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1.Introduction 
The optimal power flow (OPF) problem is 

mathematically formulated by Carpentier [1]. The 

OPF is framed as the most important power system 

optimization problem. Power engineers can carry out 

the studies that are required for further planning and 

operation of the existing power systems with the 

integration of renewable energy sources. 

Mathematically, the OPF is represented by non-linear 

static equations. Solving the non-linear static 

equations gives a solution that describes the 

performance of power system networks. The solution 

of OPF problem is to obtain optimal values of design 

variables that optimize the objective function 

subjected to a set of constraints. The state variables 

describe the performance of the system at every step.  

 

 

 
*Author for correspondence 

The control variables control the systems to evolve 

from one step to the next step [2]. The objective 

functions are total fuel cost (TFC), total active power 

losses (TAPL), total voltage deviation (TVD), and 

voltage stability limit (VSI). TFC reduces the overall 

cost of generation. TAPL reduces transmission line 

losses, thereby increasing the power transfer 

capabilities of transmission lines. TVD minimises 

voltage variation in the load bus. VSI enhances 

stability by preventing the system from voltage 

collapse. The design variables are active power and 

voltage magnitudes at generators, transformer tap 

setting ratio and VAR compensators. The solution of 

optimization problems is achieved through the 

implementation of the following steps [3]: (i) Select 

the control and state variables, (ii) Frame the 

objective functions and constraints, (iii) Assign limits 

to the selected variables, (iv) Choose a suitable 

algorithm to optimize the problem, (v) Find the 

optimal solution to the problem. 

Research Article 

Abstract  
This paper presents an improved mayfly algorithm (IMA) for identifying the optimum control settings of optimal power 

flow problem in regulated electric power networks. IMA is the improved version of the mayfly algorithm (MA) by 

implementing simulated binary crossover and polynomial mutation instead of arithmetic crossover and normal 

distribution mutation operators in MA. The attributes of genetic algorithm (GA), particle swarm optimization (PSO), and 

firefly algorithm (FA) are taken into account in IMA. Single objective functions such as total fuel cost, total active power 

losses, total voltage variation, and voltage stability index (VSI) are used to assess the performance of the algorithms. The 

optimal solution of each objective function is evaluated by representing the test systems in MATPOWER. The results of 

IMA are compared with GA, PSO, and MA. Investigations based on the optimal solution, convergence characteristics, 

and statistical measures of the solution ensure IMA's superiority over alternative algorithms. The performance of the 

algorithms is evaluated by simulation of the IEEE-30 bus system, 62-bus Indian utility system and the IEEE-118 bus 

system. For IEEE-30 bus system the optimal solutions of the objective functions are 802.1448 $/hr, 3.6487 MW, 0.5279 

pu and 0.1247. In case of 62-bus utility system the optimal solutions of the objective functions are 13305.4267 $/hr, 

73.8746 MW, 0.8049 pu and 0.0986. For IEEE-118 bus system the optimal solutions of the objective functions are 

129611.5389 $/hr, 76.5261 MW, 0.8632 pu and 0.0611 are obtained by implementing IMA. 
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The OPF problem sets the goals as minimization of 

fuel cost, minimization of active power losses, 

minimization of voltage deviation and minimization 

of voltage stability limit. These goals are achieved by 

adapting improved mayfly algorithm (IMA) to OPF 

problem. The solution gives optimal values for the 

design variables. IMA is chosen to evaluate the 

results of OPF in the standard IEEE-30 bus system, 

IEEE-118 bus system and the practical 62-bus Indian 

utility system using MATPOWER with MATLAB. 

The results obtained by IMA illustrate the 

competition with MA, particle swarm optimization 

(PSO) and genetic algorithm (GA). The major 

contribution is implementing the simulated binary 

crossover operator and polynomial mutation operator 

in MA for OPF problem. 

 

This paper is organized as: Section-1 is started with 

the origin and significance of OPF, section-2 with 

literature review of OPF, formulation of OPF 

problem with four single objective functions 

including constraints in section-3. It also describes 

about the attributes of IMA. The performances of 

various algorithms are reported in section-4. Section-

5 discusses the analysis of results in discussions and 

section-6 concludes the research work through the 

findings. 

 

2.Literature review 
OPF problem is solved by conventional methods such 

as gradient methods [4], NR method [5], sequential 

linear programming method [6], sequential quadratic 

programming [7], linear and non-linear interior point 

methods [8], semi-definite programming [9] and so 

on. The solution of OPF problem obtained by 

implementing conventional methods gives only one 

solution that may struck within the local space [10].  

 

In order to obtain a solution in global search space, 

meta-heuristic techniques such as an improved heap 

optimization algorithm (IHOA) is proposed by 

Shaheen et al. (2022) to solve optimization problem 

[11]. Dash et al. (2022) proposed boundary assigned 

animal migration optimization algorithm 

(BAAMOA) [12] to solve OPF problem.  

 

Kahraman et al. (2021) implemented manta ray 

foraging optimization (MRFO) [13], Phanden et al. 

(2021) implemented modified ant colony 

optimization (MACO) [14] are used to solve 

optimization problem in power system. Naderi et al. 

(2021) implemented fuzzy adaptive hybrid self-

adaptive PSO and DE algorithm (FAHSA-PSODEA) 

to handle multiple objective functions and non-

convex OPF problem [15]. Su et al. (2021) proposed 

deep learning algorithm that is being implemented 

through an unsupervised deep belief network (DBN) 

to obtain the optimal values of generators and 

transient stability index [16]. Meng et al. (2021) 

implemented crossover grey wolf optimizer (CS-

GWO) by introducing horizontal crossover in the 

grey wolves’ chasing mechanism to solve OPF 

problem for IEEE-30 bus and IEEE-118 bus [17] 

system. Li et al. (2021) presented adaptive constraint 

DE (ACDE) that reduces fuel cost by 3.76% when 

compared with modified pigeon inspired optimization 

through constraint objective sorting rule (MPIO-

COSR) [18]. Rahman et al. (2021) developed a 

learning augmented approach (LAA) based on 

machine learning to solve AC OPF problem in 500 

and 4918 bus test systems [19]. Karimulla et al. 

(2021) proposed enhanced sine cosine algorithm 

(ESCA) to reduce the objective functions such as 

total production cost and losses, to improve VSI and 

to reduce the emission level in the IEEE-30 bus 

system [20]. Aziz et al. (2021) implemented an 

artificial immune system (AIS) for reducing system 

losses and voltage deviation through optimal 

placement and sizing of static Var compensator [21].  

 

Gungor et al. (2020) proposed tree seed algorithm 

(TSA) [22], Diab et al. (2020) implemented coyote 

optimization algorithm (COA) [23], Hussein et al. 

(2020) proposed cuttle fish algorithm (CFA) [24] and 

so on. are used to obtain the best solution of 

optimization problem. Chen et al. (2020) 

implemented MPIO to solve single and multi-

objective functions as combination of fuel cost, 

active power loss, fuel cost combined with valve 

point [25]. Warid (2020) proposed an adaptive 

multiple team’s perturbation guided jaya (AMTPG-

Jaya) algorithm to solve OPF problem [26]. 

Srilakshmi et al. (2020) implemented most valued 

player algorithm (MVPA) to solve OPF problem in 

IEEE-30 and IEEE-57 bus systems [27].  

 

Nguyen (2019) proposed novel improved social 

spider optimization algorithm (NISSOA) for 

optimizing fuel cost, losses, emission, bus voltage 

deviations, and L-index in IEEE-30 bus, IEEE-57 bus 

and IEEE-118 bus test systems [28]. Biswas et al. 

(2018) proposed DE algorithm integrated with 

constraint management techniques [29], Attia et al. 

(2018) presented novel sine cosine algorithm 

(NSCA) [30], Shaha et al. (2017) described water 

evaporation algorithm (WEA) [31], Mukherjee and 

Mukherjee (2016) proposed novel oppositional krill 

herd algorithm (NOKHA) to solve OPF problem 
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[32]. Each technique has own individual benefits and 

drawbacks to achieve the best solution for the 

particular problem. These artificial techniques are 

categorized based on the social behaviour of human, 

animals, birds, fishes and mammals. 

 

3.Methods 

The OPF problem can be represented mathematically 

as F(x,u), subjected to Equation 1 and Equation 2. 

  (   )        (1) 

   (   )        (2) 

 

F is the optimized objective function focuses on 

minimum or maximum, x is a state variable set, u is a 

control variable set, e is set of equality constraints, ne 

is set of inequality constraints.   

 

The state variables are real power at reference bus, 

voltage magnitude at load bus, reactive power(PV) at 

generator bus and apparent power through power 

lines. The control variables are real power at 

generator bus except reference bus, voltage 

magnitudes at generator bus, VAR compensators and 

transformer tap settings. The constraints are equality 

constraints and inequality constraints. The real and 

reactive power balance between generator and load 

bus are treated as equality constraints. The limits of 

real at generator bus, limits of voltage magnitudes at 

generator bus, limits of VAR compensators and 

limits of transformer tap settings are picked as 

inequality constraints in OPF problem. 

 

State vector is modelled as shown in Equation 3. 

  ,       
      

      
 -  (3) 

 

PS is the real power at reference bus, VNPQ is the load 

bus voltage, QNPV is the reactive power at generator 

bus, SNTL is the apparent power in line, NPQ is the 

number of  load bus, NPV is the number of generator 

bus, NTL is the total number of lines 

 

Control vector is modelled as shown in Equation 4. 

  ,    
      

     
     

    (4) 

 

PNPV is the real power at generator buses, VNPV is 

voltage at generator bus, QNC is the shunt reactive 

power, T is the transformer tap settings, NC is the 

number of shunt compensators, NT is number of 

transformers.  

 

3.1Objective functions 
3.1.1TFC 

    ∑ (       
            )

   
     (5) 

ak, bk, ck are cost coefficients at generator k, PPV k is 

real power at k
th 

PV bus (Equation 5).  

3.1.2TAPL 

    ∑∑   (  
    

             )

   

   

   

   

 

(6) 

Gjk is the conductance of line connected between j
th

 

bus and k
th

 bus, δjk is the voltage phase angle of line 

between bus j and bus k (Equation 6). 

3.1.3TVD 

    ∑ |(       )|
   
      (7) 

     is voltage magnitude at k
th 

PQ bus (Equation 7) 

3.1.4VSI 

       (   (  ))               (8) 

   |  ∑    
  

  

   
 |                (9) 

Hjk is matrix obtained by partition inversion of YBUS 

between j
th

 PQ bus and k
th

 PV bus (Equation 8 and 

9). 

 

3.2Constraints 
3.2.1Equality constraints 

            |  | ∑ |  |(          
  
   

         )    (10) 

            |  | ∑ |  |(          
  
   

         )     (11) 

 

(PPV k- PPQ k) is the net real power at k
th 

bus,(QPV k- 

QPQ k) is the net reactive power at k
th 

bus,Vk and Vj 

are voltage magnitudes at k
th

 and j
th

 bus, Gkj is 

conductance between k
th 

and j
th 

bus, Bkj is the 

susceptance between k
th 

bus and j
th 

bus, δkj is the 

voltage phase difference between k
th 

bus and j
th 

bus 

(Equation 10 and 11). 

3.2.2Inequality constraints 

PV bus constraints, Real power,      
          

     
                 (12) 

Voltage magnitude,      
               

            

(13) 

Reactive power,      
               

           

 (14) 

PQ bus constraints Voltage magnitude,      
    

           
             (15) 

Transmission lines constraints Transformer ratio, 

  
         

           (16) 

VAR compensator,    
           

         (17) 

Apparent power,       
            (18) 

 

     
             

   is the lower and higher values of 

generators’ real power at k
th 

bus,      
            

   is 

the lower and higher values of generators’ reactive 
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power at k
th 

bus,     
            

   is the lower and 

higher values of generators’ voltage magnitudes at k
th

 

bus,      
            

    is the lower and higher values of 

loads’ voltage magnitude at k
th

 bus,    
    and    

   is 

the lower and higher values of transformer tap setting 

ratio at k
th

 bus,     
    and     

    is the lower and 

higher values of VAR compensation at k
th

 bus,     
    

is maximum apparent power to be transmitted 

through k
th 

transmission line. 

 

3.3Improved mayfly algorithm (IMA) 

Mayfly algorithm (MA) is proposed by Zervoudakis 

and Tsafarakis in 2020 [33] inspired through social 

behavior of mayflies. They derived the named as, the 

Mayflies appears only in the month of May in United 

Kingdom. MA is developed as hybrid algorithm with 

combination of PSO, FA and GA.GA is population 

based evolutionary method based on the Survival of 

Fittest concept of Darwin’s theory introduced by 

Holland in 1960 and further analyzed by Goldberg in 

1989 [34]. The solutions of GA are in the form of 

chromosomes. The chromosomes are updated by 

using genetic operators like crossover and mutation. 

The best solutions are obtained by replacing the 

worst solutions in the stages of selection, crossover 

and mutation. PSO is a population-based swarm 

intelligent method that is based on swarm behavior of 

fishes or birds introduced by Kennedy and Ebehart in 

1995 [35] to solve the continuous optimization 

problem. The position of the particles in swarm 

represents the solution obtained by PSO in solution 

space. The current position of the particles is updated 

by adding velocity to the particle. The particle‘s 

velocity depends on the previous position of local 

and global. FA is also population-based swarm 

intelligent method that is based on the behavior of 

fireflies proposed by Yang in 2008 [36] to solve 

problems having continuous and discontinuous 

variables. The solution of FA depends on the 

variation in intensity of light and attractiveness. The 

fitness value of each firefly is related according to it 

stability to ejaculate brightness. The firefly with less 

intensity is attracted towards high intensity. The 

fireflies with same light intensity moves randomly. 

The best solution is obtained by updating the current 

position, attractiveness and random terms.  

 

The proposed IMA is a nature inspired algorithm that 

has the advantages of evolutionary algorithm (GA) 

[37, 38], swarm intelligence algorithm (PSO) [39] 

and population-based algorithm (FA) [40−42]. The 

important steps involved in IMA are (i) Initialization, 

(ii) Updating of male mayflies, (iii) Updating of 

female mayflies, (iv) Mating of male mayflies with 

female mayflies. 
3.3.1Initialization 

Initialize the positions and velocities of mayflies as 

given in Equation 19 to Equation 22. 

  
  ,  

    
    

       
 -  (19) 

  
  ,  

    
    

       
 -  (20) 

  
 
 [  

 
   
 
   
 
      

 
]  (21) 

  
 
 [  

 
   
 
   
 
      

 
]  (22) 

  
 is the positions of i

th
 male mayfly,  

 
 is the 

positions of i
th

 female mayfly,   
  is the velocities 

(change of positions) of i
th

 male mayfly,   
  is the 

velocities of i
th

 female mayfly. 
3.3.2Updating of male mayfly 

The updated velocity of male mayfly given by 

   .   
 ( )/      (   

 ),    
 (   )       

 ( )  

   
    

 
.   

        
 ( )/     

    
 
.  
        

 ( )/ 

     (23)   

otherwise 

   
 (   )     

 ( )        (24) 

 

   
 (   )-ith

 male mayfly velocity in j
th

  dimension  

during (t+1)
th 

iteration,   
 ( )- i

th
 male mayfly 

velocity in j
th

  dimension  during  t
th

 iteration, 

   
 (   )- ith

 male mayfly position in j
th

  dimension  

during(t+1)
th 

iteration,   
 ( )-ith

 male mayfly position 

in j
th

  dimension  during  t
th

 iteration,   
    is the 

individual best position during(t+1)
th 

iteration,  
    is 

the global best position during  t
th

 iteration,   is the 

Cartesian distance between individual and personal 

best ,   is the Cartesian distance between individual 

and global best, g is the gravitational co-efficient, a1 

and a2 are the positive attractive co-efficient, β is the 

fixed visible co-efficient, d is the nuptial co-efficient, 

r is the random number. 

The personal best solution of male mayfly is given 

as,  

   
     {

   
 (   )    (   

 (   ))   (   
    )

   
 ( )                                                   

 (25) 

The global best position is given by 

  
         * (  

    )  (  
    )     (  

    )+ 

(26) 
3.3.3Updating the female mayfly 

The updated velocity of female mayfly given by 

   .   
 ( )/   .   

 ( )/   

   
 (   )       

 
( )     

     
 

(   
 ( )     

 
( ))  

(27) 

          

   
 (   )       

 ( )         (28) 
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(   )-ith 

female mayfly velocity in j
th

  dimension  

during(t+1)
th 

iteration,   
 
( )- i

th 
female mayfly 

velocity in j
th

  dimension  during  t
th

 iteration,   
 
(  

 )- i
th 

female mayfly position in j
th

  dimension  

during(t+1)
th 

iteration,   
 
( )-ith 

female mayfly 

position in j
th

  dimension  during  t
th

 iteration,   
    is 

the individual best position during(t+1)
th 

iteration, 

    is the distance in cartesian space between the 

male and female mayflies, fl is random walk co-

efficient. 
3.3.4Mating of male mayflies with female mayflies 

Mating process is done through crossover and 

mutation. Simulated binary crossover and polynomial 

mutation is used to obtain better new solutions.  

 

The simulated binary crossover [43] is implemented 

as 

     
     ,(   )     

 ( )  (   )     
 
( )-  

     (29) 

     
     ,(   )     

 
( )  (   )     

 ( )-  

(30) 

  {
          

0
 

 (   )
1
 

       
    (31) 

  
 

(    )
    (32) 

 

The polynomial mutation is implemented through 

     (   )       ( )  *     
   ( )       

   ( )+   
    (33) 

   {
  

 

                                  

   (   )
 

           

          

     (33) 

miis the mutation index, di is the crossover index 

 

The process of IMA is as follows: Initially, the 

positions and velocities of mayflies are assigned 

randomly. The objective function value of each 

mayfly is computed. After evaluating mayfly’s 

fitness value, the stopping criteria need to be verified. 

If the stopping criteria is not met, then update the 

velocities of both mayflies i.e., male and female. 

Calculate the fitness of updated mayflies and sort the 

mayflies with high fitness value to low fitness value. 

Randomly separate the mayflies into male and female 

mayflies. Replace the worst mayfly with best mayfly 

and update individual best and global best value of 

fitness function. The process is repeated until the 

stopping criterion is achieved to obtain the optimal 

solutions. The flow chart of IMA is drawn in Figure 

1. 

 
Figure 1 Flowchart related to improved mayfly 

algorithm (IMA) 

 

The pseudo-code of IMA is given below: 

Start 

Set the positions and velocities of male mayflies 

Set the positions and velocities of female mayflies 

Configure the objective functions 

Measure the solutions 

While do stopping condition is not satisfied 

Upgrade the velocities of mayflies 

Upgrade the fitness values of mayflies 

Measure the new solutions 

Sort the mayflies in order 

Apply crossover and mutation 

Calculate the fitness of off-springs 

Randomly partition the mayflies into two 

Substitute the worst with best mayflies 

Upgrade the pbest and gbest 

End while 

Obtain the optimal solution 

End 

 

 

 

 

 

Stopping 

condition 

Initialization 

Evaluate Mayflies 

Update the velocity 

Rank the mayflies 

Crossover & Mutation 

Replace the worst mayfly 

with best mayfly 

Stop 

Optimal 

solution

s 

Start 

Y 

N 

IMA 
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4.Results  
The effectiveness of different algorithms such as 

IMA, GA, PSO and MA was tested on IEEE-30 bus 

system, 62-bus Indian utility system, IEEE-118 bus 

system. The performance of the EAs is investigated 

by considering optimal values and convergence rate. 

Performance metrics are taken into account for the 

evaluation of EAs. The OPF problem is modelled and 

simulated in Laptop build with 8 GB RAM, AMD 

Ryzen V generation processor installed with 64-bit 

Windows 10 OS. The results are simulated in 

MATPOWER 7.0b with MATLAB 2016. The details 

of test systems are displayed in Table 1. The 

parameters of different EAs are given in Table 2. 

 

Table 1 Details of test system 

Parameters 
Test  

System-1 
Test System-2 

Test  

System-3 

No. of bus 30 62 118 

No. of branches 41 89 186 

Total Generation 

Capacity 

287.22 MW 

78.16 MVAR 

2985.82 MW  

680.09 MVAR 

4319.4 MW 

388.26 MVAR 

Total Connected Load 
283.40 MW 

 126.20 MVAR 
2908 MW 1270MVAR 

4242 MW 

1438 MVAR 

Location of variables for Test System-1 

Generators 6: Bus-1,2,5,8,11,13 

Transformers 4: Branch-11,12,15,36 

Shunt Compensators 9: Bus-10,12,15,17,20,21, 23, 24, 29 

Location of variables for Test System-2 

Generators 19: Bus- 1, 2, 3, 5, 9, 14, 23, 25, 32, 33, 34, 37, 49, 50, 51, 52, 54, 57, 58 

Transformers 11: Branch – 3, 11, 12, 13, 14, 37, 38, 39, 82, 83, 85 

Location of variables for Test System-3 

Generators 54: Bus – 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 61, 62, 65, 66, 69, 70, 

72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 104, 105, 107, 110, 111, 112, 113, 116 

Transformers 9 : Branch – 8, 32, 36, 51, 93, 95, 102, 107, 127 

Shunt Compensators 12 : Bus – 34, 44, 45, 46, 48, 74, 79, 82, 83, 105, 107, 110 

 

Table 2 Parameters of IMA, GA, PSO, FA 

EAs Parameters Values EAs Parameters Values 

IMA 

Iterations 200 

GA 

Iterations 200 

Mayflies 50 Chromosomes 50 

Male mayflies 30 Mutation percentage 4% 

Female mayflies 20 Crossover percentage 80% 

Inertia weight 0.8 

PSO 

Iterations 200 

Inertia weight damping ratio 1 Particles 50 

Individual learning co-efficient (a1 and a2) 1 and 1.3 Inertia weights 0.75 

Global learning co-efficient (a3) 1.5 Learning co-efficient a1=0.8, a2=1.2 

Mutation rate 20 % 

Crossover probability index 3 

Mutation probability index 18 

 

4.1Test system-1: IEEE-30 bus system  

This test system consists of 25 control variables in 

which 6 are real power at various generator bus, 6 are 

voltage magnitudes at various generator bus, 4 are 

transformer tap settings and 9 are VAR compensators 

that minimize objective functions. The real power at 

PV bus is restricted between 10 MW and 200 MW. 

The voltage level at PV bus is bounded within 0.95 

and 1.1p.u. The ratio of transformer tap settings is 

limited between 0.9 and 1.1p.u. The cutoff range of 

shunt compensators is (0, 5) MVAR. The 

convergence characteristics of Test system-1 for 

different objective functions are shown in Figure 2 

(a)-(d). The values of variables to minimize TFC, 

TAPL, TVD, VSI for Test system-1 using IMA is 

tabulated in Table 3. The optimal solution attained by 

IMA for TFC is 802.1448 $/hr, the TAPL is 3.6487 

MW, TVD is 0.5279 pu and VSI is 0.1247. The 

comparison of optimal solution of objective functions 

with different EAs is listed in Table 4. 

 

In comparison, the best optimal solution is achieved 

by implementing IMA for all objective functions. 

The worst optimal solution for TFC is 802.2899 $/hr 
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with PSO, the TAPL is 3.6687 MW with GA, TVD is 

0.5442 pu with PSO and VSI is 0.1249 with GA. The 

effectiveness of different EAs with each objective 

function is acknowledged with the performance 

metrics that are indexed in Table 5. The statistical 

measures of optimal solution of EAs are pictured in 

Figure 3(a)-(d). 

 

 

 
Figure 2 Convergence curves of test system-1 

 

Table 3 Optimal values for test system-1with IMA 

Variables OF-1 OF-2 OF-3 OF-4 

    140.1530 132.5523 76.2086 61.6193 

    65.0809 43.3201 20.0234 79.0125 

    48.9453 24.6005 35.0655 33.2128 

    20.9349 34.1649 34.9900 22.0292 

     28.6540 25.3987 17.2476 29.4276 

     28.5730 26.5155 30.3874 28.4169 

    1.0897 1.0777 1.0993 0.9618 

    1.0218 1.0291 1.0904 0.9500 

    1.0021 1.0979 0.9583 1.0379 

    1.0373 1.0849 1.0763 0.9714 

     1.0996 1.0787 1.0256 0.9647 

     1.0584 1.0994 1.0083 1.0839 

   (   ) 0.9852 1.0000 1.0998 0.9759 

   (    ) 0.9682 0.9408 1.1000 0.9000 

   (    ) 0.9775 0.9739 1.0274 0.9767 

   (     ) 0.9650 0.9668 1.0358 0.9455 

     4.9967 4.4960 0.5653 1.8121 

     4.9875 2.9618 4.4367 0.8739 

     4.2984 4.9718 0.0677 3.9011 
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Variables OF-1 OF-2 OF-3 OF-4 

     4.9841 4.9757 0.0203 4.0025 

     4.3637 3.7139 4.9848 3.1017 

     5.0000 4.9925 4.8965 2.6161 

     2.3790 2.5138 4.2796 2.4073 

     4.9967 4.9791 3.3790 0.9297 

     2.1974 2.2120 2.0547 0.1957 

TFC ($/hr) 802.1448 802.1495 802.9744 802.5175 

TAPL(MW) 3.6496 3.6487 3.8757 3.7508 

TVD (pu) 2.0536 2.0526 0.5279 2.0243 

VSI 0.1257 0.1258 0.1454 0.1247 

 

Table 4 EAs with different objective functions for test system-1 

EAs TFC TAPL TVD VSI 

IMA 802.1448 3.6487 0.5279 0.1247 

GA 802.2337 3.6687 0.5383 0.1249 

PSO 802.2899 3.6681 0.5442 0.1248 

MA 802.2270 3.6648 0.5362 0.1248 

 

 

 
(a) TFC 

 

 

 
(b) TAPL 

 

 

 
(c) TVD 

 

 
(d) VSI 

Figure 3 Statistical measures of test system-1 

 

Table 5 Comparison of performance metrics of test system-1 

OFs EAs Max Avg Min 

TFC 

IMA 802.5536 802.2181 802.1448 

GA 802.7109 802.2723 802.2337 

PSO 802.7111 802.4416 802.2899 

MA 802.7109 802.2621 802.2270 

TAPL IMA 3.8199 3.6842 3.6487 
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OFs EAs Max Avg Min 

GA 3.7658 3.6749 3.6687 

PSO 3.7954 3.6768 3.6681 

MA 3.7365 3.7053 3.6648 

TVD 

IMA 0.9517 0.5658 0.5279 

GA 0.7415 0.5667 0.5383 

PSO 1.0204 0.6005 0.5442 

MA 0.6759 0.5519 0.5362 

VSI 

IMA 0.1251 0.1250 0.1247 

GA 0.1258 0.1250 0.1249 

PSO 0.1257 0.1249 0.1248 

MA 0.1256 0.1249 0.1248 

 

4.2Test System-2: 62-bus Indian utility system  

The total number of control variables for the 62-bus 

Indian utility system is 49 in which 19 variables 

represent the real power at generator bus, another 19 

variables represent voltage magnitudes at generator 

bus and the remaining 11 variables represent 

transformers’ tap settings. The real power at PV 

buses is restricted to the maximum value of 600 MW. 

The voltage level at PV bus is bounded between 0.9 

and 1.1 p.u. The ratio of transformer tap settings is in 

the range of 0.9 and 1.1 p.u. The convergence 

characteristics of Test system-2 for different 

objective functions are shown in Figure 4 (a)-(d). 

 

 

 
Figure 4 Convergence curves of test system-2 
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The comparison of optimal solution of objective 

functions considering IMA, GA, PSO and MA is 

listed in Table 6. Based on comparison, it is evident 

that the optimal solution is achieved by implementing 

IMA for all objective functions. The worst optimal 

solution for TFC is 13309.6423 $/hr with GA, TAPL 

is 75.6726 MW with PSO, TVD is 0.8946 pu with 

GA and VSI is 0.1004 with GA. The values of 

variables to minimize TFC, TAPL, TVD, VSI for 

Test system-2 using IMA is tabulated in Table 7. The 

optimal solution attained by IMA for TFC is 

13305.4267 $/hr, the TAPL is 73.8746 MW, TVD is 

0.8049 pu and VSI is 0.0986. The effectiveness of 

different EAs with each objective function is 

acknowledged with the performance metrics that are 

indexed in Table 8. The statistical measures of 

optimal solution of EAs are pictured in Figure 5(a)-

(d). 

 

Table 6 Comparison of objective functions of test system-2 

EAs TFC TAPL TVD VSI 

IMA 13305.4267 73.8746 0.8049 0.0986 

GA 13309.6423 74.4647 0.8946 0.1004 

PSO 13309.4078 75.6726 0.8626 0.0986 

MA 13309.3016 74.3201 0.8467 0.0994 

 

Table7 Optimal values for test system-2 with IMA 

Variables OF-1 OF-2 OF-3 OF-4 

    249.1981 63.5661 101.4695 217.5901 

    445.8175 317.1543 355.2195 181.3635 

    271.8273 258.4950 227.6089 129.3750 

    69.7900 27.8206 8.9707 79.6357 

     214.8819 62.9465 95.0249 184.1375 

     171.1465 287.1668 349.5991 420.0314 

     81.6966 150.0535 96.0470 170.4820 

     356.1602 493.0893 53.4551 135.3225 

     412.6128 15.4413 301.2922 357.7379 

     30.6705 97.6879 81.3264 99.0274 

     125.6184 90.0975 100.8122 126.5673 

     18.2039 15.0939 13.9983 49.4235 

     100.2146 216.6395 218.8330 172.4761 

     9.2126 48.9960 137.0072 148.0567 

     422.8000 499.1912 447.2238 416.9448 

     149.0000 117.6241 112.4641 51.3442 

     90.6091 6.0321 63.7260 69.5483 

     295.9691 116.3637 160.3197 220.0799 

     476.6351 213.3705 592.6360 141.8322 

    0.9307 0.9650 0.9481 1.0991 

    0.9809 1.0181 0.9933 1.0283 

    1.0748 1.0010 0.9518 1.0294 

    0.9147 1.0530 1.0961 1.0180 

     0.9480 0.9000 0.9597 0.9119 

     1.0645 0.9235 1.0981 0.9650 

     0.9075 0.9410 0.9456 1.0505 

     0.9900 1.0228 0.9270 1.0415 

     0.9489 0.9014 0.9615 0.9658 

     0.9378 0.9552 0.9074 1.0910 

     0.9236 1.0995 0.9074 1.0976 

     1.0216 1.0425 1.0646 1.0847 

     1.0409 1.0737 1.0466 0.9109 

     0.9529 1.0114 1.0887 1.1000 

     1.0994 1.0411 1.0367 1.0553 

     0.9843 0.9607 1.0898 0.9097 

     1.0373 1.0350 1.0329 1.0919 

     0.9752 0.9293 0.9095 0.9746 
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Variables OF-1 OF-2 OF-3 OF-4 

     1.0464 0.9603 0.9828 0.9024 

  (    ) 0.9910 0.9884 0.9001 0.9401 

   (     ) 1.0099 1.0100 1.0575 1.0508 

   (    ) 0.9898 0.9890 0.9315 1.0446 

   (     ) 1.0216 1.0170 0.9581 0.9938 

   (     ) 1.0020 1.0008 1.0056 1.0703 

   (     ) 0.9502 0.9487 1.0751 0.9443 

   (     ) 0.9872 1.0216 0.9626 1.0023 

   (     ) 0.9952 0.9985 1.0669 0.9876 

   (     ) 0.9965 0.9980 1.0941 0.9605 

   (     ) 1.0454 1.0359 0.9220 0.9934 

   (     ) 0.9560 0.9639 1.0292 0.9582 

TFC  

($/hr) 
13305. 

4267 

13305. 

5903 

13426. 

5556 

13356. 

0800 

TAPL 

 (MW) 
73.8767 73.8746 90.6879 81.1911 

TVD 
 (pu) 

3.6232 3.6081 0.8049 3.5013 

VSI 0.0991 0.0987 0.1393 0.0986 

 

 

 
(a) TFC 

 

 
(b) TAPL 

 

 
(c) TVD 

 

 
(d) VSI 

Figure 5 Statistical measures of test system-2 

 

Table 8 Comparison of performance metrics of test system-2 

OFs EAs Max Avg Min 

TFC 

IMA 13335.7089 13308.1850 13305.4267 

GA 13331.3511 13315.2276 13309.6423 

PSO 13331.3511 13321.5952 13309.4078 

MA 13348.8223 13311.9007 13309.3016 
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OFs EAs Max Avg Min 

TAPL 

IMA 80.2085 74.6768 73.8746 

GA 79.0236 74.6967 74.4647 

PSO 95.2302 79.5121 75.6726 

MA 78.6067 75.0205 74.3201 

TVD 

IMA 1.3737 0.9232 0.8049 

GA 1.2739 0.9885 0.8946 

PSO 1.2755 0.8969 0.8626 

MA 1.2287 0.8552 0.8467 

VSI 

IMA 0.1030 0.0990 0.0986 

GA 0.1029 0.1006 0.1004 

PSO 0.1006 0.0989 0.0986 

MA 0.1029 0.0998 0.0994 

 

4.3Test System-3: IEEE-118 bus system 

This test system contains 129 control variables in 

which 54 are representing real power at generator 

bus, 54 are for voltage magnitudes at generator bus, 9 

are for transformers tap settings and 12 are for shunt 

VAR compensators. The real power at PV bus is 

restricted to the maximum of 550 MW. The voltage 

level at PV bus is bounded within 0.96 and 1.1 p.u. 

The ratio of transformer’s tap settings is within 0.9 

and 1.1 p.u. The cut-off range of shunt compensators 

is [0,40] MVAR. 

 

The convergence characteristics of Test system-3 for 

different objective functions are shown in Figure 6 

(a)-(d). The optimal solution attained by IMA for 

TFC is 129611.5389 $/hr, the TAPL is 76.5261 MW, 

TVD is 0.8632 p.u and VSI is 0.0611. 

 

 

 
(a) TFC 

 

 
(b) TAPL 

 

 
(c) TVD 

 

 
(d) VSI 

Figure 6 Convergence curves of test system-3 
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The comparison of optimal solution of objective 

functions considering various EAs is listed in Table 

9. Based on comparison, it is clear that the optimal 

solution is achieved by implementing IMA for all 

objective functions is better. The worst optimal 

solution for TFC is 129631.5253 $/hr with PSO, the 

TAPL is 76.7381 MW with PSO, TVD is 1.3193 pu 

with PSO and VSI is 0.0619 with PSO. The worst 

optimal solution is obtained by implementing PSO 

for all objective functions. The effectiveness of 

different EAs with each objective function is 

acknowledged with the performance metrics that are 

indexed in Table 10. The statistical measures of 

optimal solution of EAs are pictured in Figure 7 (a)-

(d). 

 

Table 9 Comparison of objective functions of test system-3 

EAs TFC TAPL TVD VSI 

IMA 129611.5389 76.5261 0.8632 0.0611 

GA 129625.8773 76.7294 1.1864 0.0615 

PSO 129631.5253 76.7381 1.3193 0.0619 

MA 129619.7429 76.6517 0.9702 0.0617 

 

 
(a)TFC 

 

 

 
(b) TAPL 

 
(c) TVD 

 
(d) VSI 

Figure 7 Statistical measures of IEEE-118 bus system 

 

Table 10 Comparison of performance metrics of test system-3 

OFs EAs Max Avg Min 

TFC 

IMA 129678.8340 129621.4057 129611.5389 

GA 129696.7749 129629.1012 129625.8773 

PSO 129696.7749 129638.3628 129631.5253 

MA 129696.7749 129682.3364 129619.7429 

TAPL 

IMA 77.6709 76.8604 76.5261 

GA 77.6344 76.8010 76.7294 

PSO 77.7342 76.8033 76.7381 

MA 77.9835 77.7662 76.6517 

TVD 
IMA 1.3938 0.9627 0.8632 

GA 1.5574 1.2208 1.1864 
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OFs EAs Max Avg Min 

PSO 1.6077 1.3317 1.3193 

MA 1.2897 1.0718 0.9702 

VSI 

IMA 0.0626 0.0613 0.0611 

GA 0.0623 0.0615 0.0615 

PSO 0.0626 0.0620 0.0619 

MA 0.0621 0.0617 0.0617 

5.Discussions 
From the simulated results, it is observed that MA 

has shown better performance than GA and PSO. By 

implementing simulated binary crossover and 

polynomial mutation operators in MA, the 

performance of the MA is once again improved. The 

crossover probability index is varied from 1 to 10 

with step size of 1 and the mutation probability index 

is varied from 10 to 30 with step size of 2. It is 

observed that for crossover probability index at 3 and 

mutation probability index at 18, the obtained value 

gives the optimal solution of the OPF problem. For 

larger systems, the results obtained by GA and PSO 

have shown less effectiveness. The solution obtained 

through implementation of the IMA has given a 

better solution for both smaller as well as larger 

power systems. The performance of the evolutionary 

algorithms are evaluated and compared through the 

convergence characteristics as illustrated in Figures 

2,Figure 4,Figure 6, the optimal solution as given in 

Table 4, Table 7, Table 10 and statistical metrics viz., 

min (best), avg (mean), max (worst) values of each 

objective functions are tabulated in Table 5, Table 7, 

Table 10.  

 

The limitation of the meta-heuristic algorithm is that 

for particular parameters only, the solution obtained 

by IMA is better than the other algorithms. If the 

parameters are varied then there is no surety for the 

best optimal solution. Thus, IMA requires fine tuning 

of parameters in order to get the best solution for 

OPF problem. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion 
In this paper, IMA, GA, PSO and MA are used to 

identify the solutions for solving the OPF problem by 

considering different objective functions. The best 

optimal solution is achieved by implementing IMA 

for all objective functions of the test systems. The 

OPF problem is investigated on three different 

systems. Based on the simulation results, it is 

observed that the IMA has performed better than GA, 

PSO, MA. The performance analysis is also carried 

out in terms of convergence curves, optimal solution 

and statistic measures. IMA is improved by the 

replacement of crossover and mutation operator in 

MA. The operators implemented in IMA are 

simulated binary crossover and polynomial mutation 

instead of arithmetic crossover and random 

distribution mutation in MA. The crossover and 

mutation operators of GA increase the convergence 

rate in IMA. The updating of mayflies in the IMA is 

similar to the updating of particles in PSO, which 

moves towards to the global optimal point. The 

random walk of mayflies is similar to that of random 

movement of fireflies in FA. IMA is a successful, 

productive optimization tool for solving OPF 

problems in regulated electrical power system 

networks. 
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Appendix 1 

S. No.  Abbreviation Description 

1 ACDE 
Adaptive Constraint Differential 

Evolution 

2 AIS Artificial Immune System 

3 AMTPG-Jaya 

Adaptive Multiple Teams 

Perturbation Guided Jaya 

Algorithm 

4 BAAMOA 
Boundary Assigned Animal 

Migration Optimization Algorithm 

5 CFA Cuttle Fish Algorithm 

6 COA Coyote Optimization Algorithm 

7 CS-GWO Cross Over Grey Wolf Optimizer 

8 DBN Deep Belief Network 

9 DE Differential Evolution 

10 ESCA Enhanced Sine Cosine Algorithm 

11 FA Firefly Algorithm 

12 FAHSA-PSOEA 

Fuzzy Adaptive Harmony Search 

Algorithm With Particle Swarm 

Optimization Differential 

Evolutionary Algorithm 

13 GA Genetic Algorithm 

14 IHOA 
Improved Heap Optimization 

Algorithm 

15 IMA Improved Mayfly Algorithm 

16 LAA Learning Augmented Approach 

17 MA Mayfly Algorithm 

18 MACO 
Modified Ant Colony 

Optimization 

19 MPIO-COSR 

Modified Pigeon Inspired 

Optimization Through Constraint 

Objective Sorting Rule 

20 MRFO Manta Ray Foraging Optimization 

21 MVPA Most Valuable Player Algorithm 

22 NISSOA 
Novel Improved Social Spider 

Optimization Algorithm 

23 NOKHA 
Novel Oppositional Krill Herd 

Algorithm 

24 NR Newton Raphson 

25 NSCA Novel Sine Cosine Algorithm 

26 OPF Optimal Power Flow 

27 PSO Particle Swarm Optimization 

28 TAPL Total Active Power Losses 

29 TFC Total Fuel Cost 

30 TSA Tree Seed Algorithm 

31 TVD Total Voltage Deviation 

32 VSI Voltage Stability Index 

33 WEA Water Evaporation Algorithm 
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