are generated from different locations of the city that 

have been marked as accident prone areas making 

certain that atleast one request is generated from 

every location. In this work, 300 random requests are 

generated for every generation of OC. The 

emergence of a request triggers the search for an 

appropriate ambulance from a set of available 

ambulances. As soon as a request is raised, the 

coordinates of the location of the request is identified. 

Google Distance Matrix API then generates a matrix 

indicating the travelling time from every base station 

to the demand location. The traveling time from the 

base station to the demand site is used in handling the 

decision as to which ambulance has to be sent to 

serve the request. The deployment plan (population) 

with minimum ART is then sent to OC to generate 

more population by crossover and mutation. The OC 

and AAC continue to run iteratively using the 

outcome of each other until the value of ART 

becomes constant for 100 successive generations. 

Several runs of the framework are performed to attain 

statistically valid results. 
3.3.5 Ambulance relocation 

For relocating the ambulances we need to take the 

following key points into consideration [4, 6]: 

K1: The count of ambulances available at every base 

station at the time of relocation 

K2: For every base station, the volume of request 

calls should be noted both for current and future 

situations. This value is predicted using the data from 

the base stations. 

K3: The geographical position of each base station 

should be considered. If the station is in a remote 

location, the cost of relocating any ambulance will be 

more. It is possible that there is a high density of calls 

at present or in near future. In order to handle a large 

volume of calls, it will be good if the base station has 

the right count of ambulances available to serve the 

requests. 

K4: The traveling time taken by ambulance to move 

from the station a to b denoted as tab and traveling 

cost for moving from the station a to b denoted as cab 

for the relocating ambulance should be as minimum 

as possible. Taking these into consideration, the 

relocation plan for ambulances should be designed so 

that the ambulance takes less time to reach the new 

base station. 

K5: Since the proposed work is not focused on the 

real-time relocation of ambulances, it is assumed that 

all the ambulances are available while the relocation 

plan is projected. 

In order to redeploy the ambulances appropriately, all 

the key points K1-K5 mentioned above have been 

taken into consideration in order to obtain a new 

deployment plan using the relocation model as shown 

in Figure 10. 

 

 
Figure 10 Relocation model 

 

The steps in computing the new relocation plan is as 

follows: 

Step 1: Input the allocation plan for peak hour. 

Step 2: Input the allocation plan for lean hour. 

Step 3: Evaluate the requirement matrix by 

calculating the difference between the peak and lean 

hour allocation plans stating abundance or deficiency 

of ambulances at each base station.  

Step 4: The travel distance (cost) matrix to and from 

all the base stations is obtained from Google Distance 

Matrix API. 

Step 5: Using the data of distance matrix,  relocation 

of ambulances is done by moving the ambulances 

between base stations having with minimum travel 

distance. 

Step 6: Update the data in all the matrices and 

continue the process until the required ambulances 

are relocated. 

 

The stated steps help in evaluating the relocation plan 

for changing the location of ambulances between 

peak hour and lean hour.  
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3.4 Mathematical formulation 
The mathematical formulation for obtaining the 

deployment plan with minimum response time is 

explained below. It specifies the input data, decision 

variables, auxiliary variables, and objective equation. 

 
3.4.1 Input data  

The ambulance deployment problem for a 

geographical location deals with assigning  a certain 

count of ambulances (X) to the base stations (N). The 

area consists of several demand points or sites (D), 

from where the request for an ambulance is initiated. 

The solution for the ambulance deployment problem 

is represented by an integer variable xi where i N, 

specifying the number of ambulances distributed 

among the base stations N. 
3.4.2 Decision and auxiliary variable 

We assume that ‘a’ ambulances are available out of a 

total of ‘X’ ambulances to serve the requests at an 

instant. The number of ambulances available at an 

instant for each station i can be written as xi(a). A 

binary value yi(a) will be associated with each station 

to specify the presence or absence of the ambulance 

at a station at the arrival of request. Therefore, the 

value of yi will be zero if no ambulance is available at 

station ‗i‘. When there are ‗a‘ ambulances available 

in the system, yi will be 1.  In the proposed work, 

response time has been taken as the prime attribute to 

measure the quality of service of EMS. Hence, we 

will pay more emphasis on the reducing the value of 

response time. 
3.4.3 Objective function for minimizing response time 

The objective function, which aims to minimize the 

response time, can be formulated as shown in 

Equation 11. 

       ∑               (11)  

 

subject to the constraints 

∑                (12) 

 

 ∑            (13)  
                (14)  
           (15)  
            (16)  
                (17) 

 

where Tij is the travel time from node i (base station) 

to node j (demand location), given that ‘a‘ 

ambulances are available out of X and  denotes the 

arrival rate of calls per hour from node i. Constraint 

(12) checks that the total ambulances available at 

each base station are equal to the total number of 

ambulances present in the system at the same instant. 

Constraint (13) limits the fleet size of the ambulance 

to X. The fulfillment of requests is constrained by the 

presence of a certain number of ambulances at the 

base station by Constraints (14)-(16). Constraint (17) 

restricts the values of the variable. 
3.4.4 Relocation cost 

Since time frame of the day for handling the trauma 

victims has been divided into two frames termed as 

peak hours and lean hours, hence deployment plan 

will be different for two time frames. Therefore, a 

mathematical model has been proposed to obtain a 

relocation plan for the ambulances in this section. 

Suppose the amount of ambulances at every base 

station i є N in the peak hours is denoted as   
 
 and in 

the lean hours is denoted as   
 , where N is the set of 

all the base stations. The number of ambulances that 

need to be relocated can be evaluated as the 

difference between   
 
 and   

 in the following manner 

as shown in Equation 18 

    
 

   
     (18) 

A positive value of z will indicate that the base 

station ‘i‘ has surplus count of ambulance during 

peak hours whereas a negative value will indicate 

that that base station ‘i‘ has surplus count of 

ambulance during lean hours. The value of z will help 

in finding out the count of ambulances that will be 

required to be relocated. After finding out the count 

of ambulances that need to be relocated, a decision 

has to be made to to find out how many ambulances 

will be relocated to and from every base station.  

 

Let Rij be the decision variable stating the amount of 

ambulances that need to be relocated from base 

station i to other base stationsj. Let     denotes the 

travelling time which is defined as the time that an 

ambulance will take to travel from station i to station 

j. This value will be evaluated using Google Distance 

Matrix API.The value of cij denotes the transportation 

cost that will incur by ambulance in making a 

movement from station i to station j. A constant or a 

fixed value of cost will also be associated with every 

ambulance relocation and is denoted as fij. Another 

decision variable is denoted by     which tells us 

whether the relocation has been made or not from 

station i to station j where i, j ϵ N and i ≠ j. The value 

of     will be 1 if relocation has been made and 0 

otherwise.These two values denoted as     and c ij 

where i, j ϵ N and i ≠ jare associated with each 

relocation. 
3.4.5 Objective function for minimizing relocation cost 

Using the above parameters, the mathematical 

formulation for minimizing the relocation cost (RLC) 

can be written as shown in Equation 19. 
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       ∑     ∑                          (19) 

subject to: 

∑         (  
    

 
)                            (20)  

  ∑           (  
 

   
 )                          (21) 

                         (22)  

                         (23) 
     {   }                (24) 

 

Equation 19 minimizes the relocation transporting 

cost and fixed cost of the ambulances. The number of 

ambulances that are relocated is limited using 

constraints (20) and (21). M is considered as a very 

large value in Equation (22). The values of decision 

variables are defined using constraints (23) and (24). 

 

4.Numerical experiments, results and 

discussions  
4.1Numerical experiments 

Numerical experiments are performed here to find an 

optimized allocation plan having minimum ART. The 

correlation and impact of different attributes (count 

of ambulances, the frequency of requests) on ART 

are also analyzed in this section. The experiments and 

their results are explained in detail below. The 

framework is executed 20 times for GA and PSO, 

each as OCs handling random requests generated 

from the areas covered by APZ and ABS. The 

population is initialized for GA using the proportion-

based seeding method. During the execution of the 

seeding method for the stated scenario, a benchmark 

value 'AT' of 12.06 minutes is attained. The evolution 

graph depicting the variation in the value of ART 

with respect to iterations for PSO and GA is shown in 

Figure 11. It is evident from the graph that the value 

of global fitness has changed from 13.533 to 12.47 

minutes in 1000 iterations of PSO and 13.355 to 

12.12 minutes in 1000 iterations of GA. The graph 

also states that the convergence rate of PSO is faster 

than GA; where PSO converges in 223 iterations and 

GA converges in 728 iterations. Although PSO 

shows a fast convergence rate it fails at attaining the 

objective of this work i.e. minimum value of ART. 

 

The fitness values obtained in 20 different executions 

of the SO framework using GA and PSO have been 

used here to infer the constancy and repeatability of 

the algorithms for this work. The graphs in Figure 12 

and Figure 13 depict that the changes in the fitness 

values are from 12.4 min to 12.12 minutes in the case 

of GA and from 13.0202 minutes to 12.175 minutes 

in the case of PSO. The consistency of any algorithm 

can be measured by the value of variance. An 

algorithm is said to be consistent if the value of 

variance is between 0 and 1. In the proposed work, 

the value of variance is 0.0681 for PSO and 0.0054 

for GA signifying that both the algorithms are stable 

and consistent. However, the value is less for GA 

showing it to be more consistent than PSO with 

respect to this work. 

 

 
Figure 11 Evolution graph of GA and PSO 
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 Figure 12 Consistency graph of GA                                 Figure 13 Consistency graph of PSO 

 

Since GA is better than PSO in our work, further 

experiments are performed using only GA as OC. 

The different experiments that are performed are as 

follows: 
 i) Experiment 1: The count of ambulance in the fleet 

is changed to observe the impact on deployment 

plans. 

ii) Experiment 2: The count of ambulance in the fleet 

is changed to observe the impact on the ART. 

iii) Experiment 3: The frequency of requests is 

changed to observe the impact on deployment plans. 

iv)Experiment 4: The frequency of requests is 

changed to observe the impact on the ART. 

 v)Experiment 5: The impact of relocation 

movements on the relocation cost. 

 

4.2Results and discussion 

The results of all the numerical experiments 

performed are shown and discussed in the following 

section.  

a) Experiments 1 and 2 are conducted to observe the 

impact of the count of ambulances on deployment 

plans and ART. The deployment plan obtained for 

the different counts of ambulances in the fleet is 

shown in Table 1. The easiest way to deploy the 

ambulances is to place an equal number of 

ambulances at all the base stations. However, this 

would not handle the needs of the city as the demand 

rate varies at different base stations. Therefore, the 

values of coefficient of variance (CoV) and standard 

deviation (SD) are calculated to assess the uneven 

status of the ambulance count among the base 

stations. Moreover, it is a general perception that the 

response time of EMS can be reduced by deploying 

more ambulances in the fleet to serve the requests. To 

validate this assumption, the experiment is conducted 

to find the maximum count of ambulances that can be 

placed in the fleet at the existing base stations so that 

minimum ART (same or nearly same to the 

benchmark value) can be achieved. It can be 

concluded from Table 1 and the graph in Figure 14 

that the value of ART is indirectly proportional to the 

number of ambulances after a threshold count. For a 

count of 130, 140, 150, and 160 ambulances, the 

average response time is 16.52 min, 14.24 min, 13 

min, and 12.12 min respectively.  However, for the 

count of ambulances 170, 180, and 190 the value of 

ART is the same as that of 160 i.e. 12.12 min. 

 

Table 1 Optimal deployment plan for different ambulance count 
Count of ambulances Optimal deployment plan (Xi) SD CoV    ART     

(in min) 
130 {11,9,1,10,3,14,6,7,5,9,5,1,4,3,18,6,1,1,1,1,1,5,1,1,1,1,3,1} 4.4336 0.9549 16.52  

140 {11,9,1,11,5,14,6,8,5,9,6,1,5,3,14,6,1,1,1,1,1,6,1,1,6,1,5,1} 4.0532 0.8106 14.24 

150 {11,10,1,8,7,13,7,7,4,10,5,1,5,4,16,5,2,1,1,1,1,8,4,1,9,1,4,3} 4.0463 0.7553 13 

160 {16,8,3,8,6,15,5,8,5,6,5,5,8,3,15,7,2,7,1,1,3,8,4,1,3,1,5,1} 4.0871 0.7152 12.12 

170 {16,8,3,8,6,15,6,7,5,7,5,5,8,3,15,7,3,7,3,2,3,8,4,2,3,4,5,2} 3.7601 0.6193 12.12 

180 {16,8,4,8,6,15,6,7,5,7,5,5,8,4,15,7,4,7,4,4,3,8,4,4,3,4,5,4} 3.4582 0.5380 12.12 

190 {16,8,5,8,6,15,6,7,5,7,5,5,8,5,15,7,5,7,5,5,5,8,4,4,5,4,5,5} 3.2111 0.4732 12.12 
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Figure 14 Change in ART WRT count of ambulances 

 

Two inferences can be drawn from experiments 1 and 

2. They are as follows: 

(i) The count of ambulances in the fleet should be 

increased from 150 ambulances to 160 ambulances to 

reduce the value of   ART from 13 minutes to 12.12 

minutes i.e. by 6.77%. 

(ii) Having more than 160 ambulances in the fleet 

will not further reduce the value of ART. 

 

b) Experiments 3 and 4 are performed using the new 

fleet count of 160 ambulances to observe the impact 

of demand rate on the deployment plan and value of 

ART. Table 2 shows the different deployment plans 

of 160 ambulances obtained by varying frequency of 

requests per minute. The values of SD and CoV have 

been calculated for each plan to monitor the 

variability in the deployment plan. The results 

obtained are used to plot a graph to derive the 

relationship between the arrival rate of requests and 

ART. It is observed from the graph shown in Figure 

15 that the value of ART increases evidently when 

the average time between the requests is less than 0.5 

but does not decrease when the average time between 

the requests is more than 0.5.  

  

Thus, it can be inferred from experiment 3 and 4 that 

a fleet count of 160 ambulances having the 

deployment plan {16, 8, 3, 8, 6, 15, 5, 8, 5, 6, 5, 5, 8, 

3, 15, 7, 2, 7, 1, 1, 3, 8, 4, 1, 3, 1, 5, 1} as mentioned 

in Table 1 and Table 2 is sufficient to handle 2 

requests per minute with ART equal to 12.12 minutes 

which is near to the benchmark value. 

 

The new deployment plan (fleet 160 ambulances) 

with ART (12.12 min) and the existing deployment 

plan (fleet 151 ambulances) with ART (13 min) is 

shown in Table 3. The SO framework is executed in 

different time frames of a day to achieve deployment 

plans of 160 ambulances for peak hours and lean 

hours as shown in Table 4. This data is then used to 

relocate the ambulances. and observe the change in 

relocation cost and movement. 

 

c) The experiments from 1 to 4 show that with the 

new deployment plan of 160 ambulances, requests 

can be served with better ART value. However, the 

deployment plan for peak and lean hours is different 

and requires the ambulances to be relocated.   To 

eliminate the overhead of relocating the ambulances, 

this experiment is performed to observe if the 

requests during peak hours can be fulfilled with the 

same or nearly the same ART value using the 

deployment plan of the lean hour. As shown in Table 

5, the value of ART for fulfilling the requests in peak 

hours was evaluated using  

 (i) deployment plan of the lean hour;  

 (ii) deployment plan of peak hours.  

 

The values of ART for the two cases are 13.5113 

minutes and 12.12502 minutes respectively. From the 

values obtained, it is noted that ART(i) > ART (ii). 

This makes it clear that the deployment plan of the 

lean hour and peak hours should be different to 

maintain the operational performance of EMS 

throughout the day. Therefore, some ambulances 

should be relocated amongst the base stations 

between peak hours and lean hours.  

 

The count of ambulances that should be relocated is 

also shown in the table. From the table, it is observed 
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that increasing the count of ambulances from 150 to 

160 shows decrement in the count of ambulances that 

need to be relocated and the distance travelled for 

relocation.

 

Table 2 Optimal deployment plan for different request arrival rate 

Average time between 

requests (in min) 

  Optimal deployment plan (X
i
) SD CoV ART(in min) 

0.25 {17,11,2,6,1,18,5,8,5,3,6,11,4,3,17,4,2,7,1,1,5,11,2,1,4,1,3,1} 5.0133 0.8773 32.3 

0.3 {17,9,1,6,1,15,7,4,5,7,6,4,6,3,20,6,2,10,1,1,5,5,2,1,4,6,5,1} 4.74234 0.8299 16.59 

0.4 {16,8,2,9,5,15,6,8,5,7,5,5,7,3,15,7,2,8,1,1,3,9,3,1,2,1,5,1} 4.2161 0.7378 13.3 

0.5 {16,8,3,8,6,15,5,8,5,6,5,5,8,3,15,7,2,7,1,1,3,8,4,1,3,1,5,1} 4.0871 0.7152 12.12 

0.6 {16,8,3,7,2,14,5,5,5,6,7,5,3,3,16,5,3,7,1,5,3,9,2,5,4,5,4,2} 3.8346 0.6711 12.119 

0.7 {15,9,5,6,3,13,4,3,10,8,5,2,5,3,15,7,3,5,3,3,5,7,1,2,4,8,4,2} 3.7211 0.6512 12.119 

0.8 {13,7,3,6,5,11,5,5,6,5,6,5,6,5,11,6,3,6,5,2,2,7,4,6,5,5,4,6} 2.4328 0.4257 12.119 

 

 
Figure 15 Change in ART wrt arrival time between requests 

 

Table 3 Current and new deployment plan for 28 base stations 

Deployment Base Station Index 

Plan (Xi) BS 1 BS 2 BS 3 BS 4 BS 5 BS 6 BS 7 BS 8 BS 9 BS 10 

Current Plan of 151 ambulances 

151 Ambulances 
11 10 1 8 7 13 7 7 4 10 

New Plan of 160 ambulances 16 8 3 8 6 15 5 8 5 6 

Deployment Base Station Index 

Plan (  ) BS 11 BS 12 BS 13 BS 14 BS 15 BS 16 BS 17 BS 18 BS 19 BS 20 

Current Plan of 151 ambulances 

151 Ambulances 
5 1 5 4 16 6 2 1 1 1 

New Plan of 160 ambulances  5 5 8 3 15 7 2 7 1 1 

Deployment Base Station Index 

Plan (  ) BS 21 BS 22 BS 23 BS 24 BS 25 BS 26 BS 27 BS 28   

Current Plan of 151 ambulances 

151 Ambulances 

1 

 
8 4 1 9 1 4 3   

New Plan of 160 ambulances  3 8 4 1 3 1 5 1   
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Table 4 Optimal deployment plan for peak hours and lean hours 

Deployment Plan 
Base Station Index 

BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9 BS10 

Lean hours 

151 Ambulances 
16 8 3 8 6 15 5 8 5 6 

Peak hours 13 14 4 5 2 12 3 5 3 5 

Deployment Plan 
Base Station Index 

BS11 BS12 BS13 BS14 BS15 BS16 BS17 BS18 BS19 BS20 

Lean hours 

151 Ambulances 
5 5 8 3 15 7 2 7 1 1 

Peak hours 4 1 6 6 23 5 1 16 2 1 

Deployment Plan 
Base Station Index 

BS21 BS22 BS23 BS24 BS25 BS26 BS27 BS28   

Lean hours 

151 Ambulances 
3 8 4 1 3 1 5 1   

Peak hours 6 6 6 1 1 1 7 1   

 

The table also highlights that for a count of 170 

ambulances in the fleet, the number of ambulances 

needed to be relocated and the distance travelled for 

relocation is minimum. But increasing the fleet count 

from 150 to 160 is more cost-effective in all the 

aspects (results of experiments 1-4) than increasing 

the fleet count from 150 to 170.  Therefore, it can be 

concluded that with a fleet count of 160 ambulances 

with different allocation plans for peak and lean 

hours, an ART value of 12.12 minutes can be 

achieved. The relocation movement of 35 

ambulances during peak and lean hours is shown in 

Figure 16. The grid value in Figure 16 indicates the 

count of ambulances that are relocated from one base 

station to another base station. 

 

Table 5 Comparison of relocation movement for different scenarios 
  Number of ambulances  150 160 170 

 ART for peak hours with the old deployment plan (in min)  14.566 13.5113 13.3982 

 Number of ambulances relocated  42 35 34 

 ART for peak hours with the new deployment plan (in min)  12.78822 12.12502 12.48606 

 Total distance travelled by the ambulances during relocation (in km) 583.506 424.253 341.946 

 

 
Figure 16 Relocation table 
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4.2.1 Key findings 

The key findings of the experiments are stated below. 

GA provides better-optimized results than PSO in 

this work as it provides a lesser value for ART. 

Increasing the fleet count from 151 to 160 improves 

the value of ART by 6.7%. 

Increasing the fleet count beyond 160 at the existing 

base stations does not give any significant change in 

the ART value. 

The proposed deployment plan can handle 2 requests 

per minute with an ART of 12.12 minutes. 

Relocation activity maintains the value of ART 

throughout the day. 

In the case of CATS EMS, Delhi, a count of 160 

ambulances allocated at the existing base stations can 

handle an average of 2 requests per minute with an 

ART of 12.12 minutes. 
4.2.2 Managerial implications 

Some managerial implications can be drawn from the 

numerical experiments conducted for this work. They 

can be summarized as follows: 

The value of ART is not always positively influenced 

by the arrival rate of request; if the rate of request is 

below a certain threshold, then the value of ART 

shows no significant change. 

The number of ambulances does not always show a 

positive influence on the value of ART. In other 

words, when the number of ambulances exceeds a 

certain count, the value of ART remains constant at a 

certain value rather than decreasing gradually. 

A good deployment plan provides a good service 

level. Therefore, the ambulances should be deployed 

strategically and not in a random or balanced way to 

ease out the task of deployment. 

The variation in the distribution of requests 

significantly impacts ambulance relocation. There 

will be a greater movement distance involved with 

ambulance relocation activities if the distribution of 

requests varies more during time intervals. 
4.2.3 Limitations of the work 

There are certain limitations associated with this 

research that will be handled by the authors in future 

research. The proposed work does not take into 

consideration heterogeneous ambulances categorized 

based on types of equipment, capabilities of the crew, 

and experience of the driver. In addition, the current 

work focuses on handling the requests raised by 

accident and trauma victims handled by CATS and 

can be extended to handle all sorts of request calls 

raised across the city. In future research, the authors 

will also work on handling the relocation of 

ambulances dynamically by finding a new location 

while it is returning after providing service. A 

complete list of abbreviations is shown in Appendix I. 

 

5.Conclusion and future work 
In this paper, we discussed on improving the 

ambulance-based medical service for trauma victims. 

Allocation and relocation plans for the ambulances 

have been proposed using a tightly coupled 

framework of AAC and OC. A new proportion-based 

seeding method of population initialization was used 

to get good population individuals in GA. The 

application of the work was carried out for the data of 

Delhi and CATS EMS organization to find an 

optimal deployment plan by minimizing the value of 

ART of all the demand requests. The work also 

aimed at finding the maximum count of ambulances 

that can be added to the existing CATS EMS 

structure to reduce the ART. Different rates of 

arriving requests, traffic conditions, and other spatial 

patterns were taken into consideration to map to real-

time situations. The work has been supported by 

results obtained and inferences drawn after 

conducting some numerical experiments. The results 

of the work show that a maximum count of 9 

ambulances can be added to the existing fleet to 

improve the average response time from 13 min to 

12.12 minutes i.e by 6.77%. On adding more 

ambulances, the value of ART will not decrease until 

more base stations are constructed at new viable 

locations. The reduction in the response time will 

improve the efficiency of EMS. The results also state 

that the proposed deployment plan will help in 

servicing 2 demands per minute. Relocation activities 

of ambulances will balance the performance of EMS 

throughout the day.  

 

In the future, the authors will focus on ambulance 

allocation considering heterogeneous ambulances 

categorized based on types of equipment, capabilities 

of the crew, and experience of the driver. The authors 

will also work towards relocating the ambulances 

dynamically by finding a new location for the 

ambulance while it is returning after providing 

service. 
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Appendix I 
S. No. Abbreviation Description 

1 AAC Ambulance Assignment Component 

2 ABS Accident Black Spot  

3 API Application Programming Interface 

4 APZ Accident Prone Zone 

5 ART Average Response Time 

6 BS Base Station 

7 CATS Centralized Accident and Trauma 
Services 

8 CoV Coefficient of Variance 

9 DSM Double Standard Model 

10 EMS Emergency Medical Service 

11 GA Genetic Algorithm 

12 LSCP Location Set Covering Model 

13 MCLP Maximal Covering Location Problem  

14 MEXCLP Maximum Expected Covering 

Location Problem 

15 OC Optimization Component 

16 PSO Particle Swarm Optimization 

17 RTC Road Traffic Crash 

18 SD Standard Deviation 

19 SO Simulation Optimization 

 

 


