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1.Introduction 
Machine learning has enjoyed a diversified history, 

having its origin in many interdisciplinary subjects 

like computational learning theory and pattern 

recognition, cognitive science, neuroscience, and 

other disciplines [1]. This field of computer science 

does not require machines to be programmed using 

static or rigid instructions in order to act. It focuses 

on developing algorithms that learn from the data and 

then make predictions based on that data set without 

human intervention. There are two important 

contemporary paradigms in machine learning. The 

first is generative or Bayesian learning and the other 

one is discriminative learning of classifiers [2, 3].  
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The generative model is a strong unsupervised 

learning method for learning any distribution of data 

and has experienced considerable success in a short 

amount of time. The idea behind such models is to 

generate new data instances or configurations. They 

can generate new photos of different types of objects 

that look like real ones. They enable users to provide 

information about the problem to the learning 

algorithm using prior distributions, structured 

models, independence graphs, probabilistic 

reasoning, Markov assumptions, and latent variables. 

It includes the data's distribution and indicates the 

likelihood of a certain example. For instance, the 

models used to determine the subsequent word in a 

series belong to the category of generative models 

because each word in the sequence is assigned a 

probability. These generative models include 

mixtures of multinomial, mixtures of experts, naïve 
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Bayes, Bayesian networks, mixtures of Gaussians, 

hidden Markov models (HMM), Markov random 

fields, and sigmoidal belief networks [4]. 

Discriminative models, on the other hand, simply 

discriminate between different instances of data as 

being real or fake. These models instead of showing 

whether a given instance is likely, simply tell how 

likely it is to apply a label to the instance. The 

emphasis here is on categorization rather than 

generation, allowing for efficient allocation of 

computational resources to the task at hand. The most 

well-known models include support vector machines 

(SVMs), traditional neural networks, conditional 

random fields (CRF), logistic regression, and nearest 

neighbour [5]. Mathematically, data samples X and 

labels Y, generative algorithms measure the joint 

probability p(X, Y) if both instances, as well as 

labels, are present, or simply p(X) for the absence of 

labels, whereas discriminative models just capture the 

conditional probability of p(Y) given x as p(Y|X). 

 

The conventional machine learning methods could 

not be applied directly to the raw data like .csv files, 

images, text, etc., and required some pre-processing 

prior to the application [6]. Also, they tend to 

succumb to different environmental changes and stop 

improving after reaching a certain saturation point. 

All this led to a new subset of machine learning 

called deep learning. It was introduced with the 

objective to bring traditional machine learning close 

to the artificial intelligence. Deep learning draws its 

roots from Kunihiko Fukushima‟s Neocognitron, 

which is an artificial neural network (ANN) [7] and 

uses multiple-layer neural networks that imitate the 

working of the neurons in the human brain. Unlike 

machine learning, they adapt to the changes by 

regular feedback and enhance the model. Deep 

learning models tend to get more accurate as the 

amount of training data grows [8]. To bring out a 

clear comparison between machine learning and deep 

learning, consider the following example: In a face 

detection task, if a machine learning algorithm learns 

about the characteristics of the face such as the eyes 

and nose, a deep learning algorithm will learn deeper 

aspect like the distance between the eyes and the 

shape of the nose. Furthermore, while previous 

machine learning generative models captured the real 

distribution of training data samples to produce new 

data points, understanding the actual distribution of 

the data was not always attainable, either implicitly 

or explicitly. Using the deep neural networks with 

these traditional generative models, it became 

possible to build a distribution that is very close to 

the true distribution of data. This combination 

represented a new class of models, named as deep 

generative models (DGMs). The idea behind DGMs 

is that generative neural network models have fewer 

parameters than the volume of data needed to train 

them on, thereby enabling them in identifying the 

essence of the data to produce it. When trained 

successfully, DGMs estimate the likelihood of each 

observation and thus generate images from that 

underlying distribution. DGMs have recently made 

headlines for their number of applications including 

producing false celebrity images from their real 

images. The emergence of what is referred to as 

"deep fakes", promises new beneficial technologies 

along with the number of scientific applications of 

DGMs in almost every field [9]. Deep learning 

generative algorithms include restricted Boltzmann 

machines (RBMs), deep Boltzmann machines 

(DBMs), deep belief networks (DBNs), generative 

stochastic networks (GSNs), denoising auto encoder 

(DAE), variational autoencoder and generative 

adversarial networks (GANs). 

 

Compared to other DGMs, GANs [10], have sparked 

considerable interest [11, 12]. GANs have a variety 

of advantages, including the capacity to deal with 

sharp estimated density functions, effectively 

generate required output, eliminate deterministic bias, 

and, most importantly, are compatible with the neural 

network architecture. All these characteristics have 

contributed to the extraordinary success of GANs. 

However, GANs are not without problems. The 

problem with these GANs is that their training is 

unstable, making them hard to train. When it comes 

to being hard to train [13], it is challenging for both 

the neural networks of the GAN to attain the 

optimization goal i.e. Nash equilibrium [14]. They 

also suffer from the mode collapse since the 

generator is usually not able to learn the entire 

distribution of data, thereby producing limited 

samples from the real data [15]. Moreover, the 

selection of an optimizer for training the GANs is a 

serious issue [16]. To tackle these issues, a number of 

adversarial loss functions in order to train either 

generative or discriminative models have been 

proposed [17]. These loss functions are used to 

compute disparities between the samples produced by 

the models and the samples present in the real 

dataset, which finally is used by the model to learn 

towards the goal. For the minimization of the error, 

while training the network and to speed up their 

converging process, the optimization of loss 

functions is an extremely crucial issue to study. 
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The original paper on GAN introduces two loss 

functions viz, the saturated or min-max loss function 

and the non-saturating loss function. These loss 

functions have been further modified to yield 

different GAN loss variants. The mathematical 

intuition behind these loss functions is difficult to 

comprehend [18]. Also, none of the works have 

attempted to describe the complete mathematics and 

optimization of these loss functions to different 

divergences.  The purpose of this study is to have a 

complete understanding of the underlying 

mathematics of the loss functions of original GAN 

and to derive the divergences to which these loss 

functions are finally optimized. Also, though a 

number of papers have surveyed the loss variants, 

none has touched the mathematical background in 

detail. The following sequence gives the structure of 

this paper. Section 2 discusses the related work in 

detail. Section 3 gives an in-depth study of GAN, and 

its objective functions. It shows that the loss function 

of GAN is actually a binary cross entropy (BCE). 

This section is subdivided into four subsections. The 

first subsection explains the preliminary of GAN and 

its objective function, the second subsection explains 

in great detail the min-max objective function and its 

minimization to KL-divergence firstly and then 

finally to JS-divergence, the third subsection 

describes the next loss function called as the non-

saturating loss function and shows its minimization to 

reverse KL-divergence and JS-divergence, and lastly,  

fourth subsection describes the mathematical 

intuition behind different modified loss functions that 

have been presented in the literature to mitigate the 

shortcomings of the original loss functions. Section 4 

gives details of the datasets, and the architectures of 

these loss function GAN variants used in experiments 

and presents the results obtained. Section 5 provides 

a summarization of the key findings, a summary of 

the weaknesses and strengths of different loss 

variants and the limitations of this study. Section 6 

concludes this study with a conclusion. 

 

2.Related work 
GANs have several potential advantages as a result of 

which they have been gaining considerable attention. 

The research pertaining to GANs can be classified 

into two broad groups. The first group is concerned 

with the application of GANs to different real-world 

problems in different domains like computer vision 

[19], natural language processing [20], biology [21], 

astronomy [22], networking [23], and other areas. 

GANs have been successful in generating better-

resolution samples from poor-resolution ones [24], 

generating images and videos from textual 

descriptions [25, 26], and Image-to-Image 

Translation [27]. A super-resolution generative 

adversarial network (SRGAN) was suggested by 

Ledig et al. [28] that employs a content loss in 

addition to the adversarial loss and pushes the output 

to the natural image manifold. To further increase the 

image resolution, Li et al. [29] proposed Beby-GAN 

for highly detailed image super-resolution. The 

authors introduced a region-aware-based adversarial 

learning technique that makes the model to 

adaptively produce details for textured areas. To 

generate images of complex backgrounds from 

textual inputs, Quan et al. [30] proposed attention 

regularization and region proposal networks-based 

GAN (ARRPNGAN). It leverages these techniques in 

order to obtain most of the semantics from a textual 

description. Isola et al. [31] used conditional-GAN 

(CGAN) and proposed pix2pix which is an image 

translation approach for converting image content 

from one domain to another. In this framework 

nothing is application specific, thereby making this 

setup considerably simpler. For unpaired image 

translation, Zhao et al. [32] presented a lightweight 

domain-attention generative adversarial network 

(LDA-GAN). This GAN uses an enhanced domain-

attention module (DAM) to create a longer range 

dependency between two domains while using fewer 

parameters and less memory. Additionally, GANs are 

becoming more and more popular in the fields of 

medical image processing for tasks like segmentation 

and classification [33], cybersecurity [34], time series 

and sequence generation [35] as well as for speech 

processing [36]. GANs have been used in the field of 

medical imaging for analyzing images from 

radiography, computerized tomography (CT) scans, 

and magnetic resonance imaging (MRI). To convert 

two-dimensional (2D) CT image slices of the brain 

into 2D MR image slices of the brain, Jin et al. [37] 

presented the magnetic resonance-GAN (MR-GAN) 

architecture. Repecka et al. [38] developed protein 

GAN that generates functional protein sequences. It 

is based on the concept of self-attention and thus 

learns the diversity of natural protein sequences.  

 

Despite widespread use and ongoing progress, 

training GANs is extremely unstable and hard to 

converge. To solve these issues, a wide number of 

possible solutions have been put forth by the research 

community. This has led to the second category of 

GAN research and it focuses on dealing with solving 

the training issues faced by GANs. Radford et al. [39] 

proposed a stable set of architectures referred to as 

deep convolutional GANs (DCGAN) for training 

GANs. Further proof was presented by the authors 
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that this adversarial network can learn effective 

image representations for both supervised learning 

and generative modeling. Arjovsky et al. [40] devised 

a new training model called Wasserstein GAN 

(WGAN) based on Wasserstein‟s distance that uses 

weight clipping to circumvent the mode collapse 

issue. Gulrajni et al. [41] suggested an alternative to 

clipping weights and proposed a gradient penalty in 

WGAN (WGAN-GP) to deal with the vanishing 

gradient problem. Different techniques for stabilizing 

these training issues and the underlying theory have 

also been studied in [42, 43]. The authors in [42] 

assessed different gradient penalty regularizers and 

found that they differ from each other from the 

theoretical point of view only.  Kodali et al. [43] also 

suggested another new version of the gradient penalty 

to deal with the mode collapse issue. 

 

The popularity of GANs has also led to several 

studies and other survey papers as well that outline 

the concept and the applications of GANs. Sharma et 

al. [44] have focused on the application of GAN in 

the image and video domain. Jin et al. [45] examine 

the theoretical foundations of GANs, as well as some 

recently discovered GAN models. It also surveys the 

different applications of GAN in computer vision. 

Aggarwal et al. [46] review the theory of GAN along 

with its application in different applications for image 

segmentation. They have thrown light on the 

applications of GAN in medicine, pandemic, three-

dimensional (3D) object generation, etc. Huang et al. 

[47] provide a taxonomy of the GAN models 

employed in the synthesis of images. The authors 

have reviewed different GANs for generating images 

from text and for translating images in different 

domains. Hitawala [48] presented a detailed and 

thorough comparison of the models of GAN on the 

basis of different parameters like methodology, 

architecture, and performance. Jabbar et al. [49] have 

reviewed different GAN variants, applications of 

GAN in image, audio, and video domains and have 

also described certain challenges faced by GAN 

during their training along with the methods to 

improve upon those challenges. Wali et al. [50] have 

presented a comprehensive review of GAN- 

frameworks for speech processing. They have also 

reviewed the datasets along with evaluation metrics 

and highlighted the issues faced by different speech 

GANs. Jozdani et al. [51] have presented a 

systematic review along with meta-analysis of GAN-

based studies in remote sensing. The authors have 

also evaluated the GAN theories, applications, and 

difficulties and identified the research gaps that need 

to be addressed in the future by remote sensing 

researchers. Shahriar [52] has examined GANs for 

producing literary, musical, and artistic works. This 

survey paper has also done the performance analysis 

and has highlighted the challenges faced by these 

GAN in generating the visual art. Saxena and Cao 

[53] have surveyed the basic GANs framework, the 

key issues within them, the evolution of the better 

design of GANs, and their optimizations. Kurach et 

al. [54] described a few chosen loss functions, 

regularization normalization approaches along with 

the evaluation metrics used by GANs. Pan et al. [55] 

focused on the loss functions of the GANs as well as 

the loss function of the GAN variants used in 

different applications. Wiatrak et al. [56] provide a 

taxonomy of methods used for stabilizing the training 

procedure of GANs. Though all these papers 

mentioned above have described the basics of GAN, 

none has focused on the in-depth mathematical study 

of the original GAN loss functions or their 

optimization to different divergences. Also, none of 

them have entirely focused on the loss function 

variants describing their loss functions along with 

their optimization in detail. 

 

3.Methods 
3.1Preliminary of GAN and its objective function 

GAN belongs to the class of DGM that is based on 

implicit deep learning [57]. More generally, GANs 

are the model architecture that is used to train 

generative models, and this architecture commonly 

uses deep learning models. The GAN architecture 

was first introduced in a paper in 2014, titled 

“Generative Adversarial Networks” by Ian 

Goodfellow. GAN is basically a network that 

combines two deep models: the generator G and the 

discriminator D as depicted in Figure 1. Generator, 

as the name suggests, creates the new sample 

instances which are discriminated by the 

discriminator from the real sample instances. The two 

models work in an adversary mode, competing with 

each other as a result of which both eventually get 

better and better in their own jobs. They play a two-

player min-max game [58] that is a game wherein 

one seeks to maximize its winning probability 

whereas the other minimizes the probability of 

opponents winning. A noise vector z from Gaussian 

distribution is given as input to G which generates the 

G (z) as the output. Discriminator D classifies the 

input, it takes, as the true or generated data. It assigns 

a higher probability to real data that is if the input to 

the discriminator is x which is from real data 

distribution       and a lower probability to the 

generated data that is if x is extracted from the 

generators data distribution over x,       
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Figure 1 GAN Architecture 

 

As mentioned above, the main objective of G is to 

synthesize the images that are comparable to the true 

images, whereas D seeks to discriminate between the 

real and produced instances of data and employs the 

back-propagation algorithm for optimizing the 

weights of the network. The discriminator wants to 

reduce its failure rate, but the generator wants to 

maximize it. 

 

The discriminator maximizes the likelihood of 

correctly labelling instances from training data as well 

as samples produced by the generator. The image 

generated as an output by the generator must be given 

a minimum score for all possible values of z while the 

samples of x drawn from the real data distribution 

must receive a maximum score. It penalizes itself for 

wrongly classifying a true image as a fake image, or a 

fake image as a true image by maximizing the 

function given in Equation 1. 

            [   ( ( ))]       ( ) 0   .  

 ( ( ))/1    (1) 

 

In contrast, the generator wants the discriminator to 

give the images generated by it a higher score by 

producing images that are similar to those in the real 

data distribution. Mathematically, the objective 

function of G is to maximize the score  ( ( )) , or to 

minimize     (   ( ( )) i.e. (Equation 2). 

   0   . ( ( ))/1         0   .   ( ( ))/1  

     (2) 

So, the overall objective function of GAN is the 

combination of discriminators and generators loss 

functions, wherein D maximizes the loss so that the 

generator cannot fool it while discriminating between 

the true and fake samples and  G minimizes the same 

loss or maximizes generated samples probability as 

being real [59]. Depending on the objective function 

we use for G, we get two objective function variants 

of the GAN: the min-max GAN (saturating GAN) 

and the non-saturating GAN [30]. Both of these 

objective functions were proposed in the original 

paper by Goodfellow. 

 

3.2Original Min-Max objective function 

Here, from the two choices of objective functions of 

G, the minimizing objective function is chosen which 

is mathematically given by Equation 3. 

         0   .   ( ( ))/1  (3) 

 

Combining (1) and (3), we get the overall minimax 

objective function which is applied for training G and 

D models. This overall min-max objective function is 

given by Equation 4. 

            (   )  

                    [   ( ( ))]      ( ) 0   .  

 ( ( ))/1    (4) 

 

This loss function is actually the BCE function [13]. 

BCE for a single input is given below by Equation 5. 

       ́  (   )    (   ́)  (5) 

 

where y = ground truth,  ́= the value predicted by the 

mode 

 

When we feed the model with real data that is when 

y=1 and  ́= D(x), then Equation 5 becomes as 

Equation 6. 



Rayeesa Mehmood et al. 

1332 

 

     ( ( ))    (6) 

When we feed the model with the fake data that is 

when y=0 and  ́=  ( ( )) then (5) becomes as 

Equation 7.  

     [   ( ( ))]   (7) 

 

Adding Equation 6 and Equation 7, we get 

     , ( )-     [   ( ( ))] (8) 

 

Equation 8 is the BCE function for one data point. For 

the entire dataset we use the expectation which is the 

average value and thus the BCE function changes as 

shown in Equation 9. 

 ( )        ( )   , ( )-     ( )    [  

 ( ( ))]    (9) 

 

Equation 9 is the BCE function for the discrete 

distribution of data. For continuous distributions of 

      and    , BCE is given by Equation 10 as 

following: 

∫      ( )     ( )   

 ∫  ( )    .   ( ( ))/    

     (10) 

 (   )           ,    ( )-

       ( ) 0   .   ( ( ))/1 

     (11) 

So, comparing Equation 4 and Equation 11, it‟s clear 

that the GAN‟s loss function is actually the BCE 

function. 
3.2.1Optimization of Min-Max objective function 

While training the GANs, an alternate approach is 
used for training the generator and the discriminator. 
When one of them is being trained, the other is kept 
fixed. In theory, however, the training starts with the 
discriminator followed by the generator. The main 
objective is to achieve the Nash equilibrium of the 
min-max game [31]. Finding the (global) equilibrium, 
i.e., saddle point of min-max is referred to as 
optimization of the GANs. During the optimization of 
GANs, a solution that will maximize  ( ) and 

minimize    ( ( )) is found. When and only 

when       =   , GAN is said to have reached the 

global optimal solution. 
 

The objective function of GAN given by (4) can also 

be written as shown in Equation 12 below: 

            (   )  

           ∫      ( )     ( )   
  ∫   ( )    .   

 ( ( ))/       (12) 

Since x is a function of z having the same domain, 

we can replace the second integral of Equation 12 

and rewrite it as shown in Equation 13 below: 

            (   )  

           ∫       ( )     ( )   
  ∫   ( )    (   

 ( ))      (13) 

 

            (   )  

           ∫ ,      ( )     ( )    ( )    (   

 ( ))-       (14) 

 

Now let‟s first see the condition for optimal D. The 

optimal condition of the D can be acquired by 

maximizing Equation 14 w.r.t every x when G is 

fixed. For that, we will take the derivate of the term 

within integral in Equation 14 w.r.t D(x) and set that 

to 0 as shown in Equation 15. 
 

 ( ( ))
(     ( )     ( )

   ( )    (   ( )))    

     (15) 

 

or       ( )

 ( )
 
  ( )(  )

   ( )
   

 

 

or       ( )

 ( )
 

  ( )

   ( )
 

 

or 

      ( )        ( )  ( )    ( )  ( )  

 ( )  
      ( )

      ( )   ( )
   (16) 

 

Thus the optimal discriminator for any given 

generator is represented as shown in Equation 16 or 

Equation 17. 

  
 ( ( ))  

      ( )

      ( )   ( )
   (17) 

 

For an optimal generator which produces the 

generated data as similar as possible to the real data, 

        . Hence, when       ( )    ( ), 

Equation 17 changes to Equation 18 which finally 

gives a constant value of  
 

 
 as shown below: 

  
  

      ( )

      ( )       ( )
  

 

 
   (18) 

 

This means that the discriminator will get confused 

and won't be able to make the distinction between 

actual and produced data. Substituting the value 
 

 
 in 

the Equation 19 for training criteria C (G) where C 

(G) =      (   ), we have 
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 ( )  ∫      ( )    
 

 
   ( )    (  

 

 
)

 

   

     (19) 

      ∫      ( )       ∫  ( )

  

   

                 (20) 

 

Thus the discriminator‟s loss at optimal generator i.e., 

when           is –log 4 as shown by Equation 20. 

 

Let‟s see if this discriminator loss can be ever lower 

than –log4. For that put           in the equation 

for training criteria C (G).Thus we get Equation 21 as 

under: 

 ( )  ∫       ( )    
 

 
   ( )    .  

 

 
/

 
    

     (21) 

Substituting optimal value of  ( ) in Equation 21, we 

get 

 

 ( )  

∫ [,     ( )    (
      ( )

      ( )    ( )
)   ( )    (   

      ( )

      ( )   ( )
)]       

 

∫ [      ( )     (
      ( )

      ( )    ( )
)  

 

  ( )    (
  ( )

      ( )   ( )
)  (     

    )(      ( )     ( ))]     

 ∫ [       ( ) (          (
      ( )

      ( )    ( )
))  

 

    ( ) (          (
  ( )

      ( )   ( )
))]    

 ∫      .      ( )     ( )/  
    

 ∫ [       ( )    (

      ( )

      ( )    ( )

 
)  

 

   ( )   (

   ( )

      ( )    ( )

 
))]       (   )  

     (22) 

 

The term within the integral in Equation 22 is in the 

form of KL divergence [60]. KL divergence is the 

asymmetric measure of how much two distributions 

differ from one another.  It's either equal to zero or 

greater than that and is defined by Equation 23. 

  (   )  ∫ ( )   
 ( )

 ( )
  (23) 

 

Using this KL form, Equation 22 can be rewritten as 

Equation 24. 

 ( )          .       
         

 
/  

  .    
         

 
/   (24) 

 

Since the KL divergence can take values from 0 

onwards [61], so the minimum value C(G) can take is 

–log4. Thus, we can conclude that the global 

minimum of the training criteria C(G) where C(G) = 

      (   ) is –log4 and can be reached only when 

        . 

 

The KL-divergence forms the base for a more 

promising and more tractable objective function 

known as the JS-divergence [62]. It's also a measure 

for determining the difference (or similarity) between 

two distributions. It has a finite value and is 

symmetrical. It's also a smoothed and normalized 

version of KL-divergence with the scores limited by a 

number between 0 and 1. Its definition is given by 

Equation 25 as under: 

  (   )   
 

 
  (   )  

 

 
  (   ) (25) 

 

where   
   

 
 [63]. In terms of JS-divergence, (24) 

can be written as Equation 26 below: 

 ( )           (         )  (26) 

 

This shows that optimizing the generator G simply 

means to minimize the JS-divergence between        

and   , thus making them similar to each other. Early 

researchers were of the opinion that optimizing JS-

divergence rather than KL-divergence, though 

produced less diverse images but were of better 

quality [64]. Later on, Arjovsky and Bottou [65] put 

forth the weaknesses of JS-divergence used in GANs. 

It was found that distributions of ground truth and 

fake data are disjoint and there is a high probability 

that these two distributions have negligible overlap as 

the parameter dimensions of the generator‟s input data 

and the real data lie on two extreme ends. The JS-

divergence between such distributions is constant 

which is equal to        in case of GANs. As a result 

of this, the gradient of discriminator and generator 

becomes 0 and is referred to as the vanishing gradient. 

This gradient disappearance makes it difficult to train 

the model. 

 

3.3Non-saturating objective function 

During the initial learning phase, the generator creates 

samples that are completely dissimilar from the 

samples of actual data. As a result, it becomes easier 

for the discriminator to identify the fake samples. The 
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gradient provided by (4) drops down and becomes 

increasingly smaller as a result of which the generator 

stops learning and the data distributions it generates 

overlap. At this time    .   ( ( ))/  saturates 

and eventually leads to the vanishing gradient 

problem. To address this problem of vanishing 

gradient, Gui et al. (2021) recommended 

maximization of    . ( ( ))/ rather than 

minimization    .   ( ( ))/ [66]. This alternate 

loss function of G is called as non-saturating loss 

function, due to non-saturating behavior of the 

gradient [67]. It is also termed as – log D trick. So, 

instead of Equation 27 and Equation 28 was used. 

      ( ),   .   ( ( ))/-  (27) 

      ( ),    . ( ( ))/-   

or 

      ,    ( ( ))-   (28) 

 

Where x=G(z).  

Unlike (4), it provides larger gradients during the 

initial phase of training which is sufficient enough for 

generator to learn the real distribution of data. 
3.3.1Optimization of non-saturating objective function 

We know that the optimal discriminator is as follows 

  ( )  
      ( )

      ( )    ( )
 

 

Also KL-divergence is given by Equation 29 as 

under: 
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Also, from Equation 21 and Equation 26, we get 
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By substituting (32) in (30), we get 
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Since the final two terms of Equation 34 do not 

depend on G, so they won‟t affect the loss for G. 

From Equation 34, it is clear that optimization of non-

saturating loss of G is contradictory where the KL-

measure seeks to minimize the difference between the 

true and generated data distributions as much as 

possible whereas the JS-measure attempts to increase 

the same. As a result of this contradiction, the gradient 

for training generator is unstable. Also, the first term 

here is reverse KL-divergence. Since KL-divergence 

is asymmetrical measure, we get a value of KL-

divergence that is different from the value of reverse 

KL-divergence as shown below: 
           ( )
         ( )            (        )      
         ( )

         ( )            (        )        

 

The first case results in a small range of samples and 

hence lacks diversity whereas the second case 

produces implausible and inaccurate samples. Thus, 

there is a tradeoff between generating diverse images 

and generating accurate images. In the first case, 

though samples of less diversity are generated, they 

are safe samples while in the second case competing 

to get diverse images leads to unsafe samples. In such 

a case, the generator cannot find a balance between 

real and generated samples and hence causes a mode 

collapse problem. Moreover in Equation 34, since 

there is reverse KL-divergence, so optimization on it 

will result in a mode collapse problem during training 

GANs. 

 

In summary, the original min-max objective function 

result in the vanishing gradient problem whereas 

using the alternative loss i.e., non-saturating objective 

function though removes vanishing gradient problem 

but incurs mode collapse problem. To handle the 

problems with GANs, a lot of work has been done. 

The two main directions include changing the network 

architectures and designing new loss functions [68]. It 
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has been found that GANs problem ultimately arises 

from the design of the loss function since different 

loss function GANs variants have been successful in 

improving the training of GANs compared to the 

architectural GANs. For the stability of training 

GANs, different loss variants of GANs have been 

proposed. The mathematical intuition behind them is 

discussed in the following subsection. 

 

3.4Mathematical intuition behind loss function 

GAN variants 
3.4.1Vanilla GAN 

The original GAN discussed above is referred to as 

the vanilla GAN. Its generator and the discriminator 

consist of a simple multi-layer perceptron [69]. 

Vanilla-GAN is a simple algorithm that uses 

stochastic gradient descent (SGD) to optimize 

mathematical equations [70]. It can be of two kinds 

depending on the loss function it uses for the 

generator: minimax GAN and non-saturating GAN. 

This Vanilla GAN suffers the following 

shortcomings which need to be addressed: (a) non-

convergence (b) mode-collapse (c) vanishing gradient 

(d) overfitting (e) high sensitiveness [71]. A 

substantial quantity of research has been done, 

modifying the vanilla GAN to impart stability, 

drawing on a growing body of empirical and 

theoretical insights. Radford et al. [39], introduced 

architectural changes to vanilla GAN and set other 

parameters of learning rate which helped stabilize 

training significantly. This is referred to as deep 

convolutional GANs (DCGANs). Though it is an 

architectural variant of GAN, the reason for its 

inclusion in this paper is that the DCGAN 

architecture is used in the majority of GANs 

nowadays and all the loss variants discussed and 

implemented in this paper use the DCGAN 

architecture. So for that reason, this variant has been 

discussed as well as implemented here. 
3.4.2Deep convolutional generative adversarial 

networks (DCGANs) 

DCGAN stands for deep convolution GAN and 

primarily uses the convolutional layers. It is the first 

to use a deconvolutional neural networks architecture 

for the generator G. The architectural changes in 

DCGAN are as under: 

1. The structure of DCGAN is borrowed from a 

convolutional network. Strided convolutions in G 

and fractional-strided convolutions in D replace 

pooling layers. 

2. Except the generator‟s final layer and 

discriminator‟s first layer, it uses batch 

normalisation in the rest of the layers of the 

generator and discriminator. 

3. Except for last layer of the generator that uses the 

Hyperbolic Tangent Function (Tanh), all other 

layers use Rectified Linear Unit (ReLU) as the 

activation function. In all layers of the 

discriminator, leaky ReLU is used. 

4. It uses the Adam optimizer with momentum 

replacing SGD. 
3.4.3Wasserstein GAN (WGAN) 

To deal with the issues of vanishing gradient, mode 

collapse and non-convergence in the training of 

GAN, [40] presented the WGAN. Rather than 

employing JS-divergence for measuring distance 

between true data distribution      ( ) and 

synthesized data distribution   ( ) in vanilla GAN, 

WGAN uses Wasserstein distance. This modification 

is one of the most important developments in the 

topic since the inception of GAN [71]. Wasserstein 

Distance is a metric for comparing the distance 

between two different probability distributions. 

Another name for this distance is Earth Mover‟s 

distance or EM distance for short. It is so named 

because it can be read informally as the cost of 

shifting and altering a pile of dirt from one 

probability distribution's shape to the shape of 

another probability distribution. This distance has 

been found to effectively mitigate the common 

failure modes in the training of GANs. For the 

continuous probability domain, the distance formula 

introduced in [72] is given by Equation 35 as under: 

 (        )       ∏(        ) (   )  ,     - 

     (35) 

∏(        ) a collection of all feasible joint 

probability distributions between       and   . 

Infimum, which is also known as the greatest lower 

bound, implies that our aim is to find out the lowest 

cost. Unlike KL-divergence and JS-divergence which 

give infinity when       and    do not overlap, EM 

provides a meaningful gradient when the two 

distributions are disjoint. It can possibly alleviate the 

problem of disappearing gradients because of its 

higher smoothing abilities compared to KL-

divergence and JS-divergence. 

 

Equation 35 cannot be evaluated using only samples 

from the distributions because there is no explicit 

expression for the target distribution. It is not 

possible to exhaust all the joint distributions that can 

exist in ∏(        ) to compute      ∏(        )  

[40] suggested a sophisticated Kantorovich-

Rubinstein duality to transform to a dual problem 

which is tractable and is given as under by Equation 

36: 
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 (        )  
 

 
   

       
         ( )        ( ) 

     (36) 

Here, sup is used for supremum. It is the opposite of 

inf that represents infimum. Here, the aim is to 

measure maximum value or to put it in another way, 

the least upper bound. The function f in the modified 

form of the Wasserstein metric is required to 

satisfy      , which means that it should be K-

Lipschitz continuous i.e. Equation 37 should be 

satisfied [73]. 
  (  )  (  ) 

       
      (37) 

 

where K is called the Lipschitz constant. Assume that 

the function f belongs to the K-Lipschitz family of 

continuous functions, * 
  
+    parameterized by w 

where w is the parameters in “discriminator" D. The 

model D learns w in order to find a good w and 

makes the optimization distance equivalent to 

Wasserstein distance as under. 

 (        )                ,  ( )-  

      ( ),  ( ( ))-   (38) 

 

Then G seeks to minimise Equation 38 in order to 

have the two distribution that is true data and 

synthesized data distribution as much similar to each 

other as possible. As a result, WGAN's overall 

objective function [72] is as shown in Equation 39 

and 40. 

   
 
   
   

        ,  ( )-

       ( ),  ( ( ))- 
     (39) 

or 

                 , ( )-  

      ( ), ( ( ))-   (40) 

 

Thus the "discriminator" of Vanilla GAN and the 

WGAN are different from each other. The vanilla 

GAN discriminator is a binary classifier that simply 

distinguishes between false and real samples, 

whereas the discriminator of WGAN, has to calculate 

the Wasserstein distance which it does by learning 

the K-Lipschitz continuous function during training. 

The WGAN removes the sigmoid in the final layer of 

Vanilla D. The training of the WGAN is also 

unstable when using a momentum-based optimizer 

like the Adam optimizer, so the Adam optimizer is 

replaced with the RMSProp optimizer in WGAN. To 

preserve the Lipschitz continuity introduced to deal 

with the intractability of the infimum term, it uses a 

technique called as weight clipping wherein the 

weights “w” are clipped so that they fall in a small 

fixed window [-0.01, 0.01]. This forms a compact 

parameter space w. Besides, dealing with the 

instability issues of training, WGAN also presents a 

meaningful indicator of the training process in 

relation to the quality of the samples being generated. 

However, the Wasserstein loss is inferior to the 

original loss in quality of fake data in practice and 

also the gradient regularization depends on the model 

that varies during the training [74]. It is also heavily 

dependent on the hyper-parameter setting [75]. 

Moreover maintaining the constraint of K-Lipschitz 

continuity during the training is one of the most 

difficult tasks. 
3.4.4Wasserstein GAN-gradient penalty (WGAN-GP)  

It has been established that Wasserstein distance 

enhances training stability and convergence, 

especially when working with distributions that 

support low-dimensional manifolds. However, 

weight clipping is not an ideal method for enforcing a 

Lipschitz requirement. A significant drawback of 

weight clipping is that it incurs pathological 

behaviour that leads to sluggish convergence and also 

to incomplete stable training. To circumvent these 

problems of WGAN, [72] have replaced the weight 

clipping in the loss function with a gradient penalty. 

In other words, WGAN uses gradient penalty for 

constraining      , for the discriminator to 

increase the network's convergence speed and 

stability. The modified loss for the discriminator now 

becomes Equation 41. 

           , ( )-    ̃   , ( ̃)-   

  ̂   ̂,(   ̂ ( ̂    )
 -   (41) 

 

The initial two terms in Equation 41 represent the 

objective function of WGAN. In the penultimate 

term,   ̂  is sampled from   ̂  which samples evenly 

in a straight direction between pairs of points that are 

taken from the true distribution       and the 

generated distribution of data   . WGAN-GP creates 

generally good images and avoids mode collapse to a 

large extent, and it is simple to extend this training 

framework to various other GAN models. It detects 

overfitting in discriminator instead of generator and 

measures overfitting against same loss that the 

network minimizes. In many GAN frameworks, the 

WGAN-GP performs better than the original WGAN 

with essentially little hyper-parameter adjustment. 
3.4.5Least squares GAN (LSGAN)  

Least squares GANs (LSGANs) were presented to 

deal with the issue of vanishing gradient in original 

GANs [76]. The discriminator D in the original GAN 

uses sigmoid cross entropy loss to classify the real or 

true samples and the synthesized samples and if D 

misclassifies the synthesized sample as a real sample 
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then the generator G will stop improving and will 

continue to generate similar samples which in a real 

sense might not be close to the true data. While 

updating the generator, it causes no loss for the 

samples which though, present on the right side of 

the boundary of decision, are still different than true 

data points. Contrary to that, LSGAN will penalize 

even those samples despite being correctly classified. 

To create more gradients to update G, LSGAN 

penalizes the samples based on their distances from 

the decision boundary. This penalty will push 

generated samples closer to the decision border, 

bringing them closer to the real data, even if they are 

correctly classified This is beneficial for obtaining 

data samples of better quality. Also, penalizing 

samples according to their distances from the 

boundary decision, helps it to produce additional 

gradients and addresses the vanishing gradient issue, 

thus boosting the stability of the learning process. 

Assume that the LSGANs discriminator D employs 

an “a-b” coding scheme [77], with label „a‟ for the 

generated sample and „b‟ for the real sample. The 

discriminator loss and generators loss of LSGAN 

[77] are then calculated as shown under by Equation 

42. 

 

   
 
      ( )          ,( ( )   )

 -  

     0( ( ( ))   )
 
1    

 

          ( )       0( ( ( ))   )
 
1 (42) 

 

Here, c is the hyper parameter that G would like D to 

trust for created samples. Optimization of LSGAN 

has been proved to be comparable to minimizing the 

Pearson χ2 divergence. Let us have a deeper look into 

that. Let us take an extended version of Equation 43 

as follows: 
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Here, in Equation 43, we added term  
 

 
        ( ),( ( )   )

 - to the objective function 

of LSGANs generator. Since it does not contain the 

parameters of G, it won‟t affect the Gs‟ objective 

function. For a fixed G, the optimal D [77] is given in 

Equation 44 below: 
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      ( )   ( )
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Substituting the value in the objective function of G, 

we get the Equation 4 and 46.  
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Setting (   )       and  (   )    in Equation 

47, we get the Equation 48. 

  ( )  ∫
(    ( ) .      ( )   ( )/)

      ( )   ( )

 

 
   (48) 

 

         
 (        ‖   ) 

 

where         
   is the Pearson divergence between 

         and    . Thus, Equation 49 shows that 

optimizing the generator G simply means to 

minimize the Pearson divergence between        
   and      when (b – c) = 1 and (b – a) = 2. As a 

result, LSGANs outperform GANs in terms of 

training stability and resultant image quality 

[78].With real datasets, however, LSGANs are 

unable to achieve good results in producing diverse 

images since they do not expand the mode range or 

the semantic diversity of generated data samples. 

Table 1 summarizes the loss functions of the 

discriminators and generators of each variant of the 

loss variants of GAN. 

 



Rayeesa Mehmood et al. 

1338 

 

Table 1 Summary of loss functions of loss variants of GAN 

 

4.Results  

4.1Datasets used 

We run experiments on the MNIST dataset, the 

Fashion-MNIST dataset, and the CIFAR-10 dataset 

to assess the effectiveness of the loss functions used 

in the aforementioned GANs versions. Brief 

description of these datasets is provided below, and 

examples of training samples from these datasets are 

displayed in Figure 2. 

MNIST  

MNIST dataset is made up of handwritten digits and 

the tags that go with them. The dataset is separated 

into two parts: the training part that consists of 

60,000 samples, and the test part that has 10,000 

cases. It can be found at 

http://yann.lecun.com/exdb/mnist/. This dataset was 

chosen because of its simplicity and size, which 

allows researchers to test and develop deep learning 

methods quickly. In addition, most machine learning 

libraries and deep learning frameworks have 

functions for loading and preparing the dataset. 

CIFAR-10 

CIFAR-10 dataset comprises of 60,000 coloured 

images from 10 classes. Each class contains 6000 

images. The images are of 32×32 pixels and belong 

to classes of frogs, ships, airplanes, etc. The dataset is 

separated into two parts: the training part that 

consists of 50,000 samples, and the test part that has 

10,000 cases. It can be found at 

https://www.cs.toronto.edu/~kriz/cifar-10-

python.tar.gz 

Fashion-MNIST 

In terms of image size and the design of the training 

and testing portions, the Fashion-MNIST dataset is 

comparable to the MNIST dataset. There are 10,000 

test samples in the test component and 60,000 

training samples in the training set. The size of the 

images in this dataset is also 28×28 and are grayscale 

images. It can be found at http://fashion-mnist.s3-

website.eu-central-1.amazonaws.com/train-images-

idx3-ubyte.gz. 

 

  
Figure 2 Training samples of different datasets 

 

4.2Model architectures  

The details about the architecture of the generator 

and the discriminator models used by the variants are 

given below. The optimizers, activation functions, 

and loss functions that are specific to each variant are 

also mentioned.  

Types of GAN Loss function of  discriminator Loss Function of  Generator 

Min-max vanilla 

GAN 
             ,     ( )-        ( ) 0   .   ( ( ))/1         0   .   ( ( ))/1 

Non-saturating 

vanilla GAN 
             ,     ( )-        ( ) 0   .   ( ( ))/1         ( ) 0    . ( ( ))/1 

WGAN              ,  ( )-        ( ) 0.   ( ( ))/1         0.  ( ( ))/1 

GP-WGAN 
     

               [.‖  .   (    ( ))/‖ 
  /

 
]         0.  ( ( ))/1 

LSGAN            ,( ( )   )
 -       0( ( ( ))   )

 
1         0( ( ( ))   )

 
1 
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Vanilla GAN: Optimizer applied was Adam 

optimizer. Both the discriminator and generator 

networks had four layers. All of the layers in 

discriminator use Leaky ReLU as activation function 

excluding the final layer that uses sigmoid. In all 

layers of generator, Leaky ReLU activation function 

is employed excluding the final layer, which employs 

the Tangent Hyperbolic activation function. A 

dropout was also used. Finally, the BCE is used as a 

loss function. 

 

DCGAN: Optimizer applied was Adam optimizer. 

Both discriminator and generator networks had five 

layers.  In the discriminator, Leaky ReLU is used as 

an activation function in all layers excluding the final 

layer that uses the sigmoid function. In the generator, 

excluding the last layer that uses the Tangent 

Hyperbolic activation function, all other layers use 

ReLU as the activation function. It employs the BCE 

function as its loss function. 

 

WGAN: RMSProp optimizer was used as an 

optimizer. Five layers constitute the discriminator 

and generator. In every layer in the discriminator 

excluding the output layer, the activation function 

used is Leaky ReLU, whereas in every layer in the 

generator ReLU is used as an activation function 

except the final layer, which uses a Tangent 

Hyperbolic. As a loss function, a Wasserstein 

distance was used. 

 

WGAN-GP: Optimizer applied was RMSProp 

optimizer. The discriminator and the generator 

consist of five layers. A leaky ReLU activation 

function is used in every layer in discriminator except 

the output layer which does not use any activation 

function, whereas the ReLU activation function is 

used in every layer in generator except the output 

layer that makes use of the Tangent Hyperbolic 

activation function. Moreover, it replaces weight 

clipping by the gradient penalty. 

 

LSGAN: It uses an Adam optimizer. The 

discriminator and the generator both have five layers 

each. Activation function used by every layer in the 

discriminator is the Leaky ReLU, with the exception 

of the last layer, which has no activation function. In 

addition, except for the last layer, which employs 

Tangent Hyperbolic activation, the generator uses the 

ReLU activation function for all layers. As a loss 

function, Mean Square Error is adopted.  

 

 

 

4.3Parameters and experimental setup 

The images of all three datasets are resized to 64×64. 

On all three datasets, all parameters for each variant 

are set the same. In every experiment, the batch size 

is fixed to 128 for all datasets. Latent vector's 

dimension is set at to100. The variants were trained 

for 100 epochs on all three datasets. The learning rate 

is chosen to be 0.0002 and momentum is fixed to 0.5. 

All the variants were implemented using Python 

language, and the PyTorch framework. The models 

were trained online in the Google Colab environment 

with the GPU enabled.  

 

4.4Evaluation 
4.4.1Qualitative evaluation 

The synthetic images of the MNIST dataset generated 

by the above-mentioned GAN variants are displayed 

in Figure 3. First column shows images synthesized 

by different GANs after the first epoch. Vanilla GAN 

and LSGAN generate nothing but the noise in the 

first epoch whereas the rest of the GANs generate 

some patterns after the first epoch. From the last 

column, which shows the results generated after 60 

epochs, it is clear that the digits generated by 

LSGAN are more clear and more vivid than the rest 

of the GANs. The output of the Vanilla GAN even 

after 60 epochs is not realistic. On the other hand, 

DCGAN produces better samples than WGAN and 

WGAN-GP whereas WGAN-GP produces better 

samples than WGAN. Moreover, the vanilla GAN 

suffered from vanishing gradient wherein the 

generator prematurely converges to an unrealistic 

output. In comparison to Vanilla GAN, DCGAN has 

been found to be more stable, easy to train, and, most 

importantly, provides high-quality outputs. However, 

it still faced the problems of mode collapse and non-

convergence. 

 

Figure 4 and Figure 5 show examples of mode 

collapse and non-convergence of DCGAN when 

trained on the MNIST dataset. Figure 4 shows that 

DCGAN has generated different kinds of digits in 

epoch 63. In other words, it has generated all the 10 

modes of the MNIST dataset in this epoch. In 

comparison to this, after epochs 70, 74, and 75, 

DCGAN has generated just one mode in each epoch. 

This exhibits that there was a modal collapse of 

DCGAN after epoch 63. Also, Figure 5 shows that 

after epoch 63, better results have been obtained. In 

other words, it means that the generator has learned 

the distribution and it can be thought of as the model 

is converging. But the results produced after the 63
rd

 

epoch are of extremely bad quality which means that 

the model has failed to converge. 

https://academic-accelerator.com/Manuscript-Generator/Google-Colab/Google-Colab-Environment
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GAN 

Variants 

Epoch 0 Epoch 20 Epoch 40 Epoch 50 Epoch 60 

 

 

Vanilla 

GAN 

     

 

 

DCGAN 

     
 

 

WGAN 

     

 

 

WGAN-GP 

     

 

 

LSGAN 

     

Figure 3 On the MNIST dataset, digits generated by different loss variants of GAN at different epochs 

 

    
Epoch 63 Epoch 70 Epoch 74 Epoch 75 

Figure 4 Example of the mode collapse problem in DCGANs on the MNIST dataset 

 

    

Epoch 63 Epoch 64 Epoch 65 Epoch 66 

Figure 5 Example of the non-convergence problem in DCGANs on the MNIST dataset 
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The synthetic images of CIFAR-10 and Fashion-

MNIST generated by different loss function GAN 

variants while experimentation is presented in Figure 

6 and Figure 7 respectively.  It was found that in the 

case of CIFAR-10 dataset, DCGAN produces better 

results than LSGAN and other variants. However, 

DCGAN still suffered from mode collapse and non-

convergence problems. Also, though LSGAN was 

found to generate better results than Vanilla GAN, 

WGAN, and WGAN-GP, it also suffered from mode 

collapse. On Fashion-MNIST, better images were 

produced by LSGAN followed by DCGAN. The 

samples produced by Vanilla GAN after the 20
th

 

epoch are still of very poor quality compared to the 

other GAN variants. 

 

  
Vanilla GAN DCGAN 

  
WGAN WGAN-GP 

 
LSGAN 

Figure 6 Images generated at the end of the 50-th epoch by Vanilla GAN, DCGAN, WGAN, WGAN-GP, and 

LSGAN on the CIFAR-10 dataset 
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Figure 7 On the Fashion-MNIST dataset, images generated by different loss variants of GAN at 0-th and 20-th 

epochs 

 

The training losses of generator and discriminator for 

each variant implemented are shown in Figure 8. 

These can help to visualize the learning process. In 

the initial epochs, the discriminator‟s efficiency is 

low i.e. the error is high since it does not know how 

to classify the images correctly as actual or 

generated. As the discriminator starts to learn and 

becomes better, its error starts decreasing. Since the 

discriminator and generator are in a competitive 

relationship, an improvement on one means a higher 

loss on the other. Thus, with the decrease in 

discriminators error, the generators error increases. 

As the training continues and time passes, the 

generator error decreases meaning that the images it 

generates are better and better. With the generator 

improving and generating more and more realistic 

images, the discriminator‟s error increases and it 

misclassifies actual data instances and synthesized 

data instances. In the plots given below, discriminator 

loss is discriminator's loss value, generator loss is 

generator's loss value, and x-coordinate gives the 

number of epochs used for training. In vanilla GAN, 

the generator‟s loss initially increases to a higher 

peak and then drops significantly followed by an 

increase again and then a continual decrease in the 

loss. Discriminator‟s loss also decreases in initial 

phase and then begins to rise, implying that the 

model is progressing to convergence. The loss curve 

of DCGAN shows that there is no sign of 

convergence. The generator‟s loss initially drops and 

then keeps on oscillating and does not converge. 

Compared to the DCGAN loss curve, the WGAN 

loss curve shows that it converges and that too faster 

than Vanilla GAN. In case of LSGAN, In the case of 

LSGAN, training is largely steady throughout the 

run, with some initially noted very high peaks. 

 

  
 

  

Vanilla GAN DCGAN WGAN WGAN-GP LSGAN 

Figure 8 On the MNIST dataset, discriminator and generator losses of different loss variants of GAN  

 

4.4.2Quantitative evaluation 
For each of the three datasets considered, we 

measured visual quality of the images produced by 

the aforementioned GAN variations using two 

quantitative criteria. Inception score (IS) and a 

Frechet inception distance (FID) are two of these 

measurements. IS is frequently used to assess the 

produced samples since it has a strong correlation 

with human annotator quality judgments. Better 

results are indicated by higher values of IS. FID 

approximates the inception's feature space for the 

calculation of separation between the actual and fake 

samples. Better-quality samples are indicated by 

lower FIDs, and worse-quality images are indicated 

by higher FIDs. Table 2 presents the IS and FID 

scores. 
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Table 2 IS and FID achieved by different GAN variants on MNIST, Fashion-MNIST and CIFAR-10 Datasets 

GAN-Variants Inception score Frechet inception distance 

MNIST Fashion-MNIST CIFAR-10 MNIST Fashion-

MNIST 

CIFAR-10 

Vanilla GAN 2.98± 0.02 2.9± 0.14 4.61 ± 0.02 20.33 49.54 87.2 

DCGAN 8. 73± 0.09 5.83± 0.10 6. 802± 0.11 6.93 26.81 38.1 

WGAN 5.62± 0.02 5.37± 0.07 5.751± 1.4 12.94 24.05 52.8 

WGAN-GP 8.10 ± 0.12 6.11± 0.10 6.631± 0.09 7.81 24.62 37.4 

LSGAN 9.22± 0.06 6.35± 0.12 6.582± 0.10 6.56 25.32 43.6 

 
4.4.3Training time 

The training time taken by the models is tabulated 

below in Table 3. WGAN was found to be extremely 

slow compared to the other GANS. GP-WGAN, an 

upgraded WGAN, was found to be quicker than 

WGAN. However, when compared to both WGAN 

and WGAN-GP, DCGAN and LSGAN took lesser 

time. 

 

Table 3 Time taken per epoch and Total time taken by loss variants of GAN when trained on MNIST, Fashion-

MNIST and CIFAR-10 datasets 

GAN-Variants Time taken/Epoch Total Time Taken/100 epochs 

MNIST Fashion-

MNIST 

CIFAR-10 MNIST Fashion-MNIST CIFAR-10 

Vanilla GAN 0.08s 0.11s 0.11s 8.60s 11.07s 12.02s 

DCGAN 1.39s 1.44s 1.27s 138.52s 144.08s 127.00s 

WGAN 1.35s 4.50s 4.04s 135.00s 450.19s 403.54s 

WGAN-GP 2.24s 2.27s 2.08s 223.89s 227.09s 208.32s 

LSGAN 1.45s 1.40s 1.36s 145.55s 136.02s 136.46s 

 

5.Discussion 
5.1Summary of the key findings 

In this paper, we implemented 5 different loss 

function versions of GAN for generating images from 

noise input. These models have been tested on three 

alternative datasets including MNIST, Fashion-

MNIST, and CIFAR-10 datasets. Below is the 

summary of the findings from the results: 

a. From Figure 3, it is clear that the samples 

generated by LSGAN are more clear and realistic 

than other variants on the MNIST dataset. Among 

DCGAN, WGAN, and WGAN-GP, DCGAN 

produces better results. On the CIFAR-10 dataset, 

DCGAN produces better visual results than the 

rest of the variants. On Fashion-MNIST, better 

results were obtained by LSGAN followed by 

DCGAN.  

b. Though DCGAN produced better results on 

CIFAR-10 dataset than rest of the GANs and 

produced better results than vanilla GAN, WGAN 

as well as its modified version WGAN-GP on 

MNIST and Fashion-MNIST datasets, it suffered 

from mode collapse and non-convergence on all 

the three datasets. The examples of these issues on 

MNIST dataset are given in Figure 4 and Figure 5. 

Also, LSGAN suffered from the mode collapse 

issue on the CIFAR-10 dataset. On the other hand, 

there was no sign of mode collapse and other 

issues when implementing WGAN and WGAN-

GP. Moreover, Figure 8 shows that WGAN-GP 

converges faster than WGAN and both of them 

converge faster than vanilla GAN and DCGAN. 

LSGAN also gets stable early and continues to 

remain so. 

c. In terms of quantitative metrics, on the MNIST 

dataset, LSGAN gives the higher IS of 9.22± 0.06 

followed by DCGAN whose inception score is 8. 

73± 0.09. WGAN-GP has a higher IS than WGAN 

and the lowest IS is shown by vanilla GAN. On 

the CIFAR-10 dataset, the higher IS is achieved by 

DCGAN. Moreover, WGAN-GP shows better IS 

on this dataset compared to LSGAN. On the 

Fashion-MNIST dataset, LSGAN has the highest 

IS. Also, WGAN-GP shows better IS than 

DCGAN on this dataset. On the Fashion-MNIST, 

better scores of FID are shown by WGAN 

followed by WGAN-GP. On the CIFAR-10 

dataset, better FID scores are shown by WGAN-

GP followed by DCGAN. On the MNIST dataset, 

LSGAN shows lower FID scores than the rest of 

the variants. 

d. In terms of training time, almost all the variants 

take more time when trained on Fashion-MNIST 

and CIFAR-10 datasets compared to when trained 

on the MNIST dataset. Among the GAN variants, 

WGAN is extremely slow to be trained and takes 
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more time per epoch than rest of the variants. 

WGAN-GP is faster than WGAN but slower than 

the rest of the variants. Vanilla GAN takes lesser 

time per epoch on all the datasets. 

Furthermore, the summary and strengths of above-

mentioned GAN variants are tabulated below in 

Table 4. 

 

Table 4 Summary of strengths and weaknesses of loss variants of GAN 

 

From the experimental evaluation, it is clear that loss 

function selection in GANs significantly impacts the 

performance. DCGAN, on one hand, produces better 

quality samples but suffers from mode collapse and 

vanishing gradient. WGAN and WGAN-GP, though, 

solve the problems of instability and mode collapse 

but are not successful in generating quality samples. 

Moreover, setting the parameters in WGAN was very 

cumbersome since it requires setting up of lot of 

parameters. The performance of LSGAN was found 

to be better compared to the other algorithms as it 

undergoes minimal mode collapse and deals with 

vanishing gradient and non-convergence issues of 

GANs. 

 

5.2Limitation of the study 

a. In this study, we focussed more on analysing and 

studying the effect of loss functions in dealing 

with the challenges faced by traditional GAN. We 

used the DCGAN-based architecture in all the 

variants. So, in the future different architectural 

variants can be also studied that mitigate the issues 

faced by GAN. 

b. We considered classic datasets in our study which 

have images of low resolution. In the future, these 

variants can be implemented with complex 

datasets having higher resolution images.  

c. Moreover, in the future, the effect of various 

parameters and other attributes on the generation 

of results can be also studied.  

d. Also, here we have studied only the basic loss 

function GAN variants, so in the future, different 

application-oriented loss variants of GAN can be 

studied in detail along with their mathematical 

intuition, other underlying theory, and their 

implementation. 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future work 
GAN, a class of DGM has attracted the interest of the 

research community for its extraordinary ability to 

simulate complex real-world distributions. GANs 

have demonstrated outstanding performance in 

synthesizing a variety of datasets, particularly natural 

images. Despite the fact that GANs have produced 

excellent outcomes in different domains, training 

them is difficult, and suffer from serious instability 

difficulties. The original GAN referred to as vanilla 

GAN used the min-max objective function, also 

called as saturating objective function. Goodfellow et 

al. (2014) showed training procedure of conventional 

GAN can be viewed as approximately minimizing 

Jensen-Shannon divergence. The problem with this 

Loss function 

GAN variants 

Strengths Weaknesses 

Vanilla GAN • Faster generation of the samples. 

• Easy to implement 

• Vanishing gradient problem 

• Results generated are of lower quality  

DCGAN • Create samples with a high likelihood 

of being real. 

• Incurs mode collapse problem.  

• Incurs non-convergence problem 

WGAN • Solves the issue of vanishing gradient. 

• Solves mode collapse problem 

• Converges faster than DCGAN 

 

• It does not clearly perform significantly better than the 

DCGAN in terms of results generated. 

• It uses weight clipping which limits the ability of the 

models to learn complex distributions. 

• Selecting the weight clipping is very sensitive because the 

small one might cause vanishing gradient and the large one 

may cause the slow convergence. 

WGAN-GP • Faster convergence rate than WGAN.  

• During training, it is more stable 

• Batch normalisation is not feasible since each sample in the 

batch is subjected to gradient penalization. 

• Results generated though are better than WGAN but not 

better than DCGAN 

LSGAN • Solves the vanishing gradient problem 

and improves GAN training stability. 

• Increases the model's mode diversity. 

• It‟s simple and easy to implement. 

• Instead of real data, produced samples are pushed to the 

decision boundary, which may impair the quality of the 

output image. 

• Shows some sign of mode collapse on complex datasets like 

CIFAR-10 
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function is that it results in the vanishing gradient. To 

mitigate this issue, the authors recommended the use 

of an alternate loss function termed as non-saturating 

loss function. Although it removed the challenging 

issue of vanishing gradient but incurred the problem 

called as mode collapse. To attain training stability 

and alleviate these challenges, a variety of GAN 

derivative models that have improved loss functions, 

have emerged endlessly. In this paper, we have first 

of all explored the complete mathematics behind the 

two versions of the loss functions used by the original 

GAN and summarized their strengths and 

weaknesses. It has been found that GANs problem 

ultimately arises and depends upon the design of loss 

function used and the new loss function variants have 

been found to improve the process of training in 

GANs compared to architectural GANs as a 

consequence of which a plethora of objective 

function GANs variants have been proposed. An in-

depth study of the various loss function variants of 

GAN has been provided in this paper giving a 

mathematical insight into them. It also provides a 

summary of their advantages and disadvantages. 

Finally, we implemented the vanilla GAN, DCGAN, 

and the other GAN variants mentioned in this paper 

using MNIST, Fashion-MNIST, and CIFAR-10 

datasets, and performed a detailed qualitative and 

quantitative analysis of the results obtained.   
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Appendix I 
S. No. Abbreviation Description 

1 ANN Artificial Neural Network 

2 ARRPNGAN Attention Regularization and 

Region Proposal Networks Based 

GAN 

3 BCE Binary Cross Entropy 

4 CGANs Conditional Generative Adversarial 

Network 

5 CRF Conditional Random Fields  

6 CT Computed Tomography 

7 DAE Denoising Auto Encoder 

8 DAM Domain-Attention Module  

9 DBMs Deep Boltzmann Machines  

10 DBNs Deep Belief Networks 

11 DCGAN Deep Convolutional GANs 

12 DGM Deep Generative Models  

13 FID Frechet Inception Distance 

14 GANs Generative Adversarial Networks 

15 GSN Generative Stochastic Network 

16 HMM Hidden Markov Models  

17 IS Inception Score  

18 JS Jensen-Shannon  

19 KL Kullback-Leibler  

20 LDA-GAN Lightweight Domain-Attention 

Generative Adversarial Network 

21 LSGAN Least Squares Generative 

Adversarial Network 

22  MRI Magnetic Resonance Imaging 

23 MR-GAN  Magnetic Resonance Generative 

Adversarial Network 

24 RBMs Restricted Boltzmann Machines  

25 ReLU Rectified Linear Unit 

26 SRGAN Super-Resolution Generative 

Adversarial Network  

27 SGD Stochastic Gradient Descent 

28 SVMs Support Vector Machines 

29 Tanh Hyperbolic Tangent Function  

30 WGAN Wasserstein Generative Adversarial 

Network 

31 WGAN-GP Wasserstein GAN-Gradient 

32 2D Two Dimensional 

33 3D Three Dimensional 

   

 

 

https://www.sciencedirect.com/topics/engineering/regularization

